Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turb...Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent how. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained.展开更多
The calculation of flow and sediment transport is one of the most important tasks in river engineering. The task is particularly difficult because a number of complex physical phenomena should be accounted for more re...The calculation of flow and sediment transport is one of the most important tasks in river engineering. The task is particularly difficult because a number of complex physical phenomena should be accounted for more realistically in a model with a predictive power. Three-dimensional calculations of river flow and suspended sediment transport are performed in this paper with application in the Three Gorges Reservoir in the Yangtze River. A period of 76 years after the dam is built is simulated and the results are compared with laboratory measurements obtained by Tsinghua University whereby the model is verified and calibrated. Generally speaking, the calculated results agree well with the experiments, demonstrating that the present model can be used for flow and sediment transport prediction in rivers.展开更多
In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method wit...In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method with the k-ε turbulence mathematical model. Then, the water hydrodynamic characteristics and transport processes for BOD_5, NH_(3^-)N and TP were analyzed. The results showed that the water surface of convex bank was a little lower than that of concave bank due to the centrifugal force near the bend, and most concentrations were inferior to the type Ⅴ standard indexes of surface water environmental quality. The model validation indicated that the errors between the simulated and monitored values were comparatively small, satisfying the application demands and providing scientific basis and decision support for the restoration and protection of water quality.展开更多
In order to evaluate the need of controlling the temperature of water discharged from the Fenhe Reservoir, the reservoir water temperature distribution was examined. A three-dimensional mathematical model was used to ...In order to evaluate the need of controlling the temperature of water discharged from the Fenhe Reservoir, the reservoir water temperature distribution was examined. A three-dimensional mathematical model was used to simulate the in-plane and vertical distribution of water temperature. The parameters of the model were calibrated with field data of the temperature distribution in the Fenhe Reservoir. The simulated temperature of discharged water is consistent with the measured data. The difference in temperature between the discharged water and the natural river channel is less than 3 ℃ under the current operating conditions. This will not significantly impact the environment of downstream areas.展开更多
Water quality model about heavy metal under general initial and boundary conditions was studied. The model includes adsorption of suspended sediment, adsorption of bed load, advective diffusion of flow water, which af...Water quality model about heavy metal under general initial and boundary conditions was studied. The model includes adsorption of suspended sediment, adsorption of bed load, advective diffusion of flow water, which affect the concentration of heavy metal in river water. Laplace transforms method was adopted, its integral equation of the concentration of diluting heavy metal and solid heavy metal was given. The characteristic of the model under constant solution was discussed. Using this model the prediction of mercury (Hg) ions concentration distribution along a section of Yellow River in Lanzhou, China was performed. The computational value is approximately equal to the measured value.展开更多
文摘Based on the tensor analysis of water-sediment two-phase how, the basic model equations for clear water flow and sediment-laden flow are deduced in the general curve coordinates for natural water variable-density turbulent how. Furthermore, corresponding boundary conditions are also presented in connection with the composition and movement of non-uniform bed material. The theoretical results are applied to the calculation of the float open caisson in the construction period and good results are obtained.
基金The project supported by the National Natural Science Foundation of China (50009004)
文摘The calculation of flow and sediment transport is one of the most important tasks in river engineering. The task is particularly difficult because a number of complex physical phenomena should be accounted for more realistically in a model with a predictive power. Three-dimensional calculations of river flow and suspended sediment transport are performed in this paper with application in the Three Gorges Reservoir in the Yangtze River. A period of 76 years after the dam is built is simulated and the results are compared with laboratory measurements obtained by Tsinghua University whereby the model is verified and calibrated. Generally speaking, the calculated results agree well with the experiments, demonstrating that the present model can be used for flow and sediment transport prediction in rivers.
基金Supported by the Innovative Research Groups of National Natural Science Foundation of China(No.51321065)the Major Science and Technology Program for Water Pollution Control and Treatment(2012ZX07101-008)the National Natural Science Foundation of China(No.51439005)
文摘In the present study, considering the transport and transformation processes of variables, a threedimensional water quality model for the river system was established, which coupled the volume of fluid(VOF) method with the k-ε turbulence mathematical model. Then, the water hydrodynamic characteristics and transport processes for BOD_5, NH_(3^-)N and TP were analyzed. The results showed that the water surface of convex bank was a little lower than that of concave bank due to the centrifugal force near the bend, and most concentrations were inferior to the type Ⅴ standard indexes of surface water environmental quality. The model validation indicated that the errors between the simulated and monitored values were comparatively small, satisfying the application demands and providing scientific basis and decision support for the restoration and protection of water quality.
文摘In order to evaluate the need of controlling the temperature of water discharged from the Fenhe Reservoir, the reservoir water temperature distribution was examined. A three-dimensional mathematical model was used to simulate the in-plane and vertical distribution of water temperature. The parameters of the model were calibrated with field data of the temperature distribution in the Fenhe Reservoir. The simulated temperature of discharged water is consistent with the measured data. The difference in temperature between the discharged water and the natural river channel is less than 3 ℃ under the current operating conditions. This will not significantly impact the environment of downstream areas.
文摘Water quality model about heavy metal under general initial and boundary conditions was studied. The model includes adsorption of suspended sediment, adsorption of bed load, advective diffusion of flow water, which affect the concentration of heavy metal in river water. Laplace transforms method was adopted, its integral equation of the concentration of diluting heavy metal and solid heavy metal was given. The characteristic of the model under constant solution was discussed. Using this model the prediction of mercury (Hg) ions concentration distribution along a section of Yellow River in Lanzhou, China was performed. The computational value is approximately equal to the measured value.