期刊文献+
共找到1,407篇文章
< 1 2 71 >
每页显示 20 50 100
Three-dimensional numerical simulation of the flow past a circular cylinder based on LES method 被引量:1
1
作者 陈海龙 戴绍士 +1 位作者 李佳 姚熊亮 《Journal of Marine Science and Application》 2009年第2期110-116,共7页
The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three ... The hydrodynamic characteristics of a rigid, single, circular cylinder in a three dimensional, incompressible, uniform cross flow were calculated using the large-eddy simulation method of CFX5. Solutions to the three dimensional N-S equations were obtained by the finite volume method. The focus of this numerical simulation was to research the characteristics of pressure distribution (drag and litt forces) and vortex tubes at high Reynolds numbers. The results of the calculations showed that the forces at every section in the spanwise direction of the cylinder were symmetrical about the middle section and smaller than the forces calculated in two dimensional cases. Moreover, the flow around the cylinder obviously presents three dimensional characteristics. 展开更多
关键词 LES method three-dimensional flow past circular cylinder hydrodynamic characteristics
下载PDF
Three-dimensional Computational Fluid Dynamics Modeling of Two-phase Flow in a Structured Packing Column 被引量:4
2
作者 张小斌 姚蕾 +1 位作者 邱利民 张学军 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第9期959-966,共8页
Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed... Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations. 展开更多
关键词 structured packing column two-phase flow computational fluid dynamics three-dimension
下载PDF
Pipes with Trapezoidal Cut Twisted Tape Inserts in the Laminar Flow Regime:Nusselt Number and Friction Coefficient Analysis
3
作者 Shrikant Arunrao Thote Netra Pal Singh 《Fluid Dynamics & Materials Processing》 EI 2023年第2期501-511,共11页
The thermal behavior of pipes with a twisted tape inside(used to enhance heat transfer through the tube wall)is studied in the laminar flow regime.Oil is used as the work fluid with the corresponding Reynolds Number s... The thermal behavior of pipes with a twisted tape inside(used to enhance heat transfer through the tube wall)is studied in the laminar flow regime.Oil is used as the work fluid with the corresponding Reynolds Number spanning the interval 200–2000.It is found that in such conditions the‘Nusselt Number’(Nu)gradually increases with reducing the tape twist ratio,whereas the friction factor is detrimentally affected by the presence of the tape(as witnessed by the comparison with the companion case where a plain tube is considered).In particular,it is shown that the heat transfer efficiency can be improved by nearly 69%if tape inserts with a relatively low twist ratio are used.On the basis of these findings,it is concluded that loose fit tape inserts are superior to tight fit tapes in terms of heat transfer and ease of replacement. 展开更多
关键词 Friction factor laminar flow Nusselt Number trapezoidal-cut twisted tape
下载PDF
Analytic homotopy solution of generalized three-dimensional channel flow due to uniform stretching of the plate 被引量:2
4
作者 AhmerMehmood AsifAli 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2007年第5期503-510,共8页
In this communication a generalized three- dimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-... In this communication a generalized three- dimensional steady flow of a viscous fluid between two infinite parallel plates is considered. The flow is generated due to uniform stretching of the lower plate in x- and y-directions. It is assumed that the upper plate is uniformly porous and is subjected to constant injection. The governing system is fully coupled and nonlinear in nature. A complete analytic solution which is uniformly valid for all values of the dimensionless parameters β Re and λ is obtained by using a purely analytic technique, namely the homotopy analysis method. Also the effects of the parameters β Re and λ on the velocity field are discussed through graphs. 展开更多
关键词 Generalized three-dimensional flow Viscous fluid Stretching sheet Channel flow Homotopy analysis method
下载PDF
Three-dimensional mixed convection stagnation-point fow past a vertical surface with second-order slip velocity
5
作者 A.V.ROSCA N.C.ROSCA I.POP 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第4期641-652,共12页
