This article aims to develop a head pursuit (HP) guidance law for three-dimensional hypervelocity interception, so that the effect of the perturbation induced by seeker detection can be reduced. On the basis of a no...This article aims to develop a head pursuit (HP) guidance law for three-dimensional hypervelocity interception, so that the effect of the perturbation induced by seeker detection can be reduced. On the basis of a novel HP three-dimensional guidance model, a nonlinear variable structure guidance law is presented by using Lyapunov stability theory. The guidance law positions the interceptor ahead of the target on its tlight trajectory, and the speed of the interceptor is required to be lower than that of the target, A numerical example of maneuvering ballistic target interception verifies the rightness of the guidance model and the effectiveness of the proposed method.展开更多
The coexistence theory of slag structure and it's application to calculation of the oxidizing capabilities of slag melts is described. It is shown that the law of mass action can be widely applied to the calculati...The coexistence theory of slag structure and it's application to calculation of the oxidizing capabilities of slag melts is described. It is shown that the law of mass action can be widely applied to the calculation of oxidizing capabilities of slag melts in combination with the coexistence theory of slag structure.For slag melts containing basic oxides FeO and MnO, their oxidizing capabilities can be expressed by N Fe tO =N FeO +6N Fe 2O 3 , while for slag melts containing basic oxides CaO, MgO, etc., in addition to FeO and MnO, their oxidizing capabilities can be given as N Fe tO =N FeO +6N Fe 2O 3 +8N Fe 3O 4 .展开更多
A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexi...A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.展开更多
Thermodynamic models of calculating mass action concentrations for structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions were developed based on the ion and...Thermodynamic models of calculating mass action concentrations for structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions were developed based on the ion and molecule coexistence theory at 298.15 K.A transformation coefficient is needed to compare the calculated mass action concentration and the reported activity because they are obtained at different standard states and concentration units.The results show that the transformation coefficients between the calculated mass action concentrations and the reported activities of the same structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions change in a very narrow range.The transformed mass action concentrations of structural units or ion couples in RbCl-H2O binary system are in good agreement with the reported activities. The transformed mass action concentrations of RbCl and RbNO3 in RbCl-RbNO3-H2O ternary solution are also in good agreement with the reported activities,aRbCl and 3RbNOa,with different total ionic strengths as 0.01,0.05,0.1,0.5,1.0,1.5,2.0,3.0 and 3.5 mol/kg,respectively.All those results mean the developed thermodynamic model of strong electrolyte aqueous solutions can reflect structural characteristics of RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions and the mass action concentration also strictly follows the mass action law.展开更多
The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smal...The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smallest widths and the optical properties are best for the (113), (114), and (115) growth directions. Our theoretical results agree with the available experimental data. Our calculated results are useful for the application of coupled quantum dots in photoelectric devices.展开更多
We adopt the density function theory with generalized approximation by the Beeke exchange plus Lee-Yang-Parr correlation functional to calculate the electronic first-principles band structure of tin-phthalocyanine (S...We adopt the density function theory with generalized approximation by the Beeke exchange plus Lee-Yang-Parr correlation functional to calculate the electronic first-principles band structure of tin-phthalocyanine (SnPc). The intermolecular interaction related to transport behavior was analyzed from the F-point wave function as well as from the bandwidths and band gaps. From the calculated bandwidths of the frontier bands as well as the effective masses of the electron and hole, it can be concluded that the mobility of the electron is about two times larger than that of the hole. Furthermore, when several bands near the Fermi surface are taken into account, we find that the interband gaps within the unoccupied bands are generally smaller than those of the occupied bands, indicating that the electron can hop from one band to another which is much easier than the hole. This may happen through electron-phonon coupling for instance, thus effectively yielding an even larger mobility for the electron than for the hole. These facts indicate that in SnPc the electrons are the dominant carriers in transport, in contrast to most organic materials.展开更多
