期刊文献+
共找到374篇文章
< 1 2 19 >
每页显示 20 50 100
A new interacting capillary bundle model on the multiphase flow in micropores of tight rocks
1
作者 Wen-Quan Deng Tian-Bo Liang +3 位作者 Wen-Zhong Wang Hao Liu Jun-Lin Wu Fu-Jian Zhou 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1099-1112,共14页
Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettabi... Surfactants are widely used in the fracturing fluid to enhance the imbibition and thus the oil recovery rate. However, current numerical models cannot capture the physics behind capillary imbibition during the wettability alteration by surfactants. Although the interacting capillary bundle(ICB) model shows potential in characterizing imbibition rates in different pores during wettability alteration, the existing ICB models neglect the influence of wettability and viscosity ratio on the imbibition behavior, making it difficult to accurately describe the oil-water imbibition behavior within the porous media. In this work,a new ICB mathematical model is established by introducing pressure balance without assuming the position of the leading front to comprehensively describe the imbibition behavior in a porous medium under different conditions, including gas-liquid spontaneous imbibition and oil-water imbibition.When the pore size distribution of a tight rock is known, this new model can predict the changes of water saturation during the displacement process in the tight rock, and also determine the imbibition rate in pores of different sizes. The water saturation profiles obtained from the new model are validated against the waterflooding simulation results from the CMG, while the imbibition rates calculated by the model are validated against the experimental observations of gas-liquid spontaneous imbibition. The good match above indicates the newly proposed model can show the water saturation profile at a macroscopic scale while capture the underlying physics of the multiphase flow in a porous medium at a microscopic scale. Simulation results obtained from this model indicate that both wettability and viscosity ratio can affect the sequence of fluid imbibition into pores of different sizes during the multiphase flow, where less-viscous wetting fluid is preferentially imbibed into larger pores while more-viscous wetting fluid tends to be imbibed into smaller pores. Furthermore, this model provides an avenue to calculate the imbibition rate in pores of different sizes during wettability alteration and capture the non-Darcy effect in micro-and nano-scale pores. 展开更多
关键词 Imbibition multiphase flow Tight rock Interacting capillary bundle model Wettability
下载PDF
Exploration of the coupled lattice Boltzmann model based on a multiphase field model:A study of the solid-liquid-gas interaction mechanism in the solidification process
2
作者 朱昶胜 王利军 +2 位作者 高梓豪 刘硕 李广召 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第3期638-648,共11页
A multiphase field model coupled with a lattice Boltzmann(PF-LBM)model is proposed to simulate the distribution mechanism of bubbles and solutes at the solid-liquid interface,the interaction between dendrites and bubb... A multiphase field model coupled with a lattice Boltzmann(PF-LBM)model is proposed to simulate the distribution mechanism of bubbles and solutes at the solid-liquid interface,the interaction between dendrites and bubbles,and the effects of different temperatures,anisotropic strengths and tilting angles on the solidified organization of the SCN-0.24wt.%butanedinitrile alloy during the solidification process.The model adopts a multiphase field model to simulate the growth of dendrites,calculates the growth motions of dendrites based on the interfacial solute equilibrium;and adopts a lattice Boltzmann model(LBM)based on the Shan-Chen multiphase flow to simulate the growth and motions of bubbles in the liquid phase,which includes the interaction between solid-liquid-gas phases.The simulation results show that during the directional growth of columnar dendrites,bubbles first precipitate out slowly at the very bottom of the dendrites,and then rise up due to the different solid-liquid densities and pressure differences.The bubbles will interact with the dendrite in the process of flow migration,such as extrusion,overflow,fusion and disappearance.In the case of wide gaps in the dendrite channels,bubbles will fuse to form larger irregular bubbles,and in the case of dense channels,bubbles will deform due to the extrusion of dendrites.In the simulated region,as the dendrites converge and diverge,the bubbles precipitate out of the dendrites by compression and diffusion,which also causes physical phenomena such as fusion and spillage of the bubbles.These results reveal the physical mechanisms of bubble nucleation,growth and kinematic evolution during solidification and interaction with dendrite growth. 展开更多