This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is... This study is concerned with the three-dimensional(3D)stagnation-point for the mixed convection flow past a vertical surface considering the first-order and secondorder velocity slips.To the authors’knowledge,this is the first study presenting this very interesting analysis.Nonlinear partial differential equations for the flow problem are transformed into nonlinear ordinary differential equations(ODEs)by using appropriate similarity transformation.These ODEs with the corresponding boundary conditions are numerically solved by utilizing the bvp4c solver in MATLAB programming language.The effects of the governing parameters on the non-dimensional velocity profiles,temperature profiles,skin friction coefficients,and the local Nusselt number are presented in detail through a series of graphs and tables.Interestingly,it is reported that the reduced skin friction coefficient decreases for the assisting flow situation and increases for the opposing flow situation.The numerical computations of the present work are compared with those from other research available in specific situations,and an excellent consensus is observed.Another exciting feature for this work is the existence of dual solutions.An important remark is that the dual solutions exist for both assisting and opposing flows.A linear stability analysis is performed showing that one solution is stable and the other solution is not stable.We notice that the mixed convection and velocity slip parameters have strong effects on the flow characteristics.These effects are depicted in graphs and discussed in this paper.The obtained results show that the first-order and second-order slip parameters have a considerable effect on the flow,as well as on the heat transfer characteristics. 展开更多
关键词 three-dimensional(3D)mixed convection flow stagnation point flow first-order slip velocity second-order slip velocity numerical solution stability analysis
下载PDF
Three-Dimensional Simulation of Hydrodynamic Mechanism of Fluidized Bed Methanation
6
作者 Xiaojia Wang Danyang Shao +2 位作者 Delu Chen Yutong Gong Fengxia An 《Journal of Renewable Materials》 EI 2023年第7期3155-3175,共21页
Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas i... Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas in the specific reactor.In order to understand the dynamic characteristics of the reactor,a three-dimensional numerical model has been established by the method of Computational Fluid Dynamics(CFD).Along the height of the reactor,the particle distribution in the bed becomes thinner and the mean solid volume fraction decreases from 4.18%to 0.37%.Meanwhile,the pressure fluctuation range decreased from 398.76 Pa at the entrance to a much lower value of 74.47 Pa at the exit.In this simulation,three parameters of gas inlet velocity,operating temperature and solid particle diameter are changed to explore their influences on gas-solid multiphase flow.The results show that gas velocity has a great influence on particle distribution.When the gas inlet velocity decreases from 6.51 to 1.98 m/s,the minimum height that particles can reach decreases from 169 to 100 mm.Additionally,as the operating temperature increases,the particle holdup inside the reactor changes from 0.843%to 0.700%.This indicates that the particle residence time reduces,which is not conducive to the follow-up reaction.Moreover,with the increase of particle size,the fluctuation range of the pressure at the bottom of the reactor increases,and its standard deviation increases from 55.34 to 1266.37 Pa. 展开更多
关键词 Organic solid waste methanation reactor multiphase flow three-dimensional simulation
下载PDF
Real-time Three-Dimensional Color Doppler Flow Imaging: An Improved Technique for Quantitative Analysis of Aortic Regurgitation 被引量:3
7
作者 吕清 刘夏天 +3 位作者 谢明星 王新房 王静 庄磊 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第1期148-152,共5页
The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT... The recently introduced real-time three-dimensional color Doppler flow imaging (RT-3D CDFI) technique provides a quick and accurate calculation of regurgitant jet volume (RJV) and fraction. In order to evaluate RT-3D CDFI in the noninvasive assessment of aortic RJV and regurgitant jet fraction (RJF) in patients with isolated aortic regurgitation, real-time three-dimensional echocardiographic studies were performed on 23 patients with isolated aortic regurgitation to obtain LV end-diastolic volumes (LVEDV), end-systolic volumes (LVESV) and RJV, and then RJF could be calculated. The regurgitant volume (RV) and regurgitant fraction (RF) calculated by two-dimensional pulsed Doppler (2D-PD) method served as reference values. The results showed that aortic RJV measured by the RT-3D CDFI method showed a good correlation with the 2D-PD measurements (r= 0.93, Y=0.89X+ 3.9, SEE= 8.6 mL, P〈0.001 ); the mean (SD) difference between the two methods was - 1.5 (9.8) mL. % RJF estimated by the RT-3D CDFI method was also correlated well with the values obtained by the 2D-PD method (r=0.88, Y=0.71X+ 14.8, SEE= 6.4 %, P〈0. 