A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat...A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.展开更多
Cutaneous neurofibroma(cNF)is a prevalent clinical manifestation of neurofibromatosis type 1,significantly affecting the well-being and quality of life of the affected individuals.The adoption of reliable and reproduc...Cutaneous neurofibroma(cNF)is a prevalent clinical manifestation of neurofibromatosis type 1,significantly affecting the well-being and quality of life of the affected individuals.The adoption of reliable and reproducible volumetric measurement techniques is essential for precisely evaluating tumor burden and plays a critical role in the development of effective treatments for cNF.This study focuses on widely used volumetric measurement techniques,including vernier calipers,ultrasound,computed tomography,magnetic resonance imaging,and three-dimensional scanning imaging.It outlines the merits and drawbacks of each technique in assessing the cNF load,providing an overview of their current applications and ongoing research advancements in this domain.展开更多
Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the pro...Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.展开更多
Assimilation systems absorb both satellite measurements and Argo observations.This assimilation is essential to diagnose and evaluate the contribution from each type of data to the reconstructed analysis,allowing for ...Assimilation systems absorb both satellite measurements and Argo observations.This assimilation is essential to diagnose and evaluate the contribution from each type of data to the reconstructed analysis,allowing for better configuration of assimilation parameters.To achieve this,two comparative reconstruction schemes were designed under the optimal interpolation framework.Using a static scheme,an in situ-only field of ocean temperature was derived by correcting climatology with only Argo profiles.Through a dynamic scheme,a synthetic field was first derived from only satellite sea surface height and sea surface temperature measurements through vertical projection,and then a combined field was reconstructed by correcting the synthetic field with in situ profiles.For both schemes,a diagnostic iterative method was performed to optimize the background and observation error covariance statics.The root mean square difference(RMSD)of the in situ-only field,synthetic field and combined field were analyzed toward assimilated observations and independent observations,respectively.The rationale behind the distribution of RMSD was discussed using the following diagnostics:(1)The synthetic field has a smaller RMSD within the global mixed layer and extratropical deep waters,as in the Northwest Pacific Ocean;this is controlled by the explained variance of the vertical surface-underwater regression that reflects the ocean upper mixing and interior baroclinicity.(2)The in situ-only field has a smaller RMSD in the tropical upper layer and at midlatitudes;this is determined by the actual noise-to-signal ratio of ocean temperature.(3)The satellite observations make a more significant contribution to the analysis toward independent observations in the extratropics;this is determined by both the geographical feature of the synthetic field RMSD(smaller at depth in the extratropics)and that of the covariance correlation scales(smaller in the extratropics).展开更多
This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes...This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes on the surface of fabrics. We then collect the images of contour stripes using Charge Coupled Device (CCD). Subsequently, we process the images to identify the contour stripes and edges of fabrics, and obtain the fabric contour lines of curved surfaces. Finally, we apply three-dimensional curved surface modeling method based on a network of polar coordinates, and reconstruct the three-dimensional drape shape of fabrics. Experiments show that our method is effective in testing and reconstructing three-dimensional drape shape of fabrics.展开更多
In optical three-dimensional shape measurement, a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail. Intensities of any five consecutive pixels that ...In optical three-dimensional shape measurement, a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail. Intensities of any five consecutive pixels that lie in the x-axis direction of the phase domain are given. Partial derivatives of the phase function in the x- and y-axis directions are obtained with a phase-shifting mechanism, the origin of which is analysed. Furthermore, to avoid phase unwrapping in the phase reconstruction, we derive the gradient of the phase function and perform a two-dimensional integral along the x- and y-axis directions. The reconstructed phase can be obtained directly by performing numerical integration, and thus it is of great convenience for phase reconstruction. Finally, the results of numerical simulations and practical experiments verify the correctness of the proposed method.展开更多
This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on...This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.展开更多
