期刊文献+
共找到123篇文章
< 1 2 7 >
每页显示 20 50 100
Three-dimensional acoustic propagation model for shallow waters based on an indirect boundary element method
1
作者 Edmundo F.Lavia Juan D.Gonzalez Silvia Blanc 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第5期485-495,共11页
This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary eleme... This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary element method(BEM),which uses a half-space Green function instead of the more conventional free-space Green function.On the other hand,a numerical implementation is illustrated to explore the formulation in simple idealized cases,controlled by a few parameters,which provides necessary tests for the accuracy and performance of the model.The half-space Green's function,which has been previously used in scattering and diffraction,adds terms to the usual expressions of the integral operators without altering their continuity properties.Verifications against the wavenumber integration solution of the Pekeris waveguide suggest that the model allows an adequate prediction for the acoustic field.Likewise,numerical experiments in relation to the necessary mesh size for the description of the water-marine sediment interface lead to the conclusion that a transmission loss prediction with acceptable accuracy can be obtained with the use of a limited mesh around the desired evaluation region. 展开更多
关键词 three-dimensional acoustic propagation boundary element method half-space Green function
下载PDF
Velocity-Free MS/AE Source Location Method for Three-Dimensional Hole-Containing Structures 被引量:25
2
作者 Longjun Dong Qingchun Hu +1 位作者 Xiaojie Tong Youfang Liu 《Engineering》 SCIE EI 2020年第7期827-834,共8页
Microseismic/acoustic emission(MS/AE)source localization method is crucial for predicting and controlling of potentially dangerous sources of complex structures.However,the locating errors induced by both the irregula... Microseismic/acoustic emission(MS/AE)source localization method is crucial for predicting and controlling of potentially dangerous sources of complex structures.However,the locating errors induced by both the irregular structure and pre-measured velocity are poorly understood in existing methods.To meet the high-accuracy locating requirements in complex three-dimensional hole-containing structures,a velocity-free MS/AE source location method is developed in this paper.It avoids manual repetitive training by using equidistant grid points to search the path,which introduces A*search algorithm and uses grid points to accommodate complex structures with irregular holes.It also takes advantage of the velocity-free source location method.To verify the validity of the proposed method,lead-breaking tests were performed on a cubic concrete test specimen with a size of 10 cm10 cm10 cm.It was cut out into a cylindrical empty space with a size of/6cm10 cm.Based on the arrivals,the classical Geiger method and the proposed method are used to locate lead-breaking sources.Results show that the locating error of the proposed method is 1.20 cm,which is less than 2.02 cm of the Geiger method.Hence,the proposed method can effectively locate sources in the complex three-dimensional structure with holes and achieve higher precision requirements. 展开更多
关键词 Microseismic source Acoustic emission Velocity-free location method three-dimensional hole-containing STRUCTURES
下载PDF
Three-dimensional simulation method of multipactor in microwave components for high-power space application 被引量:5
3
作者 李韵 崔万照 +4 位作者 张 娜 王新波 王洪广 李永东 张剑锋 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第4期686-693,共8页
Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain met... Based on the particle-in-cell technology and the secondary electron emission theory, a three-dimensional simulation method for multipactor is presented in this paper. By combining the finite difference time domain method and the panicle tracing method, such an algorithm is self-consistent and accurate since the interaction between electromagnetic fields and particles is properly modeled. In the time domain aspect, the generation of multipactor can be easily visualized, which makes it possible to gain a deeper insight into the physical mechanism of this effect. In addition to the classic secondary electron emission model, the measured practical secondary electron yield is used, which increases the accuracy of the algorithm. In order to validate the method, the impedance transformer and ridge waveguide filter are studied. By analyzing the evolution of the secondaries obtained by our method, multipactor thresholds of these components are estimated, which show good agreement with the experimental results. Furthermore, the most sensitive positions where multipactor occurs are determined from the phase focusing phenomenon, which is very meaningful for multipactor analysis and design. 展开更多