001); the mean (SD) difference between the two methods was -1.2 (7.9) %. It was suggested that the newly developed RT-3D CDFI technique was feasible in the majority of patients. In patients with eccentric aortic regurgitation, this new modality provides additional information to that obtained from the two-dimensional examination, which overcomes the inherent limitations of two-dimensional echocardiography by depicting the full extent of the jet trajectory. In addition, the RT-3D CDFI method is quick and accurate in calculating RJV and RJF. 展开更多
关键词 real-time three-dimensional echocardiography color Doppler flow imaging aortic regurgitation
下载PDF
Three-dimensional stretched flow of Jeffrey fluid with variable thermal conductivity and thermal radiation 被引量:2
8
作者 T. HAYAT S. A. SHEHZAD A. ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2013年第7期823-832,共10页
This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed fo... This article addresses the three-dimensional stretched flow of the Jeffrey fluid with thermal radiation. The thermal conductivity of the fluid varies linearly with respect to temperature. Computations are performed for the velocity and temperature fields. Graphs for the velocity and temperature are plotted to examine the behaviors with different parameters. Numerical values of the local Nusselt number are presented and discussed. The present results are compared with the existing limiting solutions, showing good agreement with each other. 展开更多
关键词 three-dimensional flow variable thermal conductivity thermal radiation Jeffrey fluid
下载PDF
MHD three-dimensional flow of Jeffrey fluid with Newtonian heating 被引量:6
9
作者 S.A.Shehzad T.Hayat +1 位作者 M.S.Alhuthali S.Asghar 《Journal of Central South University》 SCIE EI CAS 2014年第4期1428-1433,共6页
The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the... The magnetohydrodynamic(MHD) three-dimensional flow of Jeffrey fluid in the presence of Newtonian heating is investigated. Flow is caused by a bidirectional stretching surface. Series solutions are constructed for the velocity and temperature fields. Convergence of series solutions is ensured graphically and numerically. The variations of key parameters on the physical quantities are shown and discussed in detail. Constructed series solutions are compared with the existing solutions in the limiting case and an excellent agreement is noticed. Nusselt numbers are computed with and without magnetic fields. It is observed that the Nusselt number decreases in the presence of magnetic field. 展开更多
关键词 three-dimensional flow Jeffrey fluid Newtonian heating
下载PDF
STABILIZATION EFFECT OF FRICTIONS FOR TRANSONIC SHOCKS IN STEADY COMPRESSIBLE EULER FLOWS PASSING THREE-DIMENSIONAL DUCTS 被引量:2
10
作者 Hairong YUAN Qin ZHAO 《Acta Mathematica Scientia》 SCIE CSCD 2020年第2期470-502,共33页
Transonic shocks play a pivotal role in designation of supersonic inlets and ramjets.For the three-dimensional steady non-isentropic compressible Euler system with frictions,we constructe a family of transonic shock s... Transonic shocks play a pivotal role in designation of supersonic inlets and ramjets.For the three-dimensional steady non-isentropic compressible Euler system with frictions,we constructe a family of transonic shock solutions in rectilinear ducts with square cross-sections.In this article,we are devoted to proving rigorously that a large class of these transonic shock solutions are stable,under multidimensional small perturbations of the upcoming supersonic flows and back pressures at the exits of ducts in suitable function spaces.This manifests that frictions have a stabilization effect on transonic shocks in ducts,in consideration of previous works which shown that transonic shocks in purely steady Euler flows are not stable in such ducts.Except its implications to applications,because frictions lead to a stronger coupling between the elliptic and hyperbolic parts of the three-dimensional steady subsonic Euler system,we develop the framework established in previous works to study more complex and interesting Venttsel problems of nonlocal elliptic equations. 展开更多
