Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enha...Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enhancing the requests of image quality and stability of the virtual construction scene, taking a tower crane for example. We studied the technology of three-dimensional modeling and optimization of a virtual tower crane, and a method named two-stage model optimization was put forward. This depended on the modeling stage using Solidworks and 3DS Max and the performance optimization stage in EON. The practice of software development indicates that the proposed methods of three-dimensional modeling and optimization could satisfy the performance request of virtual construction system and be popularized to other virtual system.展开更多
Residual stress during the machining process has always been a research hotspot,especially for aero-engine blades.The three-dimensional modeling and reconstructive laws of residual stress among various processes in th...Residual stress during the machining process has always been a research hotspot,especially for aero-engine blades.The three-dimensional modeling and reconstructive laws of residual stress among various processes in the machining process of the fan blade is studied in this paper.The fan blades of Ti-6Al-4V are targeted for milling,polishing,heat treatment,vibratory finishing,and shot peening.The surface and subsurface residual stress after each process is measured by the X-ray diffraction method.The distribution of the surface and subsurface residual stress is analyzed.The Rational Taylor surface function and cosine decay function are used to fit the characteristic function of the residual stress distribution,and the empirical formula with high fitting accuracy is obtained.The value and distribution of surface and subsurface residual stress vary greatly due to different processing techniques.The reconstructive change of the surface and subsurface residual stress of the blade in each process intuitively shows the change of the residual stress between the processes,which has a high reference significance for the research on the residual stress of the blade processing and the optimization of the entire blade process.展开更多
A three-dimensional (3-D) approach based on the state space method is proposed to study size-dependent mechanical properties of ultra-thin plate-like elastic structures considering surface effects. The structure is ...A three-dimensional (3-D) approach based on the state space method is proposed to study size-dependent mechanical properties of ultra-thin plate-like elastic structures considering surface effects. The structure is modeled as a laminate composed of a bulk bounded with upper and bottom surface layers, which are allowed to have different material properties from the bulk layer. State equations, including the surface properties of the structure, can be established on the basis of 3-D fundamental elasticity to analyze the size-dependent static characteristics of the thin plate-like structure. Compared with two-dimensional plate theories based size-dependent models for thin film structures in literature, the present 3-D approach is exact, which can provide benchmark results to assess the accuracy of 2-D plate theories and various numerical approaches. To show the feasibility of the proposed approach, a 3-D analytical solution for a simply supported plate-like thin structure including surface layers is derived. An algorithm is proposed for the calculation of the state equations obtained to ensure that the numerical results can reveal the surface effects clearly even for extremely thin surface layers. Numerical examples are carried out to exhibit the surface effects and some discussions are provided based on the results obtained.展开更多
Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotrop...Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotropic conditions when surveying anisotropic structures, which may cause discrepancies between reality and electromagnetic data interpretation. Moreover, the anisotropic interpretation of the time-domain airborne electromagnetic (TDAEM) method is still confined to one dimensional (1D) cases, and the corresponding three-dimensional (3D) numerical simulations are still in development. In this study, we expanded the 3D TDAEM modeling of arbitrarily anisotropic media. First, through coordinate rotation of isotropic conductivity, we obtained the conductivity tensor of an arbitrary anisotropic rock. Next, we incorporated this into Maxwell's equations, using a regular hexahedral grid of vector finite elements to subdivide the solution area. A direct solver software package provided the solution for the sparse linear equations that resulted. Analytical solutions were used to verify the accuracy and feasibility of the algorithm. The proven model was then applied to analyze the effects of arbitrary anisotropy in 3D TDAEM via the distribution of responses and amplitude changes, which revealed that different anisotropy situations strongly affected the responses of TDAEM.展开更多
Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding throu...Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.展开更多
Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor ...Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.展开更多
Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising ap...Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.展开更多
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t...Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.展开更多
