期刊文献+
共找到6,201篇文章
< 1 2 250 >
每页显示 20 50 100
EDSUCh:A robust ensemble data summarization method for effective medical diagnosis
1
作者 Mohiuddin Ahmed A.N.M.Bazlur Rashid 《Digital Communications and Networks》 SCIE CSCD 2024年第1期182-189,共8页
Identifying rare patterns for medical diagnosis is a challenging task due to heterogeneity and the volume of data.Data summarization can create a concise version of the original data that can be used for effective dia... Identifying rare patterns for medical diagnosis is a challenging task due to heterogeneity and the volume of data.Data summarization can create a concise version of the original data that can be used for effective diagnosis.In this paper,we propose an ensemble summarization method that combines clustering and sampling to create a summary of the original data to ensure the inclusion of rare patterns.To the best of our knowledge,there has been no such technique available to augment the performance of anomaly detection techniques and simultaneously increase the efficiency of medical diagnosis.The performance of popular anomaly detection algorithms increases significantly in terms of accuracy and computational complexity when the summaries are used.Therefore,the medical diagnosis becomes more effective,and our experimental results reflect that the combination of the proposed summarization scheme and all underlying algorithms used in this paper outperforms the most popular anomaly detection techniques. 展开更多
关键词 data summarization ENSEMBLE medical diagnosis Sampling
下载PDF
Reliable Data Collection Model and Transmission Framework in Large-Scale Wireless Medical Sensor Networks
2
作者 Haosong Gou Gaoyi Zhang +2 位作者 RenêRipardo Calixto Senthil Kumar Jagatheesaperumal Victor Hugo C.de Albuquerque 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期1077-1102,共26页
Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present ... Large-scale wireless sensor networks(WSNs)play a critical role in monitoring dangerous scenarios and responding to medical emergencies.However,the inherent instability and error-prone nature of wireless links present significant challenges,necessitating efficient data collection and reliable transmission services.This paper addresses the limitations of existing data transmission and recovery protocols by proposing a systematic end-to-end design tailored for medical event-driven cluster-based large-scale WSNs.The primary goal is to enhance the reliability of data collection and transmission services,ensuring a comprehensive and practical approach.Our approach focuses on refining the hop-count-based routing scheme to achieve fairness in forwarding reliability.Additionally,it emphasizes reliable data collection within clusters and establishes robust data transmission over multiple hops.These systematic improvements are designed to optimize the overall performance of the WSN in real-world scenarios.Simulation results of the proposed protocol validate its exceptional performance compared to other prominent data transmission schemes.The evaluation spans varying sensor densities,wireless channel conditions,and packet transmission rates,showcasing the protocol’s superiority in ensuring reliable and efficient data transfer.Our systematic end-to-end design successfully addresses the challenges posed by the instability of wireless links in large-scaleWSNs.By prioritizing fairness,reliability,and efficiency,the proposed protocol demonstrates its efficacy in enhancing data collection and transmission services,thereby offering a valuable contribution to the field of medical event-drivenWSNs. 展开更多
关键词 Wireless sensor networks reliable data transmission medical emergencies CLUSTER data collection routing scheme
下载PDF
A novel medical image data protection scheme for smart healthcare system
3
作者 Mujeeb Ur Rehman Arslan Shafique +6 位作者 Muhammad Shahbaz Khan Maha Driss Wadii Boulila Yazeed Yasin Ghadi Suresh Babu Changalasetty Majed Alhaisoni Jawad Ahmad 《CAAI Transactions on Intelligence Technology》 SCIE EI 2024年第4期821-836,共16页