关键词 MULTIPACTOR numerical method three-dimensional HIGH-POWER THRESHOLD
下载PDF
Predicting the Dynamic Behavior of Asphalt Concrete Using Three-dimensional Discrete Element Method 被引量:4
4
作者 陈俊 PAN Tongyan +2 位作者 CHEN Jingya HUANG Xiaoming LU Yang 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2012年第2期382-388,共7页
A user-defined three-dimensional (3D) discrete element model was presented to predict the dynamic modulus and phase angle of asphalt concrete (AC). The 3D discrete element method (DEM) model of AC was constructe... A user-defined three-dimensional (3D) discrete element model was presented to predict the dynamic modulus and phase angle of asphalt concrete (AC). The 3D discrete element method (DEM) model of AC was constructed employing a user-defined computer program developed using the "Fish" language in PFC3D. Important microstructural features of AC were modeled, including aggregate gradation, air voids and mastic. The irregular shape of aggregate particle was modeled using a clump of spheres. The developed model was validated through comparing with experimental measurements and then used to simulate the cyclic uniaxial compression test, based on which the dynamic modulus and phase angle were calculated from the output stress- strain relationship. The effects of air void content, aggregate stiffness and volumetric fraction on AC modulus were further investigated. The experimental results show that the 3D DEM model is able to accurately predict both dynamic modulus and phase angle of AC across a range of temperature and loading frequencies. The user- defined 3D model also demonstrated significant improvement over the general existing two-dimensional models. 展开更多
关键词 asphalt concrete dynamic modulus MICROMECHANICS discrete element method three-dimensional model uniaxial compression test
下载PDF
Stream Surface Strip Element Method and Simulation of Three-Dimensional Deformation of Continuous Hot Rolled Strip 被引量:5
5
作者 LIU Hong-min WANG Ying-rui 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2004年第2期18-24,共7页
A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream su... A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process. 展开更多
关键词 HOT-ROLLING STRIP PLATE three-dimensional deformation stream surface strip element method unit rolling pressure friction stress tension stress
下载PDF
ANALYSIS OF THREE-DIMENSIONAL UPSETTING PROCESS BY THE RIGID-PLASTIC REPRODUCING KERNEL PARTICLE METHOD 被引量:2
6
作者 Y. H. Liu J. Chen S. Yu X. W. Chen 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2006年第5期371-378,共8页
A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow t... A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow theory of 3D rigid-plastic mechanics. For the treatments of essential boundary conditions and incompressibility constraint, the boundary singular kernel method and the modified penalty method are utilized, respectively. The arc-tangential friction model is employed to treat the contact conditions. The compression of rectangular blocks, a typical 3D upsetting operation, is analyzed for different friction conditions and the numerical results are compared with those obtained using commercial rigid-plastic FEM (finite element method) software Deform^3D. As results show, when handling 3D plastic deformations, the proposed approach eliminates the need of expensive meshing and remeshing procedures which are unavoidable in conventional FEM and can provide results that are in good agreement with finite element predictions. 展开更多
关键词 MESHLESS reproducing kernel particle method(RKPM) three-dimensional upsetting INCOMPRESSIBILITY modified penalty method
下载PDF
Numerical simulation of three-dimensional fracturing fracture propagation in radial wells
7
作者 WANG Tianyu GUO Zhaoquan +4 位作者 LI Gensheng MA Zhengchao YONG Yuning CHANG Xin TIAN Shouceng 《Petroleum Exploration and Development》 SCIE 2023年第3期699-711,共13页
A fracture propagation model of radial well fracturing is established based on the finite element-meshless method.The model considers the coupling effect of fracturing fluid flow and rock matrix deformation.The fractu... A fracture propagation model of radial well fracturing is established based on the finite element-meshless method.The model considers the coupling effect of fracturing fluid flow and rock matrix deformation.The fracture geometries of radial well fracturing are simulated,the induction effect of radial well on the fracture is quantitatively characterized,and the influences of azimuth,horizontal principle stress difference,and reservoir matrix permeability on the fracture geometries are revealed.The radial wells can induce the fractures to extend parallel to their axes when two radial wells in the same layer are fractured.When the