X-ray CT (computed tomography) was used to scan asphalt mixture specimen to ob- tain high resolution continuous cross-section images and the meso-structure. According to the theory of three-dimensional (3D) recons...X-ray CT (computed tomography) was used to scan asphalt mixture specimen to ob- tain high resolution continuous cross-section images and the meso-structure. According to the theory of three-dimensional (3D) reconstruction, the 3D reconstruction algorithm was investi- gated in this paper. The key to the reconstruction technique is the acquisition of the voxel posi- tions and the relationship between the pixel element and node. Three-dimensional numerical model of asphalt mixture specimen was created by a self-developed program. A splitting test was conducted to predict the stress distributions of the asphalt mixture and verify the rationality of the 3D model.展开更多
In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over ...In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over large-scale and complex terrain requires additional methods. To this end, we have proposed a new topography-capable By performing a two-dimensional Fourier transform in the horizontal directions, threedimensional partial differential equations in the spatial domain were transformed into a group of independent, one-dimensional differential equations engaged with different wave numbers. These independent differential equations are highly parallel across different wave numbers. differential equations with different wave numbers, and the efficiency of solving fixedbandwidth linear equations was further improved by a chasing method. In a synthetic test, a prism model was used to verify the accuracy and reliability of the proposed algorithm by comparing the numerical solution with the analytical solution. We studied the computational precision and efficiency with and without topography using different Fourier transform methods. The results showed that the Guass-FFT method has higher numerical precision, while the standard FFT method is superior, in terms of computation time, for inversion and quantitative interpretation under complicated terrain.展开更多
A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating...A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating various vehicle motions:stationary and non-stationary(i.e.in acceleration or deceleration mode).Analysis of the results indicated the following items.1) It is critical to use the vertical TPCP as the design control criteria for the tensile strains at the bottom of the AC layer when the base layer modulus is lower in magnitude(e.g.≤400 MPa);however,when the base layer modulus is higher in magnitude(e.g.≥7 000 MPa),the horizontal TPCP and the tensile strains in the X-direction at the surface of the AC layer should also be considered as part of the design response criteria.2) The definition of "overload" needs to be revised to include tire pressure over-inflation,i.e.,a vehicle should be considered to be overloaded if the wheel load exceeds the specification and/or the tire inflation pressure is higher than the specification.3) Light trucks have more structural impact on the strain responses and pavement design when the thickness of the surfacing AC layer is thinner(e.g.≤50 mm).4) The acceleration of a vehicle does not significantly impact the AC surface distresses such as rutting at the top of the upgrade slopes or intersections;however,vehicle deceleration can dramatically induce horizontal shear strains and consequently,aggravate shoving and rutting problems at the highway intersections.Evidently,these factors should be taken into account during mechanistic stress-strain modeling and structural design of asphalt pavements.展开更多
In mammals,the ribbon synapses of cochlear inner hair cells are a synaptic structure of the first sensory nerve in the pathway of acoustical signal transmission to the acoustic center,and it is directly involved in vo...In mammals,the ribbon synapses of cochlear inner hair cells are a synaptic structure of the first sensory nerve in the pathway of acoustical signal transmission to the acoustic center,and it is directly involved in voice coding and neurotransmitter release. It is difficult to quantitatively analyze the ribbon synaptic number only using an electron microscope,because the ribbon synaptic number is relatively limited and their location is deep. In this study,the specific presynaptic structure-RIBEYE,and non-specific postsynaptic structure-GluR 2 & 3 in C57BL/6J mouse basilar membrane samples were treated by immunofluorescent labeling. Serial section was performed on the samples using a laser scanning confocal microscope,and then the serial sections were used to build three-dimensional models using 3DS MAX software. Each fluorescein color pair indicates one synapse,so the number of ribbon synapses of inner hair cells is obtained. The spatial distribution and the number of ribbon synapses of cochlear inner hair cells were clearly shown in this experiment,and the mean number of ribbon synapses per inner hair cell was 16.10±1.03. Our results have demonstrated the number of ribbon synapses is accurately calculated by double immunofluorescent labeling to presynaptic and postsynaptic structures,serial sections obtained using a laser scanning confocal microscope,and three-dimensional modeling obtained using 3DS MAX software. The method above is feasible and has important significance for further exploring the mechanism of sensorineural deafness.展开更多
