期刊文献+
共找到20篇文章
< 1 >
每页显示 20 50 100
Numerical Investigation of Combined Production of Natural Gas Hydrate and Conventional Gas
1
作者 Hongzhi Xu Jian Wang +3 位作者 Shuxia Li Fengrui Zhao Chengwen Wang Yang Guo 《Fluid Dynamics & Materials Processing》 EI 2024年第3期505-523,共19页
Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effecti... Natural gas hydrate(NGH)is generally produced and accumulated together with the underlying conventional gas.Therefore,optimizing the production technology of these two gases should be seen as a relevant way to effectively reduce the exploitation cost of the gas hydrate.In this study,three types of models accounting for the coexistence of these gases are considered.Type A considers the upper hydrate-bearing layer(HBL)adjacent to the lower conventional gas layer(CGL);with the Type B a permeable interlayer exists between the upper HBL and the lower CGL;with the type C there is an impermeable interlayer between the upper HBL and the lower CGL.The production performances associated with the above three models are calculated under different conditions,including only a depressurized HBL(only HBL DP);only a depressurized CGL(only CGL DP);and both the HBL and the CGL being depressurized(HBL+CGL DP).The results show that for Type A and Type B coexistence accumulation models,when only HBL or CGL is depressurized,the gas from the other layer will flow into the production layer due to the pressure difference between the two layers.In the coexistence accumulation model of type C,the cumulative gas production is much lower than that of Type A and Type B,regardless of whether only HBL DP,only CGL DP,or HBL+CGL DP are considered.This indicates that the impermeable interlayer restricts the cross-flow of gas between HBL and CGL.For three different coexistence accumulation models,CGL DP has the largest gas-to-water ratio. 展开更多
关键词 natural gas hydrate conventional gas coexistence accumulation DEPRESSURIZATION combined production
下载PDF
Origin and Accumulation of Natural Gases in the Upper Paleozoic Strata of the Ordos Basin in Central China 被引量:5
2
作者 ZHU Yangming WANG Jibao +1 位作者 LIU Xinse ZHANG Wenzheng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第1期146-157,共12页
The natural gases in the Upper Paleozoic strata of the Ordos basin are characterized by relatively heavy C isotope of gaseous alkanes with δ^13C1 and δ^13C2 values ranging mainly from -35‰ to -30‰ and -27‰ to -22... The natural gases in the Upper Paleozoic strata of the Ordos basin are characterized by relatively heavy C isotope of gaseous alkanes with δ^13C1 and δ^13C2 values ranging mainly from -35‰ to -30‰ and -27‰ to -22‰, respectively, high δ^13C excursions (round 10) between ethane and methane and predominant methane in hydrocarbon gases with most C1/(C1-C5) ratios in excess of 0.95, suggesting an origin of coal-derived gas. The gases exhibit different carbon isotopic profiles for C1-C4 alkanes with those of the natural gases found in the Lower Paleozoic of this basin, and believed to be originated from Carboniferous-Permian coal measures. The occurrence of regionally pervasive gas accumulation is distinct in the gently southward-dipping Shanbei slope of the central basin. It is noted that molecular and isotopic composition changes of the gases in various gas reservoirs are associated with the thermal maturities of gas source rocks. The abundances and j13C values of methane generally decline northwards and from the basin center to its margins, and the effects of hydrocarbon migration on compositional modification seem insignificant. However, C isotopes of autogenetic calcites in the vertical and lateral section of reservoirs show a regular variation, and are as a whole depleted upwards and towards basin margins. Combination with gas maturity gradient, the analysis could be considered to be a useful tool for gas migration. 展开更多
关键词 accumulation autogenetic calcite isotopic composition natural gas Ordos basin upperPaleozoic
下载PDF
A Study of the Migration and Accumulation Efficiency and the Genesis of Hydrocarbon Natural Gas in the Xujiaweizi Fault Depression 被引量:5
3
作者 LI Jijun LU Shuangfang +2 位作者 XUE Haitao HUO Qiuli XU Qingxia 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2008年第3期629-635,共7页
In order to investigate the migration and accumulation efficiency of hydrocarbon natural gas in the Xujiaweizi fault depression, and to provide new evidence for the classification of its genesis, a source rock pyrolys... In order to investigate the migration and accumulation efficiency of hydrocarbon natural gas in