This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with u...This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with unique 5-element configuration</span></span><span style="white-space:normal;"><span style="font-family:;" "="">, with all five elements acting as transmitters and four elements as receivers. The receivers are designed to reduce the amount of uncertainty. As the fluid moves through this setup, four Doppler frequencies are obtained. The multi-dimensional velocity information along the measurement line can be reconstructed. The transducer has a compact geometry suitable for a wide range of applications, including narrow flow areas. The transducer’s basic frequency and sound pressure are selected and evaluated to be compatible with the application. First, to confirm the measurement ability, the measurement of the developed system in two-dimensional flow is validated by comparing it to the theoretical data. The uncertainty of measurement was within 15%. Second, the three-dimensional measurement in turbulent and swirling flow is proved experimentally to check the applicability of the proposed technique.</span></span>展开更多
Objective To discuss the measurement of bone tumor volume on the basis of three dimensional images segmentation technology. Methods Twenty patients with lacunar bone tumor from Tianjin Hospital and Tongji Hospital wer...Objective To discuss the measurement of bone tumor volume on the basis of three dimensional images segmentation technology. Methods Twenty patients with lacunar bone tumor from Tianjin Hospital and Tongji Hospital were included in the展开更多
In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare co...In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers.展开更多
A web camera based multi-camera convergent close-range photogrammetric system is developed to obtain the neonates' head and facial morphology. The data will then be used to develop a secure and good-fitting eye-patch...A web camera based multi-camera convergent close-range photogrammetric system is developed to obtain the neonates' head and facial morphology. The data will then be used to develop a secure and good-fitting eye-patch protector for neonates, particularly whoa they are exposed to bright lights such as phototherapy light. Measurements obtained by the system are evaluated and validated against data obtained from optical scanning. Results show that the photogrammetric system meets the requirements of measuring accuracy and safety for neonate in the neonatal units.展开更多
BACKGROUND: The accurate measurements of various data of the bone diameters of foramen ovale of living person can change the methods of puncturing trigeminal gasserian ganglion via foramen ovale for treating trifacia...BACKGROUND: The accurate measurements of various data of the bone diameters of foramen ovale of living person can change the methods of puncturing trigeminal gasserian ganglion via foramen ovale for treating trifacial neuralgia from the experience of puncture operator only to puncture by taking the objective data of measurement as the evidence, which is good for improving the accuracy of puncturing trigeminal ganglion and reducing side effects. OBJECTIVE : To observe the forms of foramen ovales in healthy adults displayed by volume rendering and multi-planar reconstruction after three-dimensional spiral CT thin-slice scan of skull base, and measure the longitudinal diameter and transverse diameter. DESIGN : A repetitive observation and measurement SETTINGS : Department of Neurosurgery and Department of Medical Imaging, Foshan Hospital of Traditional Chinese Medicine. PARTICIPANTS: Fifty healthy adults (100 sides), who were examined with three-dimensional spiral CT scan, were randomly selected from the Department of Medical Imaging, Foshan Hospital of Traditional Chinese Medicine from January 2005 to January 2006, including 26 males and 24 females, aged 25-68 years with an average of 48 years old. They were all informed and agreed with the examination. METHODS : The subjects were examined with the Philips 16-slice spiral CT-Mx 8000 IDT CT apparatus (Philips Company, Holland), the scanning ranged from 2 cm below the canthomeatal line to the level of suprasellar cistem. The width of collimator was 0.75 mm, pitch was 0.663; tube current was 350 mA, voltage was 120 kV, resolution was 512×512 matrix; slice thickness of reconstruction was 1 mm, and interval was 0.5 mm. After the three-dimensional spiral CT thin-slice scan of skull base, the image post-processing techniques including volume rendering and multi-planar reconstruction were applied to observe the forms of foramen ovales, and measure the size, longitudinal diameter and transverse diameter of the foramen ovales. The figures of the foramen ovales were drawn with mouse along the boundary of bone porous margin and soft tissue. According to the indications, the diameters were measured with computer to observe the forms of foramen ovales. MAIN OUTCOME MEASURES : The longitudinal diameter, transverse diameter and form of foramen ovales were observed. RESULTS: All the 