radial wells are symmetrically distributed along the direction of the minimum horizontal principle stress with the azimuth greater than 15,the extrusion effect reduces the fracture length of radial wells.When the radial wells are symmetrically distributed along the direction of the maximum horizontal principal stress,the extrusion increases the fracture length of the radial wells.The fracture geometries are controlled by the rectification of radial borehole,the extrusion between radial wells in the same layer,and the deflection of the maximum horizontal principal stress.When the radial wells are distributed along the minimum horizontal principal stress symmetrically,the fracture length induced by the radial well decreases with the increase of azimuth;in contrast,when the radial wells are distributed along the maximum horizontal principal stress symmetrically,the fracture length induced by the radial well first decreases and then increases with the increase of azimuth.The fracture length induced by the radial well decreases with the increase of horizontal principal stress difference.The increase of rock matrix permeability and pore pressure of the matrix around radial wells makes the inducing effect of the radial well on fractures increase. 展开更多
关键词 radial well three-dimensional fracturing fracture propagation simulation finite element-meshless method fluid-solid coupling
下载PDF
Three-dimensional frequency-domain full waveform inversion based on the nearly-analytic discrete method 被引量:3
8
作者 DeYao Zhang WenYong Pan +3 位作者 DingHui Yang LingYun Qiu XingPeng Dong WeiJuan Meng 《Earth and Planetary Physics》 CSCD 2021年第2期149-157,共9页
The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the tim... The nearly analytic discrete(NAD)method is a kind of finite difference method with advantages of high accuracy and stability.Previous studies have investigated the NAD method for simulating wave propagation in the time-domain.This study applies the NAD method to solving three-dimensional(3D)acoustic wave equations in the frequency-domain.This forward modeling approach is then used as the“engine”for implementing 3D frequency-domain full waveform inversion(FWI).In the numerical modeling experiments,synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods.Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods.The inversion results show that the NAD method is more suitable than traditional methods,in terms of computational cost and stability,for 3D frequency-domain FWI,and represents an effective approach for inversion of subsurface model structures. 展开更多
关键词 three-dimension FREQUENCY-DOMAIN NAD method forward modeling full waveform inversion
下载PDF
MESHLESS ANALYSIS FOR THREE-DIMENSIONAL ELASTICITY WITH SINGULAR HYBRID BOUNDARY NODE METHOD 被引量:1
9
作者 苗雨 王元汉 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第5期673-681,共9页
The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and ... The singular hybrid boundary node method (SHBNM) is proposed for solving three-dimensional problems in linear elasticity. The SHBNM represents a coupling between the hybrid displacement variational formulations and moving least squares (MLS) approximation. The main idea is to reduce the dimensionality of the former and keep the meshless advantage of the later. The rigid movement method was employed to solve the hyper-singular integrations. The 'boundary layer effect', which is the main drawback of the original Hybrid BNM, was overcome by an adaptive integration scheme. The source points of the fundamental solution were arranged directly on the boundary. Thus the uncertain scale factor taken in the regular hybrid boundary node method (RHBNM) can be avoided. Numerical examples for some 3D elastic problems were given to show the characteristics. The computation results obtained by the present method are in excellent agreement with the analytical solution. The parameters that influence the performance of this method were studied through the numerical examples. 展开更多
关键词 three-dimensional elasticity moving least squares meshless method modified variational principle singular hybrid boundary node method
下载PDF
Alternating Direction Finite Volume Element Methods for Three-Dimensional Parabolic Equations 被引量:1
10
作者 Tongke Wang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第4期499-522,共24页
This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite differenc... This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods. 展开更多
关键词 three-dimensional parabolic equation alternating direction method finite volume element method error estimate
下载PDF
Three-Dimensional Wind Field Retrieved from Dual-Doppler Radar Based on a Variational Method:Refinement of Vertical Velocity Estimates 被引量:1
11
作者 Chenbin XUE Zhiying DING +1 位作者 Xinyong SHEN Xian CHEN 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2022年第1期145-160,共16页