关键词 multiphase field model lattice Boltzmann model(LBM) Shan-Chen multiphase flow solidification organization
下载PDF
Experimental verification of mathematical model for multiphase flow in air-agitated seed precipitation tank 被引量:3
3
作者 陈乔平 闫红杰 +1 位作者 葛世恒 周孑民 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1680-1684,共5页
In order to check the validity of the mathematical model for analyzing the flow field in the air-agitated seed precipitation tank,a scaled down experimental apparatus was designed and the colored tracer and KCl tracer... In order to check the validity of the mathematical model for analyzing the flow field in the air-agitated seed precipitation tank,a scaled down experimental apparatus was designed and the colored tracer and KCl tracer were added in the apparatus to follow the real flow line.Virtue tracers were considered in the mathematical model and the algorithm of tracers was built.The comparison of the results between the experiment and numerical calculation shows that the time of the tracer flows out of stirring tube are 40 s in the experiment and 42 s in numerical calculated result.The transient diffusion process and the solution residence time of the numerical calculation are in good agreement with the experimental results,which indicates that the mathematical model is reliable and can be used to predict the flow field of the air-agitated seed precipitation tank. 展开更多
关键词 model experiment numerical simulation multiphase flow seed precipitation
下载PDF
A Multiphase Wellbore Flow Model for Sour Gas “Kicks” 被引量:1
4
作者 Miao He Yihang Zhang +1 位作者 Mingbiao Xu Jun Li 《Fluid Dynamics & Materials Processing》 EI 2020年第5期1031-1046,共16页
This study presents a new multiphase flow model with transient heat transfer and pressure coupling to simulate HTHP(high temperature and high pressure)sour gas“kicks”phenomena.The model is intended to support the es... This study presents a new multiphase flow model with transient heat transfer and pressure coupling to simulate HTHP(high temperature and high pressure)sour gas“kicks”phenomena.The model is intended to support the estimation of wellbore temperature and pressure when sour gas kicks occur during drilling operation.The model considers sour gas solubility,phase transition and effects of temperature and pressure on the physical parameters of drilling fluid.Experimental data for a large-diameter pipe flow are used to validate the model.The results indicate that with fluid circulation,the annulus temperature with H2S kicks is the highest,followed by CO_(2),and CH_(4) is the lowest.The phase transition point of H2S is closer to wellhead compared with CO_(2),resulting in a faster expansion rate,which is more imperceptible and dangerous.With fluid circulation,the drilling fluid density and plastic viscosity both first decrease and then increase with the increase in the well depth.The bottom hole pressure when H2S kicks is greater than that for CO_(2) with the same amount of sour gas,and the pressure difference gradually increases with the increase of H2S/CO_(2) content.In addition,a parametric sensitivity analysis has been conducted to evaluate qualitatively and rank the influential factors affecting the bottom hole temperature and pressure. 展开更多
关键词 multiphase flow model HTHP sour gas kicks phase transition
下载PDF
The Design of a Three-Dimensional Physical Modeling System for Real-Time Groundwater Flows 被引量:1
5
作者 SHI Feng ZHANG Fawang +5 位作者 CHEN Li HAN Zhantao YAO Hongchao QIAN Long CHEN Liang JIANG Chengchao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第6期2103-2103,共1页
In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-di... In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-dimensional groundwater flows,making it impossible to validate groundwater flows simulated by numerical methods with physical modeling. 展开更多
关键词 The Design of a three-dimensional Physical modeling System for Real-Time Groundwater flows
下载PDF
Exact solutions to drift-flux multiphase flow models through Lie group symmetry analysis
6
作者 B.BIRA T.R.SEKHAR 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第8期1105-1112,共8页