The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of ... The Internet of Multimedia Things(IoMT)refers to a network of interconnected multimedia devices that communicate with each other over the Internet.Recently,smart healthcare has emerged as a significant application of the IoMT,particularly in the context of knowledge‐based learning systems.Smart healthcare systems leverage knowledge‐based learning to become more context‐aware,adaptable,and auditable while maintain-ing the ability to learn from historical data.In smart healthcare systems,devices capture images,such as X‐rays,Magnetic Resonance Imaging.The security and integrity of these images are crucial for the databases used in knowledge‐based learning systems to foster structured decision‐making and enhance the learning abilities of AI.Moreover,in knowledge‐driven systems,the storage and transmission of HD medical images exert a burden on the limited bandwidth of the communication channel,leading to data trans-mission delays.To address the security and latency concerns,this paper presents a lightweight medical image encryption scheme utilising bit‐plane decomposition and chaos theory.The results of the experiment yield entropy,energy,and correlation values of 7.999,0.0156,and 0.0001,respectively.This validates the effectiveness of the encryption system proposed in this paper,which offers high‐quality encryption,a large key space,key sensitivity,and resistance to statistical attacks. 展开更多
关键词 data analysis medical image processing SECURITY
下载PDF
Privacy-Preserving Healthcare and Medical Data Collaboration Service System Based on Blockchain and Federated Learning
4
作者 Fang Hu Siyi Qiu +3 位作者 Xiaolian Yang ChaoleiWu Miguel Baptista Nunes Hui Chen 《Computers, Materials & Continua》 SCIE EI 2024年第8期2897-2915,共19页
As the volume of healthcare and medical data increases from diverse sources,real-world scenarios involving data sharing and collaboration have certain challenges,including the risk of privacy leakage,difficulty in dat... As the volume of healthcare and medical data increases from diverse sources,real-world scenarios involving data sharing and collaboration have certain challenges,including the risk of privacy leakage,difficulty in data fusion,low reliability of data storage,low effectiveness of data sharing,etc.To guarantee the service quality of data collaboration,this paper presents a privacy-preserving Healthcare and Medical Data Collaboration Service System combining Blockchain with Federated Learning,termed FL-HMChain.This system is composed of three layers:Data extraction and storage,data management,and data application.Focusing on healthcare and medical data,a healthcare and medical blockchain is constructed to realize data storage,transfer,processing,and access with security,real-time,reliability,and integrity.An improved master node selection consensus mechanism is presented to detect and prevent dishonest behavior,ensuring the overall reliability and trustworthiness of the collaborative model training process.Furthermore,healthcare and medical data collaboration services in real-world scenarios have been discussed and developed.To further validate the performance of FL-HMChain,a Convolutional Neural Network-based Federated Learning(FL-CNN-HMChain)model is investigated for medical image identification.This model achieves better performance compared to the baseline Convolutional Neural Network(CNN),having an average improvement of 4.7%on Area Under Curve(AUC)and 7%on Accuracy(ACC),respectively.Furthermore,the probability of privacy leakage can be effectively reduced by the blockchain-based parameter transfer mechanism in federated learning between local and global models. 展开更多
关键词 Blockchain technique federated learning healthcare and medical data collaboration service privacy preservation
下载PDF
Prediction of three-dimensional ocean temperature in the South China Sea based on time series gridded data and a dynamic spatiotemporal graph neural network
5
作者 Feng Nan Zhuolin Li +3 位作者 Jie Yu Suixiang Shi Xinrong Wu Lingyu Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期26-39,共14页
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean... Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales. 展开更多
关键词 dynamic associations three-dimensional ocean temperature prediction graph neural network time series gridded data
下载PDF
Changes and Adjustments:The Rule of Law Response to Medical Institution Data Compliance
6
作者 Long Keyu 《科技与法律(中英文)》 2024年第5期110-122,共13页
Medical institution data compliance is an exogenous product of the digital society,serving as a crucial means to maintain and balance the relationship between data protection and data sharing,as well as individual int... Medical institution data compliance is an exogenous product of the digital society,serving as a crucial means to maintain and balance the relationship between data protection and data sharing,as well as individual interests and public interests.The implementation of the Healthy China Initiative greatly benefits from its practical significance.In practice,data from medical institutions takes varied forms,including personally identifiable data collected before diagnosis and treatment,clinical medical data generated during diagnosis and