We established a user-defined micromechanical model using discrete element method (DEM) to investigate the cracking behavior of asphalt concrete (AC). Using the "Fish" language provided in the particle flow code...We established a user-defined micromechanical model using discrete element method (DEM) to investigate the cracking behavior of asphalt concrete (AC). Using the "Fish" language provided in the particle flow code in 3-Demensions (PFC3D), the air voids and mastics in asphalt concrete were realistically built as two distinct phases. With the irregular shape of individual aggregate particles modeled using a clump of spheres of different sizes, the three-dimensional (3D) discrete element model was able to account for aggregate gradation and fraction. Laboratory uniaxial complex modulus test and indirect tensile strength test were performed to obtain input material parameters for the numerical simulation. A set of the indirect tensile test were simulated to study the cracking behavior of AC at two levels of temperature, i e, -10 ℃ and 15 ℃. The predicted results of the numerical simulation were compared with laboratory experimental measurements. Results show that the 3D DEM model is able to predict accurately the fracture pattern of different asphalt mixtures. Based on the DEM model, the effects of air void content and aggregate volumetric fraction on the cracking behavior of asphalt concrete were evaluated.展开更多
This study describes the details of how to construct a three-dimensional (3D) finite element model of a maxillary first premolar tooth based on micro-CT data acquisition technique, MIMICS soft- ware and ANSYS softwa...This study describes the details of how to construct a three-dimensional (3D) finite element model of a maxillary first premolar tooth based on micro-CT data acquisition technique, MIMICS soft- ware and ANSYS software. The tooth was scanned by micro-CT, in which 1295 slices were obtained and then 648 slices were selected for modeling. The 3D surface mesh models of enamel and dentin were created by MIMICS (STL file). The solid mesh model was constructed by ANSYS. After the material properties and boundary conditions were set, a loading analysis was performed to demonstrate the ap- plicableness of the resulting model. The first and third principal stresses were then evaluated. The re- suits showed that the number of nodes and elements of the finite element model were 56 618 and 311801, respectively. The geometric form of the model was highly consistent with that of the true tooth, and the deviation between them was ~).28%. The loading analysis revealed the typical stress patterns in the contour map. The maximum compressive stress existed in the contact points and the maximum tensile stress existed in the deep fissure between the two cusps. It is concluded that by using the micro-CT and highly integrated software, construction of the 3D finite element model with high quality will not be difficult for clinical researchers.展开更多
Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cel...Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cell characteristics and architectures are closely mimicked by the 3D cell models.Thus,the 3D cell cultures are promising and suitable systems for various proposes,ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives.This review provides a comprehensive compendium of recent advancements in culturing cells,in particular cancer and stem cells,using 3D culture techniques.The major approaches highlighted here include cell spheroids,hydrogel embedding,bioreactors,scaffolds,and bioprinting.In addition,the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed,and the prominent studies of 3D cell culture systems were discussed.展开更多
Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed...Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.展开更多
Left ventricular remodeling index (LVRI) was assessed in patients with hypertensive heart disease (HHD) and coronary artery disease (CAD) by real-time three-dimensional echocardiography (RT3DE). RT3DE data of ...Left ventricular remodeling index (LVRI) was assessed in patients with hypertensive heart disease (HHD) and coronary artery disease (CAD) by real-time three-dimensional echocardiography (RT3DE). RT3DE data of 18 patients with HHD, 20 patients with CAD and 22 normal controis (NC) were acquired. Left ventricular end-diastolic volume (EDV) and left ventricular end-diastolic epicardial volume (EDVepi) were detected by RT3DE and two-dimensional echocardiography Simpson biplane method (2DE). LVRI (left ventricular mass/EDV) was calculated and compared. The results showed that LVRI measurements detected by RT3DE and 2DE showed significant differences inter-groups (P〈0.01). There was no significant difference in NC group (P〉0.05), but significant difference in HHD and CAD intra-group (P〈0.05). There was good positive correlations between LVRI detected by RT3DE and 2DE in NC and HHD groups (t=0.69, P〈0.01; r=0.68, P〈0.01), but no significant correlation in CAD group (r=0.30, P〉0.05). It was concluded that LVRI derived from RT3DE as a new index for evaluating left ventricular remodeling can provide more superiority to LVRI derived from 2DE.展开更多
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat...A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.展开更多
BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular compon...BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular components are aligned freehand,without the use of navigation methods.Patient specific instruments(PSI)and three-dimensional(3D)printing of THA placement guides are increasingly used in primary THA to ensure optimal positioning.AIM To summarize the literature on 3D printing in THA and how they improve acetabular component alignment.METHODS PubMed was used to identify and access scientific studies reporting on different 3D printing methods used in THA.Eight studies with 236 hips in 228 patients were included.The studies could be divided into two main categories;3D printed models and 3D printed guides.RESULTS 3D printing in THA helped improve preoperative cup size planning and post-operative Harris hip scores between intervention and control groups(P=0.019,P=0.009).Otherwise,outcome measures were heterogeneous and thus difficult to compare.The overarching consensus between the studies is that the use of 3D guidance tools can assist in improving THA cup positioning and reduce the need for revision THA and the associated costs.CONCLUSION The implementation of 3D printing and PSI for primary THA can significantly improve the positioning accuracy of the acetabular cup component and reduce the number of complications caused by malpositioning.展开更多
A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "F...A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "Fish" language provided by PFC3D and was employed to simulate the three-point bending beam test at two temperature levels: -10 ℃ and 15℃. The AC beam was modeled with the consideration of the microstructural features of asphalt mixtures. Uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. The 3D predictions were validated using laboratory experimental measurements of AC beams prepared by the same mixture design. Effects of mastic stiffness, cohesive and adhesive strength on AC fracture behavior were investigated using the DEM model. The results show that the 3D DEM fracture model can accurately predict the fracture patterns of asphalt concrete. The ratio of stress at interfaces to the stress in mastics increases as the mastic stiffness decreases; however, the increase in the cohesive strength or adhesive strength shows no significant influence on the tensile strength.展开更多
基金supported by Special Project of Scientific Research of Education Department of Shaanxi Provincial Government under Grant No.11JK0967
文摘Three-dimensional modeling of virtual hoisting machinery is the critical works to structure the system of virtual construction, and the foundation to realize intelligent and interactive virtual hoisting. Aimed at enhancing the requests of image quality and stability of the virtual construction scene, taking a tower crane for example. We studied the technology of three-dimensional modeling and optimization of a virtual tower crane, and a method named two-stage model optimization was put forward. This depended on the modeling stage using Solidworks and 3DS Max and the performance optimization stage in EON. The practice of software development indicates that the proposed methods of three-dimensional modeling and optimization could satisfy the performance request of virtual construction system and be popularized to other virtual system.
基金This work was funded by the National Natural Science Foundation of China(Grant Nos.51875472,91860206,and 51905440)the National Science and Technology Major Project(Grant No.2017-VII-0001-0094)+1 种基金the National Key Research and Development Plan in Shaanxi Province of China(Grant No.2019ZDLGY02-03)the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2020JQ-186).
文摘Residual stress during the machining process has always been a research hotspot,especially for aero-engine blades.The three-dimensional modeling and reconstructive laws of residual stress among various processes in the machining process of the fan blade is studied in this paper.The fan blades of Ti-6Al-4V are targeted for milling,polishing,heat treatment,vibratory finishing,and shot peening.The surface and subsurface residual stress after each process is measured by the X-ray diffraction method.The distribution of the surface and subsurface residual stress is analyzed.The Rational Taylor surface function and cosine decay function are used to fit the characteristic function of the residual stress distribution,and the empirical formula with high fitting accuracy is obtained.The value and distribution of surface and subsurface residual stress vary greatly due to different processing techniques.The reconstructive change of the surface and subsurface residual stress of the blade in each process intuitively shows the change of the residual stress between the processes,which has a high reference significance for the research on the residual stress of the blade processing and the optimization of the entire blade process.
基金supported by the Natural Science Foundation of Anhui Province(No.070414190).
文摘A three-dimensional (3-D) approach based on the state space method is proposed to study size-dependent mechanical properties of ultra-thin plate-like elastic structures considering surface effects. The structure is modeled as a laminate composed of a bulk bounded with upper and bottom surface layers, which are allowed to have different material properties from the bulk layer. State equations, including the surface properties of the structure, can be established on the basis of 3-D fundamental elasticity to analyze the size-dependent static characteristics of the thin plate-like structure. Compared with two-dimensional plate theories based size-dependent models for thin film structures in literature, the present 3-D approach is exact, which can provide benchmark results to assess the accuracy of 2-D plate theories and various numerical approaches. To show the feasibility of the proposed approach, a 3-D analytical solution for a simply supported plate-like thin structure including surface layers is derived. An algorithm is proposed for the calculation of the state equations obtained to ensure that the numerical results can reveal the surface effects clearly even for extremely thin surface layers. Numerical examples are carried out to exhibit the surface effects and some discussions are provided based on the results obtained.