关键词 Stability transonic shocks Fanno flow three-dimensional Euler system FRICTIONS decomposition nonlocal elliptic problem Venttsel boundary condition elliptic-hyperbolic mixed-composite tpe
下载PDF
Three-dimensional cellular automata based particle flow simulations of mechanical properties of talus deposit 被引量:2
11
作者 Linwei Wang Weiya Xu Anquan Xu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE 2012年第4期375-384,共10页
Based on three-dimensional cellular automata (CA), a new stochastic simulation model to simulate the microstructures and particle flow of talus deposit is proposed. Ill addition, an auto-modeling program CARS is dev... Based on three-dimensional cellular automata (CA), a new stochastic simulation model to simulate the microstructures and particle flow of talus deposit is proposed. Ill addition, an auto-modeling program CARS is developed, with which nunaerical simulations can be conducted conveniently. For the problem of simulating mechanical behaviors of talus deposit, spatial anangement or sphere shapes should be considered. In the new modeling method, four sphere anangement models are developed for the particle flow simulation of talus deposit. Numerical results show that the talus deposit has the mechanical characteristics of typical stress-strain curves, as other rock-like materials. The cohesion of talus deposit decreases with increasing rock content, while the internal friction angle increases with increasing rock contents. Finally, numerical simulation is verified with the results of field test. 展开更多
关键词 soil mechanics talus deposit: three-dimensional cellular automata (CA) particle flow mechanical properties
下载PDF
Three-dimensional boundary layer flow of Maxwell nanofluid:mathematical model 被引量:1
12
作者 T.HAYAT T.MUHAMMAD +1 位作者 S.A.SHEHZAD A.ALSAEDI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第6期747-762,共16页
The present research explores the three-dimensional boundary layer flow of the Maxwell nanofluid. The flow is generated by a bidirectional stretching surface. The mathematical formulation is carried out through a boun... The present research explores the three-dimensional boundary layer flow of the Maxwell nanofluid. The flow is generated by a bidirectional stretching surface. The mathematical formulation is carried out through a boundary layer approach with the heat source/sink, the Brownian motion, and the thermophoresis effects. The newly developed boundary conditions requiring zero nanoparticle mass flux at the boundary are employed in the flow analysis for the Maxwell fluid. The governing nonlinear boundary layer equations through appropriate transformations are reduced to the coupled nonlin- ear ordinary differential system. The resulting nonlinear system is solved. Graphs are plotted to examine the effects of various interesting parameters on the non-dimensional velocities, temperature, and concentration fields. The values of the local Nusselt number are computed and examined numerically. 展开更多
关键词 three-dimensional flow NANOPARTICLE Maxwell fluid heat source/sink
下载PDF
Convective heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface with heat source 被引量:1
13
作者 T.Hayat M.Bilal Ashraf +1 位作者 A.Alsaedi S.A.Shehzad 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第2期717-726,共10页
Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and therm... Heat and mass transfer effects in three-dimensional flow of Maxwell fluid over a stretching surface were addressed.Analysis was performed in the presence of internal heat generation/absorption. Concentration and thermal buoyancy effects were accounted. Convective boundary conditions for heat and mass transfer analysis were explored. Series solutions of the resulting problem were developed. Effects of mixed convection, internal heat generation/absorption parameter and Biot numbers on the dimensionless velocity, temperature and concentration distributions were illustrated graphically. Numerical values of local Nusselt and Sherwood numbers were obtained and analyzed for all the physical parameters. It is found that both thermal and concentration boundary layer thicknesses are decreasing functions of stretching ratio. Variations of mixed convection parameter and concentration buoyancy parameter on the velocity profiles and associated boundary layer thicknesses are enhanced. Velocity profiles and temperature increase in the case of internal heat generation while they reduce for heat absorption. Heat transfer Biot number increases the thermal boundary layer thickness and temperature. Also concentration and its associated boundary layer are enhanced with an increase in mass transfer Biot number. The local Nusselt and Sherwood numbers have quite similar behaviors for increasing values of mixed convection parameter, concentration buoyancy parameter and Deborah number. 展开更多