treatment,medical data collected in public health management,and potential medical data generated in daily life.In the new journey of comprehensively promoting the Chinese path to modernization,it is necessary to clarify the shift from an individual-oriented to a societal-oriented value system,highlighting the reinforcing role of the trust concept.Guided by the principle of minimizing data utilization,the focus is on the new developments and changes in medical institution data in the postpandemic era.This involves a series of measures such as fulfilling the obligation of notification and consent,specifying the scope of data collection and usage,strengthening the standardized use of relevant technical measures,and establishing a sound legal responsibility system for data compliance.Through these measures,a flexible and efficient medical institution data compliance system can be constructed. 展开更多
关键词 medical institution data privacy protection data security compliance governance
下载PDF
Survey of methods and principles in three-dimensional reconstruction from two-dimensional medical images
7
作者 Mriganka Sarmah Arambam Neelima Heisnam Rohen Singh 《Visual Computing for Industry,Biomedicine,and Art》 EI 2023年第1期199-217,共19页
Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new p... Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new paradigm.However,development of fast and accurate 3D models from medical images or a set of medical scans remains a daunting task due to the number of pre-processing steps involved,most of which are dependent on human expertise.In this review,a survey of pre-processing steps was conducted,and reconstruction techniques for several organs in medical diagnosis were studied.Various methods and principles related to 3D reconstruction were highlighted.The usefulness of 3D reconstruction of organs in medical diagnosis was also highlighted. 展开更多
关键词 three-dimensional reconstruction Human organ medical images
下载PDF
Integrated data mining and network pharmacology to discover a novel traditional Chinese medicine prescription against diabetic retinopathy and reveal its mechanism
8
作者 Kai-Lun Zhang Xu Wang +7 位作者 Xiang-Wei Chang Jun-Fei Gu Bo-Yang Zhu Shi-Bing Wei Bo Wu Can Peng Jiu-Sheng Nie De-Ling Wu 《TMR Modern Herbal Medicine》 CAS 2024年第2期41-55,共15页
Background:Diabetic retinopathy(DR)is currently the leading cause of blindness in elderly individuals with diabetes.Traditional Chinese medicine(TCM)prescriptions have shown remarkable effectiveness for treating DR.Th... Background:Diabetic retinopathy(DR)is currently the leading cause of blindness in elderly individuals with diabetes.Traditional Chinese medicine(TCM)prescriptions have shown remarkable effectiveness for treating DR.This study aimed to screen a novel TCM prescription against DR from patents and elucidate its medication rule and molecular mechanism using data mining,network pharmacology,molecular docking and molecular dynamics(MD)simulation.Method:TCM prescriptions for treating DR was collected from patents and a novel TCM prescription was identified using data mining.Subsequently,the mechanism of the novel TCM prescription against DR was explored by constructing a network of core TCMs-core active ingredients-core targets-core pathways.Finally,molecular docking and MD simulation were employed to validate the findings from network pharmacology.Result:The TCMs of the collected prescriptions primarily possessed bitter and cold properties with heat-clearing and supplementing effects,attributed to the liver,lung and kidney channels.Notably,a novel TCM prescription for treating DR was identified,composed of Lycii Fructus,Chrysanthemi Flos,Astragali Radix and Angelicae Sinensis Radix.Twenty core active ingredients and ten core targets of the novel TCM prescription for treating DR were screened.Moreover,the novel TCM prescription played a crucial role for treating DR by inhibiting inflammatory response,oxidative stress,retinal pigment epithelium cell apoptosis and retinal neovascularization through various pathways,such as the AGE-RAGE signaling pathway in diabetic complications and the MAPK signaling pathway.Finally,molecular docking and MD simulation demonstrated that almost all core active ingredients exhibited satisfactory binding energies to core targets.Conclusions:This study identified a novel TCM prescription and unveiled its multi-component,multi-target and multi-pathway characteristics for treating DR.These findings provide a scientific basis and novel insights into the development of drugs for DR prevention and treatment. 展开更多
关键词 TCM prescriptions diabetic retinopathy medication rule molecular mechanism data mining network pharmacology molecular docking