50 healthy adults (100 sides) were involved in the analysis of results. (1) It was observed in the volume rendering images that foramen ovales had four forms of oval shape (77 sides), kidney shape (12 sides), round shape (7 sides), ribbon shape (4 sides). (2) The longitudinal diameters of left and right foramen ovales were (7.67±1.32) and (7.98±1.45) mm, and the transverse diameters were (4.04±0.83), (4.09±1.07) mm; There was no obvious difference between left and right longitudinal diameters (t = 1.63, P = 0.11 ), and left and right transverse diameters were close (t = 0.45, P= 0.65). CONCLUSION : The non-invasive techniques of volume rendering and multi-planar reconstruction after three-dimensional spiral CT thin-slice scan can clearly display the formand size of foramen ovale in healthy adults.展开更多
In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structur...In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structured light measurement model based on a galvanometer scanner was proposed to obtain the 3D information of the workpiece. A height calibration method was proposed to further ensure measurement accuracy, so as to achieve accurate laser focusing. In-situ machining software was developed to realize time-saving and labor-saving 3D laser processing. The feasibility and practicability of this in-situ laser machining system were verified using specific cases. In comparison with the conventional line structured light measurement method, the proposed methods do not require light plane calibration, and do not need additional motion axes for 3D reconstruction;thus they provide technical and cost advantages. The insitu laser machining system realizes a simple operation process by integrating measurement and machining,which greatly reduces labor and time costs.展开更多
The three-dimensional structures of summer precipitation over the South China Sea (SCS) and the East China Sea (ECS) are investigated based on tropical rainfall measurement mission (TRMM). The primary results ar...The three-dimensional structures of summer precipitation over the South China Sea (SCS) and the East China Sea (ECS) are investigated based on tropical rainfall measurement mission (TRMM). The primary results are as follows. First, both the convective and stratiform precipitation rates in the SCS are much higher than those of the ECS. The contribution of the convective cloud precipitation to the surface precipitation is primarily over the SCS and the ECS with a proportion of about 70%, but the contribution of convective cloud precipitation is slightly larger in the SCS than the ECS. The contribution of stratus precipitation is slightly larger in the ECS than that in the SCS. Second, the content of cloud particles and precipitation particles in the ECS in June was greater than that in the SCS, while in July and August, the content of cloud and precipitation particles in the ECS was less than that in the SCS. Third, the latent heat profile of the ECS is quite different from that of the SCS. In June, the peak values of evaporation and condensation latent heating rates in the ECS are greater than those in the SCS. In July and August, however, the peak values of evaporation and condensation latent heating rates in the ECS are about 0.05°/h less than those in the SCS.展开更多
An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing rati...An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing ratios (M=1.5, 2) on the flow field are studied. The experimental results reveal the classical phenomena of the formation of kidney vortex pair and secondary flow in wake region behind the jet hole. And the changes of the kidney vortex pair and the wake at different locations away from the hole on the suction and pressure sides are also studied. Compared with the flow field in stationary cascade, there are centrifugal force and Coriolis force existing in the flow field of rotating turbine, and these forces bring the radial velocity in the jet flow. The effect of rotatien on the flow field of the pressure side is more distinct than that on the suction side from the measured flow fields in Y-Z plane and radial velocity contours. The increase of blowing ratio makes the kidney vortex pair and the secondary flow in the wake region stronger and makes the range of the wake region enlarged.展开更多
The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this p...The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.展开更多