In the present paper, Lie group symmetry method is used to obtain some exact solutions for a hyperbolic system of partial differential equations (PDEs), which governs an isothermal no-slip drift-flux model for multi... In the present paper, Lie group symmetry method is used to obtain some exact solutions for a hyperbolic system of partial differential equations (PDEs), which governs an isothermal no-slip drift-flux model for multiphase flow problem. Those sym- metries are used for the governing system of equations to obtain infinitesimal transforma- tions, which consequently reduces the governing system of PDEs to a system of ODEs. Further, the solutions of the system of ODEs which in turn produces some exact solutions for the PDEs are presented. Finally, the evolutionary behavior of weak discontinuity is discussed. 展开更多
关键词 multiphase flow drift-flux models Lie group analysis exact solution weakdiscontinuity
下载PDF
Elliptic Flow Splitting between Particles and their Antiparticles in Au+Au Collisions from a Multiphase Transport Model
7
作者 徐振宇 刘剑利 +2 位作者 张盼盼 张景波 霍雷 《Chinese Physics Letters》 SCIE CAS CSCD 2017年第6期32-35,共4页
The elliptic flow v2, for π±, K±, p and p in Au+Au collisions at center-of-mass energies √sNN=7.7, 11.5, 14.5 and 19.6 GeV, is analyzed using a multiphase transport model. A significant difference in the ... The elliptic flow v2, for π±, K±, p and p in Au+Au collisions at center-of-mass energies √sNN=7.7, 11.5, 14.5 and 19.6 GeV, is analyzed using a multiphase transport model. A significant difference in the v2 values for p and p is observed, and the values of v2 splitting are larger compared with π+ and π-, K+ and K-. The difference increases with decreasing the center-of-mass energy. The effect of the quark coalescence mechanism in a multi-phase transport model to the value of elliptic difference △v2 between p and p- has been discussed. The simulation of Au+Au collisions at 14.5 GeV shows that the effect of hadron cascade to △v2 is not obvious, and a larger patton-scattering cross section can lead to a larger △v2. 展开更多
关键词 Elliptic flow Splitting between Particles and their Antiparticles in Au+Au Collisions from a multiphase Transport model
下载PDF
NUMERICAL INVESTIGATION OF THREE-DIMENSIONAL VISCOUS INCOMPRESSIBLE FLOWS IN DIVERGENT CURVED CHANNELS AND TURBULENT MODEL STUDY
8
作者 焦德勇 杨弘炜 +2 位作者 赵志君 苏杰先 冯国泰 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第7期639-646,共8页
In order to make the numerical calculation of viscous flows more convenient for the flows in channel with complicated profile governing equations expressed in the arbitrary curvilinear coordinates were derived by mean... In order to make the numerical calculation of viscous flows more convenient for the flows in channel with complicated profile governing equations expressed in the arbitrary curvilinear coordinates were derived by means of Favre density-weighted averaged method, and a turbulent model with effect of curvature modification was also derived. The numerical calculation of laminar and turbulent flown in divergent curved channels was carried out by means of parabolizeil computation method. The calculating results were used to analyze and investigate the aerodynamic performance of talor cascades in compressors preliminarily. 展开更多
关键词 NUMERICAL INVESTIGATION OF three-dimensional VISCOUS INCOMPRESSIBLE flowS IN DIVERGENT CURVED CHANNELS AND TURBULENT model STUDY
下载PDF
High-precision nonisothermal transient wellbore drift flow model suitable for the full flow pattern domain and full dip range 被引量:2
9
作者 Wen-Qiang Lou Da-Lin Sun +5 位作者 Xiao-Hui Sun Peng-Fei Li Ya-Xin Liu Li-Chen Guan Bao-Jiang Sun Zhi-Yuan Wang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期424-446,共23页
A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multi... A reliable multiphase flow simulator is an important tool to improve wellbore integrity and production decision-making.To develop a multiphase flow model with high adaptability and high accuracy,we first build a multiphase flow database with 3561 groups of data and developed a drift closure relationship with stable continuity and high adaptability.Second,a high-order numerical scheme with strong fault capture ability is constructed by effectively combining MUSCL technology,van Albada slope limiter and AUSMV numerical scheme.Finally,the energy equation is coupled into the AUSMV numerical scheme of the drift flow model in the form of finite difference.A transient non-isothermal wellbore multiphase flow model with wide applicability is formed by integrating the three technologies,and the effects of various factors on the calculation accuracy are studied.The accuracy of the simulator is verified by comparing the measurement results with the blowout experiment of a full-scale experimental well. 展开更多
关键词 Drift closure relation Non-isothermal model HIGH-PRECISION multiphase flow solver Wellbore pressure control