下载PDF
Data Masking for Chinese Electronic Medical Records with Named Entity Recognition 被引量:1
9
作者 Tianyu He Xiaolong Xu +3 位作者 Zhichen Hu Qingzhan Zhao Jianguo Dai Fei Dai 《Intelligent Automation & Soft Computing》 SCIE 2023年第6期3657-3673,共17页
With the rapid development of information technology,the electronifi-cation of medical records has gradually become a trend.In China,the population base is huge and the supporting medical institutions are numerous,so ... With the rapid development of information technology,the electronifi-cation of medical records has gradually become a trend.In China,the population base is huge and the supporting medical institutions are numerous,so this reality drives the conversion of paper medical records to electronic medical records.Electronic medical records are the basis for establishing a smart hospital and an important guarantee for achieving medical intelligence,and the massive amount of electronic medical record data is also an important data set for conducting research in the medical field.However,electronic medical records contain a large amount of private patient information,which must be desensitized before they are used as open resources.Therefore,to solve the above problems,data masking for Chinese electronic medical records with named entity recognition is proposed in this paper.Firstly,the text is vectorized to satisfy the required format of the model input.Secondly,since the input sentences may have a long or short length and the relationship between sentences in context is not negligible.To this end,a neural network model for named entity recognition based on bidirectional long short-term memory(BiLSTM)with conditional random fields(CRF)is constructed.Finally,the data masking operation is performed based on the named entity recog-nition results,mainly using regular expression filtering encryption and principal component analysis(PCA)word vector compression and replacement.In addi-tion,comparison experiments with the hidden markov model(HMM)model,LSTM-CRF model,and BiLSTM model are conducted in this paper.The experi-mental results show that the method used in this paper achieves 92.72%Accuracy,92.30%Recall,and 92.51%F1_score,which has higher accuracy compared with other models. 展开更多
关键词 Named entity recognition Chinese electronic medical records data masking principal component analysis regular expression
下载PDF
Ensemble Deep Learning with Chimp Optimization Based Medical Data Classification
10
作者 Ashit Kumar Dutta Yasser Albagory +2 位作者 Majed Alsanea Hamdan I.Almohammed Abdul Rahaman Wahab Sait 《Intelligent Automation & Soft Computing》 SCIE 2023年第2期1643-1655,共13页
Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transformi... Eye state classification acts as a vital part of the biomedical sector,for instance,smart home device control,drowsy driving recognition,and so on.The modifications in the cognitive levels can be reflected via transforming the electro-encephalogram(EEG)signals.The deep learning(DL)models automated extract the features and often showcased improved outcomes over the conventional clas-sification model in the recognition processes.This paper presents an Ensemble Deep Learning with Chimp Optimization Algorithm for EEG Eye State Classifi-cation(EDLCOA-ESC).The proposed EDLCOA-ESC technique involves min-max normalization approach as a pre-processing step.Besides,wavelet packet decomposition(WPD)technique is employed for the extraction of useful features from the EEG signals.In addition,an ensemble of deep sparse autoencoder(DSAE)and kernel ridge regression(KRR)models are employed for EEG Eye State classification.Finally,hyperparameters tuning of the DSAE model takes place using COA and thereby boost the classification results to a maximum extent.An extensive range of simulation analysis on the benchmark dataset is car-ried out and the results reported the promising performance of the EDLCOA-ESC technique over the recent approaches with maximum accuracy of 98.50%. 展开更多
关键词 EEG eye state data classification deep learning medical data analysis chimp optimization algorithm
下载PDF
Energy Aware Clustering with Medical Data Classification Model in IoT Environment
11
作者 R.Bharathi T.Abirami 《Computer Systems Science & Engineering》 SCIE EI 2023年第1期797-811,共15页