Instantaneous three-dimensional (3D) density distributions of a shock-cell structure of perfectly and imperfectly expanded supersonic microjets escaping into an ambient space are measured. For the 3D observation of su...Instantaneous three-dimensional (3D) density distributions of a shock-cell structure of perfectly and imperfectly expanded supersonic microjets escaping into an ambient space are measured. For the 3D observation of supersonic microjets, non-scanning 3D computerized tomography (CT) technique using a 20-directional quantitative schlieren optical system with flashlight source is employed for simultaneous schlieren photography. The 3D density distributions data of the microjets are obtained by 3D-CT reconstruction of the projection’s images using maximum likelihood-expectation maximization. Axisymmetric convergent-divergent (Laval) circular and square micro nozzles with operating nozzle pressure ratio 5.0, 4.5, 4.0, 3.67, and 3.5 have been studied. This study examines perfectly expanded, overexpanded, and underexpanded supersonic microjets issued from micro nozzles with fully expanded jet Mach numbers <em>M</em><em><sub>j</sub></em> ranging from 1.47 - 1.71, where the design Mach number is <em>M<sub>d</sub></em> = 1.5. A complex phenomenon for free square microjets called axis switching is clearly observed with two types “upright” and “diagonal” of “cross-shaped”. The initial axis-switching is 45<span style="white-space:nowrap;">°</span> within the first shock-cell range. In addition, from the symmetry and diagonal views of square microjets for the first shock-cells, two different patterns of shock waves are viewed. The shock-cell spacing and supersonic core length for all nozzle pressure ratios are investigated and reported.展开更多
A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then suffi...A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.展开更多
Three-dimensional Information Decoupling System Based on PSD were designed based on LabVIEW, in order to achieve precision, timeliness, reliability require-ments of the PSD used in the ATP system of Satellite Earth qu...Three-dimensional Information Decoupling System Based on PSD were designed based on LabVIEW, in order to achieve precision, timeliness, reliability require-ments of the PSD used in the ATP system of Satellite Earth quantum communication. Firstly, the laser light source was driven by a stepper motor to scan on the PSD photosensitive surface, and the voltage value was collected and calculated to get the spot position. Analyzing the cause of nonlinear, a mathematical model was built between the actual value and the measured value by using binary quadratic polynomial method, PSD nonlinear correction function would be got. Then, the object micro displacement and angle offset were measured by combining optical triangulation method, and the error of the measurement results was corrected. Experimental results showed that, after the correction, the measuring deviation could be significantly reduced, the PSD performance calibration requirements was achieved, the efficiency of the system was developed greatly by using LabVIEW.展开更多
The facial three-dimensional stereophotography technology is based on digital stereogrammetry technology. According to different light sources, it can be divided into three kinds, active, passive and hybrid. This syst...The facial three-dimensional stereophotography technology is based on digital stereogrammetry technology. According to different light sources, it can be divided into three kinds, active, passive and hybrid. This system can show characteristics of height, width and depth of facial soft tissues . It has the advantages of high reproducibility, low precision, high reliability, fast image acquisition, noninvasiveness and repeatability. The image can be used for facial anthropometric measurement , as well as establishing a three-dimensional facial model for surgical simulation and analysis . It can also record facial features of patients which can be used for follow-up.展开更多
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2018YFE0309100 and 2019YFE03010004)National Natural Science Foundation of China(No.51821005)。
文摘A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.
文摘Cutaneous neurofibroma(cNF)is a prevalent clinical manifestation of neurofibromatosis type 1,significantly affecting the well-being and quality of life of the affected individuals.The adoption of reliable and reproducible volumetric measurement techniques is essential for precisely evaluating tumor burden and plays a critical role in the development of effective treatments for cNF.This study focuses on widely used volumetric measurement techniques,including vernier calipers,ultrasound,computed tomography,magnetic resonance imaging,and three-dimensional scanning imaging.It outlines the merits and drawbacks of each technique in assessing the cNF load,providing an overview of their current applications and ongoing research advancements in this domain.
基金Project supported by the Zhejiang Provincial Welfare Technology Applied Research Project,China(Grant No.2017C31080)
文摘Dithering optimization techniques can be divided into the phase-optimized technique and the intensity-optimized technique. The problem with the former is the poor sensitivity to various defocusing amounts, and the problem with the latter is that it cannot enhance phase quality directly nor efficiently. In this paper, we present a multi-objective optimization framework for three-dimensional(3D) measurement by utilizing binary defocusing technique. Moreover, a binary patch optimization technique is used to solve the time-consuming issue of genetic algorithm. It is demonstrated that the presented technique consistently obtains significant phase performance improvement under various defocusing amounts.