下载PDF
Uncertainty analysis of flow rate measurement for multiphase flow using CFD 被引量:9
10
作者 Joon-Hyung Kim Uk-Hee Jung +2 位作者 Sung Kim Joon-Yong Yoon Young-Seok Choi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2015年第5期698-707,共10页
The venturi meter has an advantage in its use,because it can measure flow without being much affected by the type of the measured fluid or flow conditions.Hence,it has excellent versatility and is being widely applied... The venturi meter has an advantage in its use,because it can measure flow without being much affected by the type of the measured fluid or flow conditions.Hence,it has excellent versatility and is being widely applied in many industries.The flow of a liquid containing air is a representative example of a multiphase flow and exhibits complex flow characteristics.In particular,the greater the gas volume fraction(GVF),the more inhomogeneous the flow becomes.As a result,using a venturi meter to measure the rate of a flow that has a high GVF generates an error.In this study,the cause of the error occurred in measuring the flow rate for the multiphase flow when using the venturi meter for analysis by CFD.To ensure the reliability of this study,the accuracy of the multiphase flow models for numerical analysis was verified through comparison between the calculated results of numerical analysis and the experimental data.As a result,the Grace model,which is a multiphase flow model established by an experiment with water and air,was confirmed to have the highest reliability.Finally,the characteristics of the internal flow Held about the multiphase flow analysis result generated by applying the Grace model were analyzed to find the cause of the uncertainty occurring when measuring the flow rate of the multiphase flow using the venturi meter.A phase separation phenomenon occurred due to a density difference of water and air inside the venturi,and flow inhomogeneity happened according to the flow velocity difference of each phase.It was confirmed that this flow inhomogeneity increased as the GVF increased due to the uncertainty of the flow measurement. 展开更多
关键词 multiphase flow Measurement Numerical analysis Venturi meter Gas volume fraction(GVF) Uncertainty multiphase flow model Grace model
下载PDF
Pore-scale study of the pressure-sensitive effect of sandstone and its influence on multiphase flows 被引量:4
11
作者 Jun-Jian Li Yang Liu +2 位作者 Ya-Jun Gao Bao-Yang Cheng Han-Qiao Jiang 《Petroleum Science》 SCIE CAS CSCD 2019年第2期382-395,共14页
The pressure-sensitive effect on the pore structure of sandstone was investigated using X-ray computed micro-tomography and QEMSCAN quantitative mineral analysis. In a physical simulation study, we extracted the pore ... The pressure-sensitive effect on the pore structure of sandstone was investigated using X-ray computed micro-tomography and QEMSCAN quantitative mineral analysis. In a physical simulation study, we extracted the pore network model from digital cores at different confining pressures and evaluated the effect of pressure sensitivity on the multiphase displacement process. In both the pore network model and QEMSCAN scanning, the pore structure was observed to be damaged under a high confining pressure. Due to their different scales, the pores and throats exhibited inhomogeneous changes; further, the throats exhibited a significant variation compared to that exhibited by the pores. Meanwhile, the heterogeneity of the pore structure under the two aforementioned activities was aggravated by the elastic-plastic deformation of the pore structure.The pressure-sensitive effect increased the proportion of mineral particles, such as quartz(the main component of the core skeleton), and reduced the proportion of clay minerals. The clay minerals were originally attached to the pore walls or interspersed in the pores; however, as the pressure increased, the clay minerals accumulated in the pores resulting in blockage of the pores. While simulating the multiphase displacement process, increasing the confining pressure was observed to severely restrict the flowability of oil and water. This study promises to improve the efficiency of reservoir development in terms of oil and gas exploitation. 展开更多
关键词 PRESSURE SENSITIVE - QEMSCAN MICRO-CT PORE network model multiphase flow
下载PDF
Three-dimensional Simulation of Gas/Solid Flow in Spout-fluid Beds with Kinetic Theory of Granular Flow 被引量:8
12
作者 钟文琪 章名耀 +1 位作者 金保升 袁竹林 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2006年第5期611-617,共7页