基金financially supported by National Nonprofit institute Research Grant of IGGE(Nos.AS2017J06,AS2017Y04,and AS2016J10)Survey on coastal area for airborne magnetic method of UNV in Jiangsu(No.DD20160151-03)+3 种基金Key National Research Project of China(No.2017YFC0601900)Key Program of National Natural Science Foundation of China(No.41530320)Natural Science Foundation(No.41274121)China Natural Science Foundation for Young Scientists(No.41404093)
文摘Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotropic conditions when surveying anisotropic structures, which may cause discrepancies between reality and electromagnetic data interpretation. Moreover, the anisotropic interpretation of the time-domain airborne electromagnetic (TDAEM) method is still confined to one dimensional (1D) cases, and the corresponding three-dimensional (3D) numerical simulations are still in development. In this study, we expanded the 3D TDAEM modeling of arbitrarily anisotropic media. First, through coordinate rotation of isotropic conductivity, we obtained the conductivity tensor of an arbitrary anisotropic rock. Next, we incorporated this into Maxwell's equations, using a regular hexahedral grid of vector finite elements to subdivide the solution area. A direct solver software package provided the solution for the sparse linear equations that resulted. Analytical solutions were used to verify the accuracy and feasibility of the algorithm. The proven model was then applied to analyze the effects of arbitrary anisotropy in 3D TDAEM via the distribution of responses and amplitude changes, which revealed that different anisotropy situations strongly affected the responses of TDAEM.
基金Project supported by the National Natural Science Foundation of China (No. 12072337)。
文摘Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail.
基金supported by the National Natural Science Foundation of China (No. 52275291)the Fundamental Research Funds for the Central Universitiesthe Program for Innovation Team of Shaanxi Province,China (No. 2023-CX-TD-17)
文摘Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology.
基金This work was supported by grants fromthe Sichuan Science and Technology Program(2023NSFSC1877).
文摘Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care.
基金supported by the National Natural Science Foundation of China,No.82171380(to CD)Jiangsu Students’Platform for Innovation and Entrepreneurship Training Program,No.202110304098Y(to DJ)。
文摘Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury.
基金supported by National Natural Science Foundation of China(NSFC)(No.51178056)Fundamental and Applied Research Project of Chinese National Transportation Department(No.2013319812010)the Special Fund for Basic Scientific Research of Central Colleges,Chang'an University(No.CHD2013G3212003)
文摘X-ray CT (computed tomography) was used to scan asphalt mixture specimen to ob- tain high resolution continuous cross-section images and the meso-structure. According to the theory of three-dimensional (3D) reconstruction, the 3D reconstruction algorithm was investi- gated in this paper. The key to the reconstruction technique is the acquisition of the voxel posi- tions and the relationship between the pixel element and node. Three-dimensional numerical model of asphalt mixture specimen was created by a self-developed program. A splitting test was conducted to predict the stress distributions of the asphalt mixture and verify the rationality of the 3D model.
基金supported by the Natural Science Foundation of China(No.41574127)the China Postdoctoral Science Foundation(No.2017M622608)the project for the independent exploration of graduate students at Central South University(No.2017zzts008)
文摘In gravity-anomaly-based prospecting, the computational and memory requirements for practical numerical modeling are potentially enormous. Achieving an efficient and precise inversion for gravity anomaly imaging over large-scale and complex terrain requires additional methods. To this end, we have proposed a new topography-capable By performing a two-dimensional Fourier transform in the horizontal directions, threedimensional partial differential equations in the spatial domain were transformed into a group of independent, one-dimensional differential equations engaged with different wave numbers. These independent differential equations are highly parallel across different wave numbers. differential equations with different wave numbers, and the efficiency of solving fixedbandwidth linear equations was further improved by a chasing method. In a synthetic test, a prism model was used to verify the accuracy and reliability of the proposed algorithm by comparing the numerical solution with the analytical solution. We studied the computational precision and efficiency with and without topography using different Fourier transform methods. The results showed that the Guass-FFT method has higher numerical precision, while the standard FFT method is superior, in terms of computation time, for inversion and quantitative interpretation under complicated terrain.