基金The National Natural Science Foundation of China under contract Nos 41706021 and 41976188。
文摘Assimilation systems absorb both satellite measurements and Argo observations.This assimilation is essential to diagnose and evaluate the contribution from each type of data to the reconstructed analysis,allowing for better configuration of assimilation parameters.To achieve this,two comparative reconstruction schemes were designed under the optimal interpolation framework.Using a static scheme,an in situ-only field of ocean temperature was derived by correcting climatology with only Argo profiles.Through a dynamic scheme,a synthetic field was first derived from only satellite sea surface height and sea surface temperature measurements through vertical projection,and then a combined field was reconstructed by correcting the synthetic field with in situ profiles.For both schemes,a diagnostic iterative method was performed to optimize the background and observation error covariance statics.The root mean square difference(RMSD)of the in situ-only field,synthetic field and combined field were analyzed toward assimilated observations and independent observations,respectively.The rationale behind the distribution of RMSD was discussed using the following diagnostics:(1)The synthetic field has a smaller RMSD within the global mixed layer and extratropical deep waters,as in the Northwest Pacific Ocean;this is controlled by the explained variance of the vertical surface-underwater regression that reflects the ocean upper mixing and interior baroclinicity.(2)The in situ-only field has a smaller RMSD in the tropical upper layer and at midlatitudes;this is determined by the actual noise-to-signal ratio of ocean temperature.(3)The satellite observations make a more significant contribution to the analysis toward independent observations in the extratropics;this is determined by both the geographical feature of the synthetic field RMSD(smaller at depth in the extratropics)and that of the covariance correlation scales(smaller in the extratropics).
基金National Natural Science Foundation of China (50275139) Natural Science Foundation of Zhejiang (01388-G)
文摘This paper introduces a new method of measuring the three-dimensional drape shape of fabrics with structural light. First, we apply parallel annular structural light to form light and shade alternating contour stripes on the surface of fabrics. We then collect the images of contour stripes using Charge Coupled Device (CCD). Subsequently, we process the images to identify the contour stripes and edges of fabrics, and obtain the fabric contour lines of curved surfaces. Finally, we apply three-dimensional curved surface modeling method based on a network of polar coordinates, and reconstruct the three-dimensional drape shape of fabrics. Experiments show that our method is effective in testing and reconstructing three-dimensional drape shape of fabrics.
基金Project supported by the National Natural Science Foundation of China (Grant No. 61144006)
文摘In optical three-dimensional shape measurement, a method of improving the measurement precision for phase reconstruction without phase unwrapping is analyzed in detail. Intensities of any five consecutive pixels that lie in the x-axis direction of the phase domain are given. Partial derivatives of the phase function in the x- and y-axis directions are obtained with a phase-shifting mechanism, the origin of which is analysed. Furthermore, to avoid phase unwrapping in the phase reconstruction, we derive the gradient of the phase function and perform a two-dimensional integral along the x- and y-axis directions. The reconstructed phase can be obtained directly by performing numerical integration, and thus it is of great convenience for phase reconstruction. Finally, the results of numerical simulations and practical experiments verify the correctness of the proposed method.
文摘This paper conducts a trade-off between efficiency and accuracy of three-dimensional(3 D)shape measurement based on the triangulation principle,and introduces a flying and precise 3 D shape measurement method based on multiple parallel line lasers.Firstly,we establish the measurement model of the multiple parallel line lasers system,and introduce the concept that multiple base planes can help to deduce the unified formula of the measurement system and are used in simplifying the process of the calibration.Then,the constraint of the line spatial frequency,which maximizes the measurement efficiency while ensuring accuracy,is determined according to the height distribution of the object.Secondly,the simulation analyzing the variation of the systemic resolution quantitatively under the circumstance of a set of specific parameters is performed,which provides a fundamental thesis for option of the four system parameters.Thirdly,for the application of the precision measurement in the industrial field,additional profiles are acquired to improve the lateral resolution by applying a motor to scan the 3 D surface.Finally,compared with the line laser,the experimental study shows that the present method of obtaining 41220 points per frame improves the measurement efficiency.Furthermore,the accuracy and the process of the calibration are advanced in comparison with the existing multiple-line laser and the structured light makes an accuracy better than 0.22 mm at a distance of 956.02 mm.