A three-dimensional Eulerian multiphase model, with closure law according to the kinetic theory of granular flow, was used to study the gas/solid flow behaviors in spout-fluid beds. The influences of the coefficient o... A three-dimensional Eulerian multiphase model, with closure law according to the kinetic theory of granular flow, was used to study the gas/solid flow behaviors in spout-fluid beds. The influences of the coefficient of restitution due to non-ideal particle collisions on the simulated results were tested. It is demonstrated that the simulated result is strongly affected by the coefficient of restitution. Comparison of simulations with experiments in a small spout-fluid bed showed that an appropriate coefficient of restitution of 0.93 was necessary to simulate the flow characteristics in an underdesigned large size of spout-fluid bed coal gasifier with diameter of lm and height of 6m. The internal jet and gas/solid flow patterns at different operating conditions were obtained. The simulations show that an optimal gas/solid flow pattern for coal gasification is found when the spouting gas flow rate is equal to the fluidizing gas flow rate and the total of them is two and a half times the minimum fluidizing gas flow rate. Besides, the radial distributions of particle velocity and gas velocity show similar tendencies; the radial distributions of particle phase pressure due to particle collisions and the particle pseudo-temperature corresponding to the macroscopic kinetic energy of the random particle motion also show similar tendencies. These indicate that both gas drag force and particle collisions dominate the movement of particles. 展开更多
关键词 gas/solid flow CFD Eulerian multiphase model kinetic theory of granular flow spout-fluid bed
下载PDF
Water model experiments of multiphase mixing in the top-blown smelting process of copper concentrate 被引量:3
13
作者 Hong-liang Zhao Pan Yin +1 位作者 Li-feng Zhang Sen Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第12期1369-1376,共8页
We constructed a 1:10 cold water experimental model by geometrically scaling down an Isa smelting furnace. The mixing processes at different liquid heights, lance diameters, lance submersion depths, and gas flow rate... We constructed a 1:10 cold water experimental model by geometrically scaling down an Isa smelting furnace. The mixing processes at different liquid heights, lance diameters, lance submersion depths, and gas flow rates were subsequently measured using the conductivity method. A new criterion was proposed to determine the mixing time. On this basis, the quasi-equations of the mixing time as a function of different parameters were established. The parameters of the top-blown smelting process were optimized using high-speed photography. An excessively high gas flow rate or excessively low liquid height would enhance the fluctuation and splashing of liquid in the bath, which is unfavorable for material mixing. Simultaneously increasing the lance diameter and the lance submersion depth would promote the mixing in the bath, thereby improving the smelting efficiency. 展开更多
关键词 copper smelting multiphase flow MIXING water modeling
下载PDF
Three-Dimensional Tidal Model and Its Application to Numerical Simulation of Water Quality in Coastal Waters 被引量:5
14
作者 Shen Yongming , Li Yucheng and Zhao Wenqian Associate Professor, Department of Civil Engineering, Dalian University of Technology, Dalian 116023 Professor, Department of Civil Engineering, Dalian University of Technology, Dalian 116023 Professor, Department of Civil Engineering, Sichuan Union University, Chengdu 610065 《China Ocean Engineering》 SCIE EI 1994年第4期425-436,共12页
The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water qu... The turbulence mechanism plays an important part in the mixing process and momentum transfer of turbulence. A three-dimensional Prandtl mixing length tidal model has been developed to simulate tidal flows and water quality. The eddy viscosities and diffusivities are computed from the Prandtl mixing length model. In order to model the water quality of an estuary or coastal area many interdependent processes need to be simulated. These may be conveniently separated into three main groups: transport and mixing processes, biochemical interaction of water quality variables and the utilization and re-cycling of nutrients by living matter. The model simulates full oxygen and nutrient balance, primary productivity and the transport, reaction mechanism and fate of pollutants over tidal time-scales. The model is applied to numerical simulation of tidal flows and water quality in Dalian Bay. The model has been calibrated against a limited data set of historical water quality observations and in general demonstrates excellent agreement with all available data. 展开更多