In this paper,a scheme of dual-Doppler radar wind analysis based on a three-dimensional variational method is proposed and performed in two steps.First,the horizontal wind field is simultaneously recovered through min... In this paper,a scheme of dual-Doppler radar wind analysis based on a three-dimensional variational method is proposed and performed in two steps.First,the horizontal wind field is simultaneously recovered through minimizing a cost function defined as a radial observation term with the standard conjugate gradient method,avoiding a weighting parameter specification step.Compared with conventional dual-Doppler wind synthesis approaches,this variational method minimizes errors caused by interpolation from radar observation to analysis grid in the iterative solution process,which is one of the main sources of errors.Then,through the accelerated Liebmann method,the vertical velocity is further reestimated as an extra step by solving the Poisson equation with impermeable conditions imposed at the ground and near the tropopause.The Poisson equation defined by the second derivative of the vertical velocity is derived from the mass continuity equation.Compared with the method proposed by O’Brien,this method is less sensitive to the uncertainty of the boundary conditions and has better stability and reliability.Furthermore,the method proposed in this paper is applied to Doppler radar observation of a squall line process.It is shown that the retrieved vertical wind profile agrees well with the vertical profile obtained with the velocity–azimuth display(VAD)method,and the retrieved radial velocity as well as the analyzed positive and negative velocity centers and horizontal wind shear of the squall line are in accord with radar observations.There is a good correspondence between the divergence field of the derived wind field and the vertical velocity.And,the horizontal and vertical circulations within and around the squall line,as well as strong updrafts,the associated downdrafts,and associated rear inflow of the bow echo,are analyzed well.It is worth mentioning that the variational method in this paper can be applied to simultaneously synthesize the three-dimensional wind field from multiple-Doppler radar observations. 展开更多
关键词 dual-Doppler radar three-dimensional wind a variational method vertical velocity wind synthesis
下载PDF
Three-Dimensional Water-Quality Simulation for River Based on VOF Method 被引量:1
12
作者 敖雪菲 王晓玲 +2 位作者 宋明瑞 邓韶辉 李松敏 《Transactions of Tianjin University》 EI CAS 2016年第5期426-433,共8页
In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method wit... In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method with the k-ε turbulence mathematical model. Then, the water hydrodynamic characteristics and transport processes for BOD_5, NH_(3^-)N and TP were analyzed. The results showed that the water surface of convex bank was a little lower than that of concave bank due to the centrifugal force near the bend, and most concentrations were inferior to the type Ⅴ standard indexes of surface water environmental quality. The model validation indicated that the errors between the simulated and monitored values were comparatively small, satisfying the application demands and providing scientific basis and decision support for the restoration and protection of water quality. 展开更多
关键词 three-dimensional WATER QUALITY MODEL volume of FLUID method k-ε turbulence mathematical MODEL RIVER WATER QUALITY computational FLUID dynamics
下载PDF
Three-Dimensional Thermo-Elastic-Plastic Finite Element Method Modeling for Predicting Weld-Induced Residual Stresses and Distortions in Steel Stiffened-Plate Structures 被引量:1
13
作者 Myung Su Yi Chung Min Hyun Jeom Kee Paik 《World Journal of Engineering and Technology》 2018年第1期176-200,共25页
The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this p... The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented. 展开更多
关键词 STEEL Stiffened-Plate Structures Weld-Induced Initial Distortion Weld-Induced Residual Stress Nonlinear FINITE ELEMENT method three-dimensional Ther-mo-Elastic-Plastic FINITE ELEMENT Analysis Full Scale Measurements
下载PDF
Implementation of a particle-in-cell method for the energy solver in 3D spherical geodynamic modeling
14
作者 Hao Dong ZeBin Cao +4 位作者 LiJun Liu YanChong Li SanZhong Li LiMing Dai XinYu Li 《Earth and Planetary Physics》 EI CAS CSCD 2024年第3期549-563,共15页