With the exponential developments of wireless networking and inexpensive Internet of Things(IoT),a wide range of applications has been designed to attain enhanced services.Due to the limited energy capacity of IoT dev... With the exponential developments of wireless networking and inexpensive Internet of Things(IoT),a wide range of applications has been designed to attain enhanced services.Due to the limited energy capacity of IoT devices,energy-aware clustering techniques can be highly preferable.At the same time,artificial intelligence(AI)techniques can be applied to perform appropriate disease diagnostic processes.With this motivation,this study designs a novel squirrel search algorithm-based energy-aware clustering with a medical data classification(SSAC-MDC)model in an IoT environment.The goal of the SSAC-MDC technique is to attain maximum energy efficiency and disease diagnosis in the IoT environment.The proposed SSAC-MDC technique involves the design of the squirrel search algorithm-based clustering(SSAC)technique to choose the proper set of cluster heads(CHs)and construct clusters.Besides,the medical data classification process involves three different subprocesses namely pre-processing,autoencoder(AE)based classification,and improved beetle antenna search(IBAS)based parameter tuning.The design of the SSAC technique and IBAS based parameter optimization processes show the novelty of the work.For show-casing the improved performance of the SSAC-MDC technique,a series of experiments were performed and the comparative results highlighted the supremacy of the SSAC-MDC technique over the recent methods. 展开更多
关键词 Internet of things healthcare medical data classification energy efficiency CLUSTERING autoencoder
下载PDF
Research on a Fog Computing Architecture and BP Algorithm Application for Medical Big Data
12
作者 Baoling Qin 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期255-267,共13页
Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficie... Although the Internet of Things has been widely applied,the problems of cloud computing in the application of digital smart medical Big Data collection,processing,analysis,and storage remain,especially the low efficiency of medical diagnosis.And with the wide application of the Internet of Things and Big Data in the medical field,medical Big Data is increasing in geometric magnitude resulting in cloud service overload,insufficient storage,communication delay,and network congestion.In order to solve these medical and network problems,a medical big-data-oriented fog computing architec-ture and BP algorithm application are proposed,and its structural advantages and characteristics are studied.This architecture enables the medical Big Data generated by medical edge devices and the existing data in the cloud service center to calculate,compare and analyze the fog node through the Internet of Things.The diagnosis results are designed to reduce the business processing delay and improve the diagnosis effect.Considering the weak computing of each edge device,the artificial intelligence BP neural network algorithm is used in the core computing model of the medical diagnosis system to improve the system computing power,enhance the medical intelligence-aided decision-making,and improve the clinical diagnosis and treatment efficiency.In the application process,combined with the characteristics of medical Big Data technology,through fog architecture design and Big Data technology integration,we could research the processing and analysis of heterogeneous data of the medical diagnosis system in the context of the Internet of Things.The results are promising:The medical platform network is smooth,the data storage space is sufficient,the data processing and analysis speed is fast,the diagnosis effect is remarkable,and it is a good assistant to doctors’treatment effect.It not only effectively solves the problem of low clinical diagnosis,treatment efficiency and quality,but also reduces the waiting time of patients,effectively solves the contradiction between doctors and patients,and improves the medical service quality and management level. 展开更多
关键词 medical big data IOT fog computing distributed computing BP algorithm model
下载PDF
A Novel Computationally Efficient Approach to Identify Visually Interpretable Medical Conditions from 2D Skeletal Data
13
作者 Praveen Jesudhas T.Raghuveera 《Computer Systems Science & Engineering》 SCIE EI 2023年第9期2995-3015,共21页