关键词 Maxwell fluid mixed convection convective conditions three-dimensional flow internal heat generation/absorption
下载PDF
AN APPLICATION OF TOPOLOGICAL ANALYSIS TO STUDYING THE THREE-DIMENSIONAL FLOW IN CASCADES;PART I—TOPOLOGICAL RULES FOR SKIN-FRICTION LINES AND SECTION STREAMLINES 被引量:2
14
作者 康顺 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第5期489-495,共7页
Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rul... Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rules are (1) for a rotor cascade without shroud band, the total number of nodal points equals that the saddle points on the skin-friction line vector fields in eachpitch range; (2) for an annular or straight cascade with no-clearances at blade ends, the total number of saddle points is two more than that of nodal points on the skin-friction line fields in a pitch; (3) the total number of saddles in the secondary flow fields on cross-sections in cascade is one less than that of nodes; (4) in the section streamline vector fields on a meridian surface penetrating a flow passage, and on leading and trailing edge sections, the total number of nodes is equal to that of saddles; (5) on the streamline vector fields of a blade-to-blade surface, the total number of nodes is one less than that of saddles. 展开更多
关键词 node TOPOLOGICAL RULES FOR SKIN-FRICTION LINES AND SECTION STREAMLINES AN APPLICATION OF TOPOLOGICAL ANALYSIS TO STUDYING THE three-dimensional flow IN CASCADES PART I
下载PDF
EXPERIMENTAL INVESTIGATION FOR THE EFFECT OF ROTATION ON THREE-DIMENSIONAL FLOW FIELD IN FILM-COOLED TURBINE 被引量:2
15
作者 YUAN Feng ZHU Xiaocheng DU Zhaohui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第1期10-15,共6页
An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing rati... An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing ratios (M=1.5, 2) on the flow field are studied. The experimental results reveal the classical phenomena of the formation of kidney vortex pair and secondary flow in wake region behind the jet hole. And the changes of the kidney vortex pair and the wake at different locations away from the hole on the suction and pressure sides are also studied. Compared with the flow field in stationary cascade, there are centrifugal force and Coriolis force existing in the flow field of rotating turbine, and these forces bring the radial velocity in the jet flow. The effect of rotatien on the flow field of the pressure side is more distinct than that on the suction side from the measured flow fields in Y-Z plane and radial velocity contours. The increase of blowing ratio makes the kidney vortex pair and the secondary flow in the wake region stronger and makes the range of the wake region enlarged. 展开更多
关键词 Film-cooled turbine rotor PIV measurement Blowing ratio three-dimensional flow field
下载PDF
The Design of a Three-Dimensional Physical Modeling System for Real-Time Groundwater Flows 被引量:1
16
作者 SHI Feng ZHANG Fawang +5 位作者 CHEN Li HAN Zhantao YAO Hongchao QIAN Long CHEN Liang JIANG Chengchao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第6期2103-2103,共1页
In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-di... In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-dimensional groundwater flows,making it impossible to validate groundwater flows simulated by numerical methods with physical modeling. 展开更多
关键词 The Design of a three-dimensional Physical Modeling System for Real-Time Groundwater flows
下载PDF
Study of hybrid nanofluid flow in a stationary cone-disk system with temperature-dependent fluid properties
17
作者 A.S.JOHN B.MAHANTHESH G.LORENZINI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第4期677-694,共18页
Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid na... Cone-disk systems find frequent use such as conical diffusers,medical devices,various rheometric,and viscosimetry applications.In this study,we investigate the three-dimensional flow of a water-based Ag-Mg O hybrid nanofluid in a static cone-disk system while considering temperature-dependent fluid properties.How the variable fluid properties affect the dynamics and heat transfer features is studied by Reynolds's linearized model for variable viscosity and Chiam's model for variable thermal conductivity.The single-phase nanofluid model is utilized to describe convective heat transfer in hybrid nanofluids,incorporating the experimental data.This model is developed as a coupled system of convective-diffusion equations,encompassing the conservation of momentum and the conservation of thermal energy,in conjunction with an incompressibility condition.A self-similar model is developed by the Lie-group scaling transformations,and the subsequent self-similar equations are then solved numerically.The influence of variable fluid parameters on both swirling and non-swirling flow cases is analyzed.Additionally,the Nusselt number for the disk surface is calculated.It is found that an increase in the temperature-dependent viscosity parameter enhances heat transfer characteristics in the static cone-disk system,while the thermal conductivity parameter has the opposite effect. 展开更多
关键词 hybrid nanofluid cone-disk system laminar flow variable fluid property Nusselt number
下载PDF
Three-dimensional human thermoregulation model based on pulsatile blood flow and heating mechanism
18
作者 Si-Na Dang Hong-Jun Xue +3 位作者 Xiao-Yan Zhang Jue Qu Cheng-Wen Zhong Si-Yu Chen 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期278-288,共11页
A three-dimensional thermoregulation mathematical model of temperature fluctuations for the human body is developed based on predecessors' thermal models. The following improvements are necessary in real situations:... A three-dimensional thermoregulation mathematical model of temperature fluctuations for the human body is developed based on predecessors' thermal models. The following improvements are necessary in real situations: ellipsoids and elliptical cylinders are used to adequately approximate body geometry, divided into 18 segments and five layers; the core layer consists of the organs; the pulsation of the heart cycle, the pulsatile laminar flow, the peripheral resistance, and the thermal effect of food are considered. The model is calculated by adopting computational fluid dynamics(CFD) technology, and the results of the model match with the experimental data. This paper can give a reasonable explanation for the temperature fluctuations. 展开更多
关键词 THERMOREGULATION pulsating laminar flow heat transfer computational fluid dynamics (CFD)
下载PDF
AN APPLICATION OF TOPOLOGICAL METHOD TO ANALYSING THE THREE-DIMENSIONAL FLOW IN CASCADES(Ⅱ)-TOPOLOGICAL ANALYSIS ON THE VECTOR FIELD PATTERNS OF SKINFRICTIONS AND SECTION STREAMLINES
19
作者 Kang Shun Wang Zhongqi 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1990年第12期1119-1127,共9页
With an application of topological analysis,in this paper the skin-friction line patterns on compressor and turbine cascade surfaces are depicted and the streamline patterns of the secondary flow fields in the cross-s... With an application of topological analysis,in this paper the skin-friction line patterns on compressor and turbine cascade surfaces are depicted and the streamline patterns of the secondary flow fields in the cross-section of a curved pipe and a turbine cascade are drawn under given conditions.In addition the structures of vortices within three-dimensional viscous flow fields in cascades are analysed. 展开更多
关键词 topological analysis separation flow three-dimensional flow visualization turbine COMPRESSOR VORTEX
下载PDF
THREE-DIMENSIONAL ANALYSIS OF THE FLOW IN THE CYCLONES
20
作者 奚致中 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1995年第6期557-564,共8页
This paper gives the detailed mathematical expression of the flow in the spherical coordinates system. Applying the law of conservation of mass, movement theorem of steady flow, and applying the mathematical method of... This paper gives the detailed mathematical expression of the flow in the spherical coordinates system. Applying the law of conservation of mass, movement theorem of steady flow, and applying the mathematical method of stream function with consideration of the axis symmetry, the three components of velocity quantum of the flow are deduced in detail. Here the overall analysis of the flow is presented in the view of the concept of whole, and the paper gives the necessary corrections of some results of Ref.[1] 展开更多
关键词 three-dimensional flow stream function steady flow incompressible fluid
下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部