The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially i... The thermal evolution of the Earth’s interior and its dynamic effects are the focus of Earth sciences.However,the commonly adopted grid-based temperature solver is usually prone to numerical oscillations,especially in the presence of sharp thermal gradients,such as when modeling subducting slabs and rising plumes.This phenomenon prohibits the correct representation of thermal evolution and may cause incorrect implications of geodynamic processes.After examining several approaches for removing these numerical oscillations,we show that the Lagrangian method provides an ideal way to solve this problem.In this study,we propose a particle-in-cell method as a strategy for improving the solution to the energy equation and demonstrate its effectiveness in both one-dimensional and three-dimensional thermal problems,as well as in a global spherical simulation with data assimilation.We have implemented this method in the open-source finite-element code CitcomS,which features a spherical coordinate system,distributed memory parallel computing,and data assimilation algorithms. 展开更多
关键词 numerical oscillation overshooting and undershooting particle-in-cell method three-dimensional spherical geodynamic modeling energy solver finite element method
下载PDF
THEORETICAL STUDY OF THREE-DIMENSIONAL NUMERICAL MANIFOLD METHOD
15
作者 骆少明 张湘伟 +1 位作者 吕文阁 姜东茹 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第9期1126-1131,共6页
The three-dimensional numerical manifold method(NMM) is studied on the basis of two-dimensional numerical manifold method. The three-dimensional cover displacement function is studied. The mechanical analysis and Ha... The three-dimensional numerical manifold method(NMM) is studied on the basis of two-dimensional numerical manifold method. The three-dimensional cover displacement function is studied. The mechanical analysis and Hammer integral method of three-dimensional numerical manifold method are put forward. The stiffness matrix of three-dimensional manifold element is derived and the dissection rules are given. The theoretical system and the numerical realizing method of three-dimensional numerical manifold method are systematically studied. As an example, the cantilever with load on the end is calculated, and the results show that the precision and efficiency are agreeable. 展开更多
关键词 numerical manifold method three-dimensional analysis finite cover
下载PDF
A Three-Dimensional Satellite Retrieval Method for Atmospheric Temperature and Moisture Profiles
16
作者 张蕾 邱崇践 黄建平 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第5期897-904,共8页
A three-dimensional variational method is proposed to simultaneously retrieve the 3-D atmospheric temperature and moisture profiles from satellite radiance measurements. To include both vertical structure and the hori... A three-dimensional variational method is proposed to simultaneously retrieve the 3-D atmospheric temperature and moisture profiles from satellite radiance measurements. To include both vertical structure and the horizontal patterns of the atmospheric temperature and moisture, an EOF technique is used to decompose the temperature and moisture field in a 3-D space. A number of numerical simulations are conducted and they demonstrate that the 3-D method is less sensitive to the observation errors compared to the 1-D method. When the observation error is more than 2.0 K, to get the best results, the truncation number for the EOF's expansion have to be restricted to 2 in the 1-D method, while it can be set as large as 40 in a 3-D method. This results in the truncation error being reduced and the retrieval accuracy being improved in the 3-D method. Compared to the 1-D method, the rms errors of the 3-D method are reduced by 48% and 36% for the temperature and moisture retrievals, respectively. Using the real satellite measured brightness temperatures at 0557 UTC 31 July 2002, the temperature and moisture profiles are retrieved over a region (20°-45°N, 100°- 125°E) and compared with 37 collocated radiosonde observations. The results show that the retrieval accuracy with a 3-D method is significantly higher than those with the 1-D method. 展开更多
关键词 atmospheric temperature and moisture profile RETRIEVAL EOF three-dimensional method satellite radiance
下载PDF
A three-dimensional Eulerian method for the numerical simulation of high-velocity impact problems
17
作者 吴士玉 刘凯欣 陈千一 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期338-347,共10页
In the present paper, a three-dimensional (3D) Eulerian technique for the 3D numerical simulation of high-velocity impact problems is proposed. In the Eulerian framework, a complete 3D conservation element and solut... In the present paper, a three-dimensional (3D) Eulerian technique for the 3D numerical simulation of high-velocity impact problems is proposed. In the Eulerian framework, a complete 3D conservation element and solution element scheme for conservative hyperbolic governing equations with source terms is given. A modified ghost fluid method is proposed for the treatment of the boundary conditions. Numerical simulations of the Taylor bar problem and the ricochet phenomenon of a sphere impacting a plate target at an angle of 60~ are carried out. The numerical results are in good agreement with the corresponding experimental observations. It is proved that our computational technique is feasible for analyzing 3D high-velocity impact problems. 展开更多