文摘A three dimensional finite element program incorporating actually measured vertical tire-pavement contact pressure(TPCP) was utilized for modeling the mechanistic responses in asphalt concrete(AC) layers by simulating various vehicle motions:stationary and non-stationary(i.e.in acceleration or deceleration mode).Analysis of the results indicated the following items.1) It is critical to use the vertical TPCP as the design control criteria for the tensile strains at the bottom of the AC layer when the base layer modulus is lower in magnitude(e.g.≤400 MPa);however,when the base layer modulus is higher in magnitude(e.g.≥7 000 MPa),the horizontal TPCP and the tensile strains in the X-direction at the surface of the AC layer should also be considered as part of the design response criteria.2) The definition of "overload" needs to be revised to include tire pressure over-inflation,i.e.,a vehicle should be considered to be overloaded if the wheel load exceeds the specification and/or the tire inflation pressure is higher than the specification.3) Light trucks have more structural impact on the strain responses and pavement design when the thickness of the surfacing AC layer is thinner(e.g.≤50 mm).4) The acceleration of a vehicle does not significantly impact the AC surface distresses such as rutting at the top of the upgrade slopes or intersections;however,vehicle deceleration can dramatically induce horizontal shear strains and consequently,aggravate shoving and rutting problems at the highway intersections.Evidently,these factors should be taken into account during mechanistic stress-strain modeling and structural design of asphalt pavements.
文摘In mammals,the ribbon synapses of cochlear inner hair cells are a synaptic structure of the first sensory nerve in the pathway of acoustical signal transmission to the acoustic center,and it is directly involved in voice coding and neurotransmitter release. It is difficult to quantitatively analyze the ribbon synaptic number only using an electron microscope,because the ribbon synaptic number is relatively limited and their location is deep. In this study,the specific presynaptic structure-RIBEYE,and non-specific postsynaptic structure-GluR 2 & 3 in C57BL/6J mouse basilar membrane samples were treated by immunofluorescent labeling. Serial section was performed on the samples using a laser scanning confocal microscope,and then the serial sections were used to build three-dimensional models using 3DS MAX software. Each fluorescein color pair indicates one synapse,so the number of ribbon synapses of inner hair cells is obtained. The spatial distribution and the number of ribbon synapses of cochlear inner hair cells were clearly shown in this experiment,and the mean number of ribbon synapses per inner hair cell was 16.10±1.03. Our results have demonstrated the number of ribbon synapses is accurately calculated by double immunofluorescent labeling to presynaptic and postsynaptic structures,serial sections obtained using a laser scanning confocal microscope,and three-dimensional modeling obtained using 3DS MAX software. The method above is feasible and has important significance for further exploring the mechanism of sensorineural deafness.
基金Funded by the National High-tech Research and Development of China (‘863' Program) (No. 2006AA11Z110)
文摘We established a user-defined micromechanical model using discrete element method (DEM) to investigate the cracking behavior of asphalt concrete (AC). Using the "Fish" language provided in the particle flow code in 3-Demensions (PFC3D), the air voids and mastics in asphalt concrete were realistically built as two distinct phases. With the irregular shape of individual aggregate particles modeled using a clump of spheres of different sizes, the three-dimensional (3D) discrete element model was able to account for aggregate gradation and fraction. Laboratory uniaxial complex modulus test and indirect tensile strength test were performed to obtain input material parameters for the numerical simulation. A set of the indirect tensile test were simulated to study the cracking behavior of AC at two levels of temperature, i e, -10 ℃ and 15 ℃. The predicted results of the numerical simulation were compared with laboratory experimental measurements. Results show that the 3D DEM model is able to predict accurately the fracture pattern of different asphalt mixtures. Based on the DEM model, the effects of air void content and aggregate volumetric fraction on the cracking behavior of asphalt concrete were evaluated.
文摘This study describes the details of how to construct a three-dimensional (3D) finite element model of a maxillary first premolar tooth based on micro-CT data acquisition technique, MIMICS soft- ware and ANSYS software. The tooth was scanned by micro-CT, in which 1295 slices were obtained and then 648 slices were selected for modeling. The 3D surface mesh models of enamel and dentin were created by MIMICS (STL file). The solid mesh model was constructed by ANSYS. After the material properties and boundary conditions were set, a loading analysis was performed to demonstrate the ap- plicableness of the resulting model. The first and third principal stresses were then evaluated. The re- suits showed that the number of nodes and elements of the finite element model were 56 618 and 311801, respectively. The geometric form of the model was highly consistent with that of the true tooth, and the deviation between them was ~).28%. The loading analysis revealed the typical stress patterns in the contour map. The maximum compressive stress existed in the contact points and the maximum tensile stress existed in the deep fissure between the two cusps. It is concluded that by using the micro-CT and highly integrated software, construction of the 3D finite element model with high quality will not be difficult for clinical researchers.