According to the mass action law and the coexistence theory of slagstructure, the calculating models of mass action concentration for CaO-MgO-FeO-Fe_2O_3-SiO_2,CaO-MgO-MnO-FeO-Fe_2O_3-P_2O_5-SiO_2 and CaO-MgO-MnO-FeO-...According to the mass action law and the coexistence theory of slagstructure, the calculating models of mass action concentration for CaO-MgO-FeO-Fe_2O_3-SiO_2,CaO-MgO-MnO-FeO-Fe_2O_3-P_2O_5-SiO_2 and CaO-MgO-MnO-FeO-Fe_2O_3-Al_2O_3-P_2O_5-SiO_2 slag melts areformulated and sulphur distribution between the slag melts and liquid iron is treated. It is foundthat CaO, MnO and FeO promote desulphurization, while MgO is detrimental to desulphurization. Inaddition, the sulphur distribution coefficients between the slag melts and liquid iron andpresented.展开更多
According to the law of mass action and the coexistence theory of slag structure, the distribution of manganese between MnO FeO SiO 2 and MgO MnO FeO SiO 2 slag melts as well as liquid iron was analyzed. It is shown t...According to the law of mass action and the coexistence theory of slag structure, the distribution of manganese between MnO FeO SiO 2 and MgO MnO FeO SiO 2 slag melts as well as liquid iron was analyzed. It is shown that K ′ Mn and K MnO are only dependent on temperature and don’t change with basicities and compositions of slag melts. So the distribution of manganese between the above mentioned slag melts and molten iron obeys the law of mass action. But analysis of experimental results from other sources shows that K ′ Mn and K MnO really change with basicities of slag, which is probably arisen from not approaching equilibrium under low basicity slag melts.展开更多
The structure of dipepide AcMet-Gly was determined by X-ray crystallographic analysis. It possesses mono-clinic, space group P21 (No. 4), with cell dimensions of a=0.8571(2) nm, b=0.5871(2) nm, c=1.197(3) nm, =99.290(...The structure of dipepide AcMet-Gly was determined by X-ray crystallographic analysis. It possesses mono-clinic, space group P21 (No. 4), with cell dimensions of a=0.8571(2) nm, b=0.5871(2) nm, c=1.197(3) nm, =99.290(10), V=0.5944(15) nm3, Z=2, m=2.74 cm-1. Mononuclear chelates, described as [Pd(X)(S,N,O- AcMet-Gly)]+, in which Pd(II) is coordinated by thioether, deprotonated amide nitrogen, carbonyl oxygen of me-thionine and X (AcMetGly or other ligands present in aqueous solution or in mobile phase solution), were detected 5 min after mixing AcMet-Gly with [Pd(H2O)4]2+ at room temperature using electrospray ionization mass spectrometry. The geometry of [Pd(H2O)(S,N,O-AcMet-Gly)]+ is optimized at density functional B3LYP/LanL2DZ level. The fused five- and six-membered chelate is responsible for cleavage of Met-Gly bond. This is the first time to provide a direct evidence for Pd(II)-mediated cleavage of dipeptides via external solvent attack.展开更多
The added mass coefficient and the water level index formulas for the same-phase and anti-phase vibration of rectangular liquid tanks' bulkheads were derived based on dry mode theory. Three fluid-structure interac...The added mass coefficient and the water level index formulas for the same-phase and anti-phase vibration of rectangular liquid tanks' bulkheads were derived based on dry mode theory. Three fluid-structure interaction numerical methods including Fluid FEM and Fluid BEM were used in this case. The comparison of numerical and theoretical results by the present method shows that ANSYS/Fluid80 is more credible, the NASTRAN/Virtual Mass Method is more suitable for engineering calculations and results of the same-phase vibration by the present method is more accurate.展开更多
Some fundamental physical quantities need an alternative description. We derive the word average value of interaction coupling constant α<sub>s</sub>(m<sub>z</sub>) from the observed maximum g...Some fundamental physical quantities need an alternative description. We derive the word average value of interaction coupling constant α<sub>s</sub>(m<sub>z</sub>) from the observed maximum galactic rotation velocity by the simple relation , where is the velocity, at which the difference between galactic rotation velocity and Thomas precession is equal, and α is Sommerfeld’s constant. The result is in excellent agreement with the value of α<sub>s</sub> = 0.1170 ± 0.0019, recently measured and verified via QCE analysis by CERN researchers. One can formulate a reciprocity relation, connecting α<sub>s</sub> with the circle constant: . It is the merit of Preston Guynn to derive the Milky Way maximum value of the galactic rotation velocity β<sub>g</sub>, pointing to its “extremely important role in all physics”. The mass (energy) constituents of the Universe follow a golden mean hierarchy and can simply be related to the maximum of Guynn’s difference velocity respectively to α<sub>s</sub>(m<sub>z</sub>), therewith excellently confirming Bouchet’s WMAP data analysis. We conclude once more that the golden mean concept is the leading one of nature.展开更多
文摘This article aims to develop a head pursuit (HP) guidance law for three-dimensional hypervelocity interception, so that the effect of the perturbation induced by seeker detection can be reduced. On the basis of a novel HP three-dimensional guidance model, a nonlinear variable structure guidance law is presented by using Lyapunov stability theory. The guidance law positions the interceptor ahead of the target on its tlight trajectory, and the speed of the interceptor is required to be lower than that of the target, A numerical example of maneuvering ballistic target interception verifies the rightness of the guidance model and the effectiveness of the proposed method.