关键词 three-dimensional numerical simulation conservation element and solution element (CE/SE)method ghost fluid method high-velocity impact
下载PDF
Three-Dimensional Static Analysis of Nanoplates and Graphene Sheets by Using Eringen’s Nonlocal Elasticity Theory and the Perturbation Method
18
作者 Chih-Ping Wu Wei-Chen Li 《Computers, Materials & Continua》 SCIE EI 2016年第5期73-103,共31页
A three-dimensional(3D)asymptotic theory is reformulated for the static analysis of simply-supported,isotropic and orthotropic single-layered nanoplates and graphene sheets(GSs),in which Eringen’s nonlocal elasticity... A three-dimensional(3D)asymptotic theory is reformulated for the static analysis of simply-supported,isotropic and orthotropic single-layered nanoplates and graphene sheets(GSs),in which Eringen’s nonlocal elasticity theory is used to capture the small length scale effect on the static behaviors of these.The perturbation method is used to expand the 3D nonlocal elasticity problems as a series of two-dimensional(2D)nonlocal plate problems,the governing equations of which for various order problems retain the same differential operators as those of the nonlocal classical plate theory(CST),although with different nonhomogeneous terms.Expanding the primary field variables of each order as the double Fourier series functions in the in-plane directions,we can obtain the Navier solutions of the leading-order problem,and the higher-order modifications can then be determined in a hierarchic and consistent manner.Some benchmark solutions for the static analysis of isotropic and orthotropic nanoplates and GSs subjected to sinusoidally and uniformly distributed loads are given to demonstrate the performance of the 3D nonlocal asymptotic theory. 展开更多
关键词 Eringen’s nonlocal elasticity theory graphene sheets NANOPLATES STATIC the perturbation method three-dimensional nonlocal elasticity
下载PDF
Three-dimensional anisotropic induced polarization modeling using finite element method
19
作者 Junjie Liu Xiaoping Wu 《Earthquake Research Advances》 CSCD 2021年第S01期49-52,共4页
With the development of geophysical exploration technology,the anisotropy of underground media has got more and more attention.At present,there are few studies on the anisotropy of the induced polarization method.This... With the development of geophysical exploration technology,the anisotropy of underground media has got more and more attention.At present,there are few studies on the anisotropy of the induced polarization method.This article explores the effect of anisotropy on the underground media of the induced polarization method under three-dimensional complex terrain.The research work transforms the underground electric field control equation into a variational problem,and use the unstructured finite element method to construct a large linear equation system for solving electric potentials.By the sparse matrix compression technique and symmetric successive over-relaxation preconditioned conjugate gradient algorithm(SSOR-PCG)to solve the equation system.Finally,the article uses the classic central gradient array method to obtain the forward apparent polarizability value.The calculation results of the model find that different anisotropic conditions will significantly affect the forward results which show a strong directional correlation,revealing the importance of considering anisotropy in practical work. 展开更多
关键词 three-dimensional anisotropic finite element method
下载PDF
Three-Dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume Method
20
作者 席丽莹 陈焕铭 +3 位作者 郑富 高华 童洋 马治 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第9期128-131,共4页
Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg-Landau equations using a finite volume method. The influence of externally mec... Three-dimensional simulations of ferroelectric hysteresis and butterfly loops are carried out based on solving the time dependent Ginzburg-Landau equations using a finite volume method. The influence of externally mechanical loadings with a tensile strain and a compressive strain on the hysteresis and butterfly loops is studied numerically. Different from the traditional finite element and finite difference methods, the finite volume method is applicable to simulate the ferroelectric phase transitions and properties of ferroelectric materials even for more realistic and physical problems. 展开更多
关键词 three-dimensional Phase Field Simulations of Hysteresis and Butterfly Loops by the Finite Volume method
下载PDF
上一页 1 2 7 下一页 到第
使用帮助 返回顶部