Timely identification and treatment of medical conditions could facilitate faster recovery and better health.Existing systems address this issue using custom-built sensors,which are invasive and difficult to generaliz... Timely identification and treatment of medical conditions could facilitate faster recovery and better health.Existing systems address this issue using custom-built sensors,which are invasive and difficult to generalize.A low-complexity scalable process is proposed to detect and identify medical conditions from 2D skeletal movements on video feed data.Minimal set of features relevant to distinguish medical conditions:AMF,PVF and GDF are derived from skeletal data on sampled frames across the entire action.The AMF(angular motion features)are derived to capture the angular motion of limbs during a specific action.The relative position of joints is represented by PVF(positional variation features).GDF(global displacement features)identifies the direction of overall skeletal movement.The discriminative capability of these features is illustrated by their variance across time for different actions.The classification of medical conditions is approached in two stages.In the first stage,a low-complexity binary LSTM classifier is trained to distinguish visual medical conditions from general human actions.As part of stage 2,a multi-class LSTM classifier is trained to identify the exact medical condition from a given set of visually interpretable medical conditions.The proposed features are extracted from the 2D skeletal data of NTU RGB+D and then used to train the binary and multi-class LSTM classifiers.The binary and multi-class classifiers observed average F1 scores of 77%and 73%,respectively,while the overall system produced an average F1 score of 69%and a weighted average F1 score of 80%.The multi-class classifier is found to utilize 10 to 100 times fewer parameters than existing 2D CNN-based models while producing similar levels of accuracy. 展开更多
关键词 Action recognition 2D skeletal data medical condition computer vision deep learning
下载PDF
An Improved Steganographic Scheme Using the Contour Principle to Ensure the Privacy of Medical Data on Digital Images
14
作者 R.Bala Krishnan D.Yuvaraj +4 位作者 P.Suthanthira Devi Varghese S.Chooralil N.Rajesh Kumar B.Karthikeyan G.Manikandan 《Computer Systems Science & Engineering》 SCIE EI 2023年第8期1563-1576,共14页
With the improvement of current online communication schemes,it is now possible to successfully distribute and transport secured digital Content via the communication channel at a faster transmission rate.Traditional ... With the improvement of current online communication schemes,it is now possible to successfully distribute and transport secured digital Content via the communication channel at a faster transmission rate.Traditional steganography and cryptography concepts are used to achieve the goal of concealing secret Content on a media and encrypting it before transmission.Both of the techniques mentioned above aid in the confidentiality of feature content.The proposed approach concerns secret content embodiment in selected pixels on digital image layers such as Red,Green,and Blue.The private Content originated from a medical client and was forwarded to a medical practitioner on the server end through the internet.The K-Means clustering principle uses the contouring approach to frame the pixel clusters on the image layers.The content embodiment procedure is performed on the selected pixel groups of all layers of the image using the Least Significant Bit(LSB)substitution technique to build the secret Content embedded image known as the stego image,which is subsequently transmitted across the internet medium to the server end.The experimental results are computed using the inputs from“Open-Access Medical Image Repositories(aylward.org)”and demonstrate the scheme’s impudence as the Content concealing procedure progresses. 展开更多
关键词 CONTOURING secret content embodiment least significant bit embedding medical data preservation secret content congregation pixel clustering
下载PDF
Research and Realization of Medical Image Fusion Based on Three-Dimensional Reconstruction 被引量:5
15
作者 TAO Ling QIAN Zhi-yu CHEN Chun-xiao 《Chinese Journal of Biomedical Engineering(English Edition)》 2007年第3期117-122,共6页
A new medical image fusion technique is presented.The method is based on three-dimensional reconstruction.After reconstruction,the three-dimensional volume data is normalized by three-dimensional coordinate conversion... A new medical image fusion technique is presented.The method is based on three-dimensional reconstruction.After reconstruction,the three-dimensional volume data is normalized by three-dimensional coordinate conversion in the same way and intercepted through setting up cutting plane including anatomical structure,as a result two images in entire registration on space and geometry are obtained and the images are fused at last.Compared with traditional two-dimensional fusion technique,three-dimensional fusion technique can not only resolve the different problems existed in the two kinds of images,but also avoid the registration error of the two kinds of images when they have different scan and imaging parameter.The research proves this fusion technique is more exact and has no registration,so it is more adapt to arbitrary medical image fusion with different equipments. 展开更多