关键词 three-dimension tidal flows water quality ECOSYSTEM mixing length model coastal waters
下载PDF
Three-Dimensional Simulation of Hydrodynamic Mechanism of Fluidized Bed Methanation
15
作者 Xiaojia Wang Danyang Shao +2 位作者 Delu Chen Yutong Gong Fengxia An 《Journal of Renewable Materials》 EI 2023年第7期3155-3175,共21页
Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas i... Organic solid waste(OSW)contains many renewable materials.The pyrolysis and gasification of OSW can realize resource utilization,and its products can be used for methanation reaction to produce synthetic natural gas in the specific reactor.In order to understand the dynamic characteristics of the reactor,a three-dimensional numerical model has been established by the method of Computational Fluid Dynamics(CFD).Along the height of the reactor,the particle distribution in the bed becomes thinner and the mean solid volume fraction decreases from 4.18%to 0.37%.Meanwhile,the pressure fluctuation range decreased from 398.76 Pa at the entrance to a much lower value of 74.47 Pa at the exit.In this simulation,three parameters of gas inlet velocity,operating temperature and solid particle diameter are changed to explore their influences on gas-solid multiphase flow.The results show that gas velocity has a great influence on particle distribution.When the gas inlet velocity decreases from 6.51 to 1.98 m/s,the minimum height that particles can reach decreases from 169 to 100 mm.Additionally,as the operating temperature increases,the particle holdup inside the reactor changes from 0.843%to 0.700%.This indicates that the particle residence time reduces,which is not conducive to the follow-up reaction.Moreover,with the increase of particle size,the fluctuation range of the pressure at the bottom of the reactor increases,and its standard deviation increases from 55.34 to 1266.37 Pa. 展开更多
关键词 Organic solid waste methanation reactor multiphase flow three-dimensional simulation
下载PDF
A multicomponent multiphase lattice Boltzmann model with large liquid–gas density ratios for simulations of wetting phenomena 被引量:1
16
作者 张庆宇 孙东科 朱鸣芳 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第8期225-234,共10页
A multicomponent multiphase(MCMP) pseudopotential lattice Boltzmann(LB) model with large liquid–gas density ratios is proposed for simulating the wetting phenomena. In the proposed model, two layers of neighborin... A multicomponent multiphase(MCMP) pseudopotential lattice Boltzmann(LB) model with large liquid–gas density ratios is proposed for simulating the wetting phenomena. In the proposed model, two layers of neighboring nodes are adopted to calculate the fluid–fluid cohesion force with higher isotropy order. In addition, the different-time-step method is employed to calculate the processes of particle propagation and collision for the two fluid components with a large pseudoparticle mass contrast. It is found that the spurious current is remarkably reduced by employing the higher isotropy order calculation of the fluid–fluid cohesion force. The maximum spurious current appearing at the phase interfaces is evidently influenced by the magnitudes of fluid–fluid and fluid–solid interaction strengths, but weakly affected by the time step ratio.The density ratio analyses show that the liquid–gas density ratio is dependent on both the fluid–fluid interaction strength and the time step ratio. For the liquid–gas flow simulations without solid phase, the maximum liquid–gas density ratio achieved by the present model is higher than 1000:1. However, the obtainable maximum liquid–gas density ratio in the solid–liquid–gas system is lower. Wetting phenomena of droplets contacting smooth/rough solid surfaces and the dynamic process of liquid movement in a capillary tube are simulated to validate the proposed model in different solid–liquid–gas coexisting systems. It is shown that the simulated intrinsic contact angles of droplets on smooth surfaces are in good agreement with those predicted by the constructed LB formula that is related to Young's equation. The apparent contact angles of droplets on rough surfaces compare reasonably well with the predictions of Cassie's law. For the simulation of liquid movement in a capillary tube, the linear relation between the liquid–gas interface position and simulation time is observed, which is identical to the analytical prediction. The simulation results regarding the wetting phenomena of droplets on smooth/rough surfaces and the dynamic process of liquid movement in the capillary tube demonstrate the quantitative capability of the proposed model. 展开更多