文摘The coexistence theory of slag structure and it's application to calculation of the oxidizing capabilities of slag melts is described. It is shown that the law of mass action can be widely applied to the calculation of oxidizing capabilities of slag melts in combination with the coexistence theory of slag structure.For slag melts containing basic oxides FeO and MnO, their oxidizing capabilities can be expressed by N Fe tO =N FeO +6N Fe 2O 3 , while for slag melts containing basic oxides CaO, MgO, etc., in addition to FeO and MnO, their oxidizing capabilities can be given as N Fe tO =N FeO +6N Fe 2O 3 +8N Fe 3O 4 .
基金Project supported by Publication Foundation of National Science and Technology Academic Books of China
文摘A universal thermodynamic model of calculating mass action concentrations for structural units or ion couples in ternary and binary strong electrolyte aqueous solution was developed based on the ion and molecule coexistence theory and verified in four kinds of binary aqueous solutions and two kinds of ternary aqueous solutions. The calculated mass action concentrations of structural units or ion couples in four binary aqueous solutions and two ternary solutions at 298.15 K have good agreement with the reported activity data from literatures after shifting the standard state and concentration unit. Therefore, the calculated mass action concentrations of structural units or ion couples from the developed universal thermodynamic model for ternary and binary aqueous solutions can be applied to predict reaction ability of components in ternary and binary strong electrolyte aqueous solutions. It is also proved that the assumptions applied in the developed thermodynamic model are correct and reasonable, i.e., strong electrolyte aqueous solution is composed of cations and anions as simple ions, H2O as simple molecule and other hydrous salt compounds as complex molecules. The calculated mass action concentrations of structural units or ion couples in ternary and binary strong electrolyte aqueous solutions strictly follow the mass action law.
基金Project supported by Publication Foundation of National Science and Technology Academic Books of China
文摘Thermodynamic models of calculating mass action concentrations for structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions were developed based on the ion and molecule coexistence theory at 298.15 K.A transformation coefficient is needed to compare the calculated mass action concentration and the reported activity because they are obtained at different standard states and concentration units.The results show that the transformation coefficients between the calculated mass action concentrations and the reported activities of the same structural units or ion couples in RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions change in a very narrow range.The transformed mass action concentrations of structural units or ion couples in RbCl-H2O binary system are in good agreement with the reported activities. The transformed mass action concentrations of RbCl and RbNO3 in RbCl-RbNO3-H2O ternary solution are also in good agreement with the reported activities,aRbCl and 3RbNOa,with different total ionic strengths as 0.01,0.05,0.1,0.5,1.0,1.5,2.0,3.0 and 3.5 mol/kg,respectively.All those results mean the developed thermodynamic model of strong electrolyte aqueous solutions can reflect structural characteristics of RbCl-H2O binary and RbCl-RbNO3-H2O ternary strong electrolyte aqueous solutions and the mass action concentration also strictly follows the mass action law.
基金Project supported in part by the National Natural Science Foundation of China (Grant Nos 60521001 and 60325416).
文摘The electronic structures of coupled quantum dots grown on (11N)-oriented substrates are studied in the framework of effective-mass envelope-function theory. The results show that the all-hole subbands have the smallest widths and the optical properties are best for the (113), (114), and (115) growth directions. Our theoretical results agree with the available experimental data. Our calculated results are useful for the application of coupled quantum dots in photoelectric devices.
文摘We adopt the density function theory with generalized approximation by the Beeke exchange plus Lee-Yang-Parr correlation functional to calculate the electronic first-principles band structure of tin-phthalocyanine (SnPc). The intermolecular interaction related to transport behavior was analyzed from the F-point wave function as well as from the bandwidths and band gaps. From the calculated bandwidths of the frontier bands as well as the effective masses of the electron and hole, it can be concluded that the mobility of the electron is about two times larger than that of the hole. Furthermore, when several bands near the Fermi surface are taken into account, we find that the interband gaps within the unoccupied bands are generally smaller than those of the occupied bands, indicating that the electron can hop from one band to another which is much easier than the hole. This may happen through electron-phonon coupling for instance, thus effectively yielding an even larger mobility for the electron than for the hole. These facts indicate that in SnPc the electrons are the dominant carriers in transport, in contrast to most organic materials.