关键词 medical image volume data three-dimensional reconstruction image cutting image fusion
下载PDF
Application Status and Prospect of Three-Dimensional Printing Technology in the Field of Medical Devices
16
作者 Ma Fei 《Journal of Clinical and Nursing Research》 2018年第4期13-15,共3页
Three-dimensional(3D)printing technology belongs to a new manufacturing science and has been widely used in various fields of industry.This article will apply 3D printing technology as its main research topic,with emp... Three-dimensional(3D)printing technology belongs to a new manufacturing science and has been widely used in various fields of industry.This article will apply 3D printing technology as its main research topic,with emphasis on its application in the field of medical devices and prospects for contribution. 展开更多
关键词 three-dimensional PRINTING technology medical equipment application STATUS PROSPECTS
下载PDF
Importance of Features Selection,Attributes Selection,Challenges and Future Directions for Medical Imaging Data:A Review 被引量:6
17
作者 Nazish Naheed Muhammad Shaheen +2 位作者 Sajid Ali Khan Mohammed Alawairdhi Muhammad Attique Khan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期315-344,共30页
In the area of pattern recognition and machine learning,features play a key role in prediction.The famous applications of features are medical imaging,image classification,and name a few more.With the exponential grow... In the area of pattern recognition and machine learning,features play a key role in prediction.The famous applications of features are medical imaging,image classification,and name a few more.With the exponential growth of information investments in medical data repositories and health service provision,medical institutions are collecting large volumes of data.These data repositories contain details information essential to support medical diagnostic decisions and also improve patient care quality.On the other hand,this growth also made it difficult to comprehend and utilize data for various purposes.The results of imaging data can become biased because of extraneous features present in larger datasets.Feature selection gives a chance to decrease the number of components in such large datasets.Through selection techniques,ousting the unimportant features and selecting a subset of components that produces prevalent characterization precision.The correct decision to find a good attribute produces a precise grouping model,which enhances learning pace and forecast control.This paper presents a review of feature selection techniques and attributes selection measures for medical imaging.This review is meant to describe feature selection techniques in a medical domainwith their pros and cons and to signify its application in imaging data and data mining algorithms.The review reveals the shortcomings of the existing feature and attributes selection techniques to multi-sourced data.Moreover,this review provides the importance of feature selection for correct classification of medical infections.In the end,critical analysis and future directions are provided. 展开更多
关键词 medical imaging imaging data feature selection data mining attribute selection medical challenges future directions
下载PDF
A theoretical study of the multigrid three-dimensional variational data assimilation scheme using a simple bilinear interpolation algorithm 被引量:4
18
作者 LI Wei XIE Yuanfu HAN Guijun 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2013年第3期80-87,共8页
In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) d... In order to solve the so-called "bull-eye" problem caused by using a simple bilinear interpolation as an observational mapping operator in the cost function in the multigrid three-dimensional variational (3DVAR) data assimilation scheme, a smoothing term, equivalent to a penalty term, is introduced into the cost function to serve as a means of troubleshooting. A theoretical analysis is first performed to figure out what on earth results in the issue of "bull-eye", and then the meaning of such smoothing term is elucidated and the uniqueness of solution of the multigrid 3DVAR with the smoothing term added is discussed through the theoretical deduction for one-dimensional (1D) case, and two idealized data assimilation experiments (one- and two-dimensional (2D) cases). By exploring the relationship between the smoothing term and the recursive filter theoretically and practically, it is revealed why satisfied analysis results can be achieved by using such proposed solution for the issue of the multigrid 3DVAR. 展开更多