关键词 multicomponent multiphase lattice Boltzmann model large density ratio contact angle capillary flow
下载PDF
A COUPLED MODEL FOR MUILTIPHASE FLUID FLOW AND SEDIMENTATION DEFORMATION IN OIL RESERVOIR AND ITS NUMERICAL SIMULATION 被引量:3
17
作者 冉启全 顾小芸 李士伦 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 1997年第3期264-272,共9页
A mathematical model for coupled multiphase fluid flow and sedi- mentation deformation is developed based on fluid-solid interaction mechanism.A finite difference-finite element numerical approach is presented.The res... A mathematical model for coupled multiphase fluid flow and sedi- mentation deformation is developed based on fluid-solid interaction mechanism.A finite difference-finite element numerical approach is presented.The results of an example show that the fluid-solid coupled effect has great influence on multiphase fluid flow and reservoir recovery performances,and the coupled model has practical significance for oilfield development. 展开更多
关键词 RESERVOIR multiphase flow solid deformation coupled model numerical simulation
下载PDF
An adaptive neuro-fuzzy inference system white-box model for real-time multiphase flowing bottom-hole pressure prediction in wellbores
18
作者 Chibuzo Cosmas Nwanwe Ugochukwu Ilozurike Duru 《Petroleum》 EI CSCD 2023年第4期629-646,共18页
The majority of published empirical correlations and mechanistic models are unable to provide accurate flowing bottom-hole pressure(FBHP)predictions when real-time field well data are used.This is because the empirica... The majority of published empirical correlations and mechanistic models are unable to provide accurate flowing bottom-hole pressure(FBHP)predictions when real-time field well data are used.This is because the empirical correlations and the empirical closure correlations for the mechanistic models were developed with experimental datasets.In addition,most machine learning(ML)FBHP prediction models were constructed with real-time well data points and published without any visible mathematical equation.This makes it difficult for other readers to use these ML models since the datasets used in their development are not open-source.This study presents a white-box adaptive neuro-fuzzy inference system(ANFIS)model for real-time prediction of multiphase FBHP in wellbores.1001 real well data points and 1001 normalized well data points were used in constructing twenty-eight different Takagi eSugeno fuzzy inference systems(FIS)structures.The dataset was divided into two sets;80%for training and 20%for testing.Statistical performance analysis showed that a FIS with a 0.3 range of influence and trained with a normalized dataset achieved the best FBHP prediction performance.The optimal ANFIS black-box model was then translated into the ANFIS white-box model with the Gaussian input and the linear output membership functions and the extracted tuned premise and consequence parameter sets.Trend analysis revealed that the novel ANFIS model correctly simulates the anticipated effect of input parameters on FBHP.In addition,graphical and statistical error analyses revealed that the novel ANFIS model performed better than published mechanistic models,empirical correlations,and machine learning models.New training datasets covering wider input parameter ranges should be added to the original training dataset to improve the model's range of applicability and accuracy. 展开更多
关键词 Machine learning models Empirical correlations Mechanistic models multiphase flowing bottom-hole pressure Adaptive neuro-fuzzy inference system White-box model
原文传递
履齿结构对深海沉积物扰动分析
19
作者 胡琼 王洋洋 +1 位作者 欧雨佳 朱静妍 《哈尔滨工程大学学报》 EI CAS CSCD 北大核心 2024年第6期1127-1134,共8页
为探究集矿车在行进过程中履带运动对深海沉积物的扰动机理,并建立适用于机械结构与沉积物作用的仿真模型,结合水槽实验和模拟分析,设定对照试验,研究机械结构运动对沉积物的扰动作用和羽状流扩散现象。实验与仿真结果表明:偏置一字形... 为探究集矿车在行进过程中履带运动对深海沉积物的扰动机理,并建立适用于机械结构与沉积物作用的仿真模型,结合水槽实验和模拟分析,设定对照试验,研究机械结构运动对沉积物的扰动作用和羽状流扩散现象。实验与仿真结果表明:偏置一字形履齿低扰动性能较好,扰动最大速度在1.5 m/s以下;扰动源的下陷深度和转速对水槽中的浊度变化有显著影响,浊度计最大和最小测量值为4 381.3 mg/L和3 073.3 mg/L,相差29.9%,峰值时间相差超过50%。搭建欧拉多相流模型,设定参数和边界条件,仿真与试验结果接近,可用于后续开展小范围内的机械扰动研究。 展开更多
关键词 深海采矿 履齿 沉积物 扰动 水槽实验 欧拉多相流模型 浊度 数值仿真
下载PDF
蚬子外壳仿生表面减阻结构的设计与分析
20
作者 林盛 宋世奇 《大连交通大学学报》 CAS 2024年第1期96-100,共5页
受天然生物蚬子在泥沙环境中优异的运动能力的启发,提出了仿生蚬子表面形貌减阻方法,并根据其外壳表面形貌特征的显微图像设计了仿生表面减阻结构,利用CFD数值模拟方法中的多相流Mixture模型对设计的3种仿生表面结构进行横向仿真模拟并... 受天然生物蚬子在泥沙环境中优异的运动能力的启发,提出了仿生蚬子表面形貌减阻方法,并根据其外壳表面形貌特征的显微图像设计了仿生表面减阻结构,利用CFD数值模拟方法中的多相流Mixture模型对设计的3种仿生表面结构进行横向仿真模拟并与光滑表面结构进行减阻效果对比。结果表明,在不同的两相流流速下,3种仿生表面结构在横向模拟中都具有一定的减阻特性,且以棱纹结节表面结构的减阻性能最佳。 展开更多
关键词 仿生表面减阻结构 多相流 数值模拟 Mixture模型
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部