文摘According to the mass action law and the coexistence theory of slagstructure, the calculating models of mass action concentration for CaO-MgO-FeO-Fe_2O_3-SiO_2,CaO-MgO-MnO-FeO-Fe_2O_3-P_2O_5-SiO_2 and CaO-MgO-MnO-FeO-Fe_2O_3-Al_2O_3-P_2O_5-SiO_2 slag melts areformulated and sulphur distribution between the slag melts and liquid iron is treated. It is foundthat CaO, MnO and FeO promote desulphurization, while MgO is detrimental to desulphurization. Inaddition, the sulphur distribution coefficients between the slag melts and liquid iron andpresented.
文摘According to the law of mass action and the coexistence theory of slag structure, the distribution of manganese between MnO FeO SiO 2 and MgO MnO FeO SiO 2 slag melts as well as liquid iron was analyzed. It is shown that K ′ Mn and K MnO are only dependent on temperature and don’t change with basicities and compositions of slag melts. So the distribution of manganese between the above mentioned slag melts and molten iron obeys the law of mass action. But analysis of experimental results from other sources shows that K ′ Mn and K MnO really change with basicities of slag, which is probably arisen from not approaching equilibrium under low basicity slag melts.
基金Project supported by the National Natural Science Foundation of China (Nos. 20271027 20231010).
文摘The structure of dipepide AcMet-Gly was determined by X-ray crystallographic analysis. It possesses mono-clinic, space group P21 (No. 4), with cell dimensions of a=0.8571(2) nm, b=0.5871(2) nm, c=1.197(3) nm, =99.290(10), V=0.5944(15) nm3, Z=2, m=2.74 cm-1. Mononuclear chelates, described as [Pd(X)(S,N,O- AcMet-Gly)]+, in which Pd(II) is coordinated by thioether, deprotonated amide nitrogen, carbonyl oxygen of me-thionine and X (AcMetGly or other ligands present in aqueous solution or in mobile phase solution), were detected 5 min after mixing AcMet-Gly with [Pd(H2O)4]2+ at room temperature using electrospray ionization mass spectrometry. The geometry of [Pd(H2O)(S,N,O-AcMet-Gly)]+ is optimized at density functional B3LYP/LanL2DZ level. The fused five- and six-membered chelate is responsible for cleavage of Met-Gly bond. This is the first time to provide a direct evidence for Pd(II)-mediated cleavage of dipeptides via external solvent attack.
基金supported by the Dalian Shipbuilding Industry Co., Ltd
文摘The added mass coefficient and the water level index formulas for the same-phase and anti-phase vibration of rectangular liquid tanks' bulkheads were derived based on dry mode theory. Three fluid-structure interaction numerical methods including Fluid FEM and Fluid BEM were used in this case. The comparison of numerical and theoretical results by the present method shows that ANSYS/Fluid80 is more credible, the NASTRAN/Virtual Mass Method is more suitable for engineering calculations and results of the same-phase vibration by the present method is more accurate.
文摘Some fundamental physical quantities need an alternative description. We derive the word average value of interaction coupling constant α<sub>s</sub>(m<sub>z</sub>) from the observed maximum galactic rotation velocity by the simple relation , where is the velocity, at which the difference between galactic rotation velocity and Thomas precession is equal, and α is Sommerfeld’s constant. The result is in excellent agreement with the value of α<sub>s</sub> = 0.1170 ± 0.0019, recently measured and verified via QCE analysis by CERN researchers. One can formulate a reciprocity relation, connecting α<sub>s</sub> with the circle constant: . It is the merit of Preston Guynn to derive the Milky Way maximum value of the galactic rotation velocity β<sub>g</sub>, pointing to its “extremely important role in all physics”. The mass (energy) constituents of the Universe follow a golden mean hierarchy and can simply be related to the maximum of Guynn’s difference velocity respectively to α<sub>s</sub>(m<sub>z</sub>), therewith excellently confirming Bouchet’s WMAP data analysis. We conclude once more that the golden mean concept is the leading one of nature.