关键词 MULTIGRID three-dimensional variational data assimilation bilinear interpolation
下载PDF
Sleep disturbances and predictors of nondeployability among active-duty army soldiers: an odds ratio analysis of medical healthcare data from fiscal year 2018 被引量:4
19
作者 Jaime K.Devine Jacob Collen +1 位作者 Jake J.Choynowski Vincent Capaldi 《Military Medical Research》 SCIE CAS CSCD 2020年第3期335-342,共8页
Background:The impact of sleep disorders on active-duty soldiers’medical readiness is not currently quantified.Patient data generated at military treatment facilities can be accessed to create research reports and th... Background:The impact of sleep disorders on active-duty soldiers’medical readiness is not currently quantified.Patient data generated at military treatment facilities can be accessed to create research reports and thus can be used to estimate the prevalence of sleep disturbances and the role of sleep on overall health in service members.The current study aimed to quantify sleep-related health issues and their impact on health and nondeployability through the analysis of U.S.military healthcare records from fiscal year 2018(FY2018).Methods:Medical diagnosis information and deployability profiles(e-Profiles)were queried for all active-duty U.S.Army patients with a concurrent sleep disorder diagnosis receiving medical care within FY2018.Nondeployability was predicted from medical reasons for having an e-Profile(categorized as sleep,behavioral health,musculoskeletal,cardiometabolic,injury,or accident)using binomial logistic regression.Sleep e-Profiles were investigated as a moderator between other e-Profile categories and nondeployability.Results:Out of 582,031 soldiers,48.4%(n=281,738)had a sleep-related diagnosis in their healthcare records,9.7%(n=56,247)of soldiers had e-Profiles,and 1.9%(n=10,885)had a sleep e-Profile.Soldiers with sleep e-Profiles were more likely to have had a motor vehicle accident(p OR(prevalence odds ratio)=4.7,95%CI 2.63–8.39,P≤0.001)or work/duty-related injury(p OR=1.6,95%CI 1.32–1.94,P≤0.001).The likelihood of nondeployability was greater in soldiers with a sleep e-Profile and a musculoskeletal e-Profile(p OR=4.25,95%CI 3.75–4.81,P≤0.001)or work/dutyrelated injury(p OR=2.62,95%CI 1.63–4.21,P≤0.001).Conclusion:Nearly half of soldiers had a sleep disorder or sleep-related medical diagnosis in 2018,but their sleep problems are largely not profiled as limitations to medical readiness.Musculoskeletal issues and physical injury predict nondeployability,and nondeployability is more likely to occur in soldiers who have sleep e-Profiles in addition to these issues.Addressing sleep problems may prevent accidents and injuries that could render a soldier nondeployable. 展开更多
关键词 medical readiness Behavioral sleep medicine Deployability Healthcare records Military Big data data mining
下载PDF
Intelligent Electrocardiogram Analysis in Medicine:Data,Methods,and Applications
20
作者 Yu-Xia Guan Ying An +2 位作者 Feng-Yi Guo Wei-Bai Pan Jian-Xin Wang 《Chinese Medical Sciences Journal》 CAS CSCD 2023年第1期38-48,共11页
Electrocardiogram(ECG)is a low-cost,simple,fast,and non-invasive test.It can reflect the heart’s electrical activity and provide valuable diagnostic clues about the health of the entire body.Therefore,ECG has been wi... Electrocardiogram(ECG)is a low-cost,simple,fast,and non-invasive test.It can reflect the heart’s electrical activity and provide valuable diagnostic clues about the health of the entire body.Therefore,ECG has been widely used in various biomedical applications such as arrhythmia detection,disease-specific detection,mortality prediction,and biometric recognition.In recent years,ECG-related studies have been carried out using a variety of publicly available datasets,with many differences in the datasets used,data preprocessing methods,targeted challenges,and modeling and analysis techniques.Here we systematically summarize and analyze the ECGbased automatic analysis methods and applications.Specifically,we first reviewed 22 commonly used ECG public datasets and provided an overview of data preprocessing processes.Then we described some of the most widely used applications of ECG signals and analyzed the advanced methods involved in these applications.Finally,we elucidated some of the challenges in ECG analysis and provided suggestions for further research. 展开更多
关键词 ELECTROCARDIOGRAM dataBASE PREPROCESSING machine learning medical big data analysis
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部