文摘This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with unique 5-element configuration</span></span><span style="white-space:normal;"><span style="font-family:;" "="">, with all five elements acting as transmitters and four elements as receivers. The receivers are designed to reduce the amount of uncertainty. As the fluid moves through this setup, four Doppler frequencies are obtained. The multi-dimensional velocity information along the measurement line can be reconstructed. The transducer has a compact geometry suitable for a wide range of applications, including narrow flow areas. The transducer’s basic frequency and sound pressure are selected and evaluated to be compatible with the application. First, to confirm the measurement ability, the measurement of the developed system in two-dimensional flow is validated by comparing it to the theoretical data. The uncertainty of measurement was within 15%. Second, the three-dimensional measurement in turbulent and swirling flow is proved experimentally to check the applicability of the proposed technique.</span></span>
文摘Objective To discuss the measurement of bone tumor volume on the basis of three dimensional images segmentation technology. Methods Twenty patients with lacunar bone tumor from Tianjin Hospital and Tongji Hospital were included in the
基金supported by the National Natural Science Foundation of China under Grant[52077027]Liaoning Province Science and Technology Major Project[No.2020JH1/10100020].
文摘In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers.
基金Earmarked Research Grant (Hong Kong)(No.POLYU 5299/04E)
文摘A web camera based multi-camera convergent close-range photogrammetric system is developed to obtain the neonates' head and facial morphology. The data will then be used to develop a secure and good-fitting eye-patch protector for neonates, particularly whoa they are exposed to bright lights such as phototherapy light. Measurements obtained by the system are evaluated and validated against data obtained from optical scanning. Results show that the photogrammetric system meets the requirements of measuring accuracy and safety for neonate in the neonatal units.
基金a grant fromTackle Key Problems in Sci-ence and Technology of FoshanCity, No. 200505075
文摘BACKGROUND: The accurate measurements of various data of the bone diameters of foramen ovale of living person can change the methods of puncturing trigeminal gasserian ganglion via foramen ovale for treating trifacial neuralgia from the experience of puncture operator only to puncture by taking the objective data of measurement as the evidence, which is good for improving the accuracy of puncturing trigeminal ganglion and reducing side effects. OBJECTIVE : To observe the forms of foramen ovales in healthy adults displayed by volume rendering and multi-planar reconstruction after three-dimensional spiral CT thin-slice scan of skull base, and measure the longitudinal diameter and transverse diameter. DESIGN : A repetitive observation and measurement SETTINGS : Department of Neurosurgery and Department of Medical Imaging, Foshan Hospital of Traditional Chinese Medicine. PARTICIPANTS: Fifty healthy adults (100 sides), who were examined with three-dimensional spiral CT scan, were randomly selected from the Department of Medical Imaging, Foshan Hospital of Traditional Chinese Medicine from January 2005 to January 2006, including 26 males and 24 females, aged 25-68 years with an average of 48 years old. They were all informed and agreed with the examination. METHODS : The subjects were examined with the Philips 16-slice spiral CT-Mx 8000 IDT CT apparatus (Philips Company, Holland), the scanning ranged from 2 cm below the canthomeatal line to the level of suprasellar cistem. The width of collimator was 0.75 mm, pitch was 0.663; tube current was 350 mA, voltage was 120 kV, resolution was 512×512 matrix; slice thickness of reconstruction was 1 mm, and interval was 0.5 mm. After the three-dimensional spiral CT thin-slice scan of skull base, the image post-processing techniques including volume rendering and multi-planar reconstruction were applied to observe the forms of foramen ovales, and measure the size, longitudinal diameter and transverse diameter of the foramen ovales. The figures of the foramen ovales were drawn with mouse along the boundary of bone porous margin and soft tissue. According to the indications, the diameters were measured with computer to observe the forms of foramen ovales. MAIN OUTCOME MEASURES : The longitudinal diameter, transverse diameter and form of foramen ovales were observed. RESULTS: All the 50 healthy adults (100 sides) were involved in the analysis of results. (1) It was observed in the volume rendering images that foramen ovales had four forms of oval shape (77 sides), kidney shape (12 sides), round shape (7 sides), ribbon shape (4 sides). (2) The longitudinal diameters of left and right foramen ovales were (7.67±1.32) and (7.98±1.45) mm, and the transverse diameters were (4.04±0.83), (4.09±1.07) mm; There was no obvious difference between left and right longitudinal diameters (t = 1.63, P = 0.11 ), and left and right transverse diameters were close (t = 0.45, P= 0.65). CONCLUSION : The non-invasive techniques of volume rendering and multi-planar reconstruction after three-dimensional spiral CT thin-slice scan can clearly display the formand size of foramen ovale in healthy adults.