文摘Three-dimensional(3D)culture systems are becoming increasingly popular due to their ability to mimic tissue-like structures more effectively than the monolayer cultures.In cancer and stem cell research,the natural cell characteristics and architectures are closely mimicked by the 3D cell models.Thus,the 3D cell cultures are promising and suitable systems for various proposes,ranging from disease modeling to drug target identification as well as potential therapeutic substances that may transform our lives.This review provides a comprehensive compendium of recent advancements in culturing cells,in particular cancer and stem cells,using 3D culture techniques.The major approaches highlighted here include cell spheroids,hydrogel embedding,bioreactors,scaffolds,and bioprinting.In addition,the progress of employing 3D cell culture systems as a platform for cancer and stem cell research was addressed,and the prominent studies of 3D cell culture systems were discussed.
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51276157)
文摘Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.
文摘Left ventricular remodeling index (LVRI) was assessed in patients with hypertensive heart disease (HHD) and coronary artery disease (CAD) by real-time three-dimensional echocardiography (RT3DE). RT3DE data of 18 patients with HHD, 20 patients with CAD and 22 normal controis (NC) were acquired. Left ventricular end-diastolic volume (EDV) and left ventricular end-diastolic epicardial volume (EDVepi) were detected by RT3DE and two-dimensional echocardiography Simpson biplane method (2DE). LVRI (left ventricular mass/EDV) was calculated and compared. The results showed that LVRI measurements detected by RT3DE and 2DE showed significant differences inter-groups (P〈0.01). There was no significant difference in NC group (P〉0.05), but significant difference in HHD and CAD intra-group (P〈0.05). There was good positive correlations between LVRI detected by RT3DE and 2DE in NC and HHD groups (t=0.69, P〈0.01; r=0.68, P〈0.01), but no significant correlation in CAD group (r=0.30, P〉0.05). It was concluded that LVRI derived from RT3DE as a new index for evaluating left ventricular remodeling can provide more superiority to LVRI derived from 2DE.
基金supported by the National Magnetic Confinement Fusion Energy R&D Program of China(Nos.2018YFE0309100 and 2019YFE03010004)National Natural Science Foundation of China(No.51821005)。
文摘A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma.
文摘BACKGROUND Acetabular component positioning in total hip arthroplasty(THA)is of key importance to ensure satisfactory post-operative outcomes and to minimize the risk of complications.The majority of acetabular components are aligned freehand,without the use of navigation methods.Patient specific instruments(PSI)and three-dimensional(3D)printing of THA placement guides are increasingly used in primary THA to ensure optimal positioning.AIM To summarize the literature on 3D printing in THA and how they improve acetabular component alignment.METHODS PubMed was used to identify and access scientific studies reporting on different 3D printing methods used in THA.Eight studies with 236 hips in 228 patients were included.The studies could be divided into two main categories;3D printed models and 3D printed guides.RESULTS 3D printing in THA helped improve preoperative cup size planning and post-operative Harris hip scores between intervention and control groups(P=0.019,P=0.009).Otherwise,outcome measures were heterogeneous and thus difficult to compare.The overarching consensus between the studies is that the use of 3D guidance tools can assist in improving THA cup positioning and reduce the need for revision THA and the associated costs.CONCLUSION The implementation of 3D printing and PSI for primary THA can significantly improve the positioning accuracy of the acetabular cup component and reduce the number of complications caused by malpositioning.
基金Project(51208178)supported by the National Natural Science Foundation of ChinaProject(2012M520991)supported by China Postdoctoral Science Foundation
文摘A user-defined micromechanical model was developed to investigate the fracture mechanism of asphalt concrete (AC) using the discrete element method (DEM). A three-dimensional (3D) AC beam was built using the "Fish" language provided by PFC3D and was employed to simulate the three-point bending beam test at two temperature levels: -10 ℃ and 15℃. The AC beam was modeled with the consideration of the microstructural features of asphalt mixtures. Uniaxial complex modulus test and indirect tensile strength test were conducted to obtain material input parameters for numerical modeling. The 3D predictions were validated using laboratory experimental measurements of AC beams prepared by the same mixture design. Effects of mastic stiffness, cohesive and adhesive strength on AC fracture behavior were investigated using the DEM model. The results show that the 3D DEM fracture model can accurately predict the fracture patterns of asphalt concrete. The ratio of stress at interfaces to the stress in mastics increases as the mastic stiffness decreases; however, the increase in the cohesive strength or adhesive strength shows no significant influence on the tensile strength.