文摘In this study, a three-dimensional (3D) in-situ laser machining system integrating laser measurement and machining was built using a 3D galvanometer scanner equipped with a side-axis industrial camera. A line structured light measurement model based on a galvanometer scanner was proposed to obtain the 3D information of the workpiece. A height calibration method was proposed to further ensure measurement accuracy, so as to achieve accurate laser focusing. In-situ machining software was developed to realize time-saving and labor-saving 3D laser processing. The feasibility and practicability of this in-situ laser machining system were verified using specific cases. In comparison with the conventional line structured light measurement method, the proposed methods do not require light plane calibration, and do not need additional motion axes for 3D reconstruction;thus they provide technical and cost advantages. The insitu laser machining system realizes a simple operation process by integrating measurement and machining,which greatly reduces labor and time costs.
基金The National Key Basic Research Program of China under contract No.2014CB953903the National Basic Research Programof China under contract No.2011CB403500+1 种基金the National Natural Science Foundation of China under contract Nos 40775066 and 41275145the Fundamental Research Funds for the Central Universities under contract No.13lgjc03
文摘The three-dimensional structures of summer precipitation over the South China Sea (SCS) and the East China Sea (ECS) are investigated based on tropical rainfall measurement mission (TRMM). The primary results are as follows. First, both the convective and stratiform precipitation rates in the SCS are much higher than those of the ECS. The contribution of the convective cloud precipitation to the surface precipitation is primarily over the SCS and the ECS with a proportion of about 70%, but the contribution of convective cloud precipitation is slightly larger in the SCS than the ECS. The contribution of stratus precipitation is slightly larger in the ECS than that in the SCS. Second, the content of cloud particles and precipitation particles in the ECS in June was greater than that in the SCS, while in July and August, the content of cloud and precipitation particles in the ECS was less than that in the SCS. Third, the latent heat profile of the ECS is quite different from that of the SCS. In June, the peak values of evaporation and condensation latent heating rates in the ECS are greater than those in the SCS. In July and August, however, the peak values of evaporation and condensation latent heating rates in the ECS are about 0.05°/h less than those in the SCS.
基金This project is supported by National Natural Science Foundation ofChina(No. 50406017)
文摘An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing ratios (M=1.5, 2) on the flow field are studied. The experimental results reveal the classical phenomena of the formation of kidney vortex pair and secondary flow in wake region behind the jet hole. And the changes of the kidney vortex pair and the wake at different locations away from the hole on the suction and pressure sides are also studied. Compared with the flow field in stationary cascade, there are centrifugal force and Coriolis force existing in the flow field of rotating turbine, and these forces bring the radial velocity in the jet flow. The effect of rotatien on the flow field of the pressure side is more distinct than that on the suction side from the measured flow fields in Y-Z plane and radial velocity contours. The increase of blowing ratio makes the kidney vortex pair and the secondary flow in the wake region stronger and makes the range of the wake region enlarged.
文摘The objective of the present paper is to develop nonlinear finite element method models for predicting the weld-induced initial deflection and residual stress of plating in steel stiffened-plate structures. For this purpose, three-dimensional thermo-elastic-plastic finite element method computations are performed with varying plate thickness and weld bead length (leg length) in welded plate panels, the latter being associated with weld heat input. The finite element models are verified by a comparison with experimental database which was obtained by the authors in separate studies with full scale measurements. It is concluded that the nonlinear finite element method models developed in the present paper are very accurate in terms of predicting the weld-induced initial imperfections of steel stiffened plate structures. Details of the numerical computations together with test database are documented.
文摘Instantaneous three-dimensional (3D) density distributions of a shock-cell structure of perfectly and imperfectly expanded supersonic microjets escaping into an ambient space are measured. For the 3D observation of supersonic microjets, non-scanning 3D computerized tomography (CT) technique using a 20-directional quantitative schlieren optical system with flashlight source is employed for simultaneous schlieren photography. The 3D density distributions data of the microjets are obtained by 3D-CT reconstruction of the projection’s images using maximum likelihood-expectation maximization. Axisymmetric convergent-divergent (Laval) circular and square micro nozzles with operating nozzle pressure ratio 5.0, 4.5, 4.0, 3.67, and 3.5 have been studied. This study examines perfectly expanded, overexpanded, and underexpanded supersonic microjets issued from micro nozzles with fully expanded jet Mach numbers <em>M</em><em><sub>j</sub></em> ranging from 1.47 - 1.71, where the design Mach number is <em>M<sub>d</sub></em> = 1.5. A complex phenomenon for free square microjets called axis switching is clearly observed with two types “upright” and “diagonal” of “cross-shaped”. The initial axis-switching is 45<span style="white-space:nowrap;">°</span> within the first shock-cell range. In addition, from the symmetry and diagonal views of square microjets for the first shock-cells, two different patterns of shock waves are viewed. The shock-cell spacing and supersonic core length for all nozzle pressure ratios are investigated and reported.
基金The National Natural Science Foundation of China (No30470488)
文摘A calibration procedure was developed for three-dimensional(3D) binocular structured light measurement systems. In virtue of a specially designed pattern, matching points in stereo images are extracted. And then sufficient 3D space points are obtained through pairs of images with the intrinsic and extrinsic parameters of each camera estimated prior and consequently some lights are calibrated by means of multi point fitting. Finally, a mathematical model is applied to interpolate and approximate all dynamic scanning lights based on geometry. The process of calibration method is successfully used in the binocular 3D measurement system based on structured lights and the 3D reconstruction results are satisfying.
文摘Three-dimensional Information Decoupling System Based on PSD were designed based on LabVIEW, in order to achieve precision, timeliness, reliability require-ments of the PSD used in the ATP system of Satellite Earth quantum communication. Firstly, the laser light source was driven by a stepper motor to scan on the PSD photosensitive surface, and the voltage value was collected and calculated to get the spot position. Analyzing the cause of nonlinear, a mathematical model was built between the actual value and the measured value by using binary quadratic polynomial method, PSD nonlinear correction function would be got. Then, the object micro displacement and angle offset were measured by combining optical triangulation method, and the error of the measurement results was corrected. Experimental results showed that, after the correction, the measuring deviation could be significantly reduced, the PSD performance calibration requirements was achieved, the efficiency of the system was developed greatly by using LabVIEW.
文摘The facial three-dimensional stereophotography technology is based on digital stereogrammetry technology. According to different light sources, it can be divided into three kinds, active, passive and hybrid. This system can show characteristics of height, width and depth of facial soft tissues . It has the advantages of high reproducibility, low precision, high reliability, fast image acquisition, noninvasiveness and repeatability. The image can be used for facial anthropometric measurement , as well as establishing a three-dimensional facial model for surgical simulation and analysis . It can also record facial features of patients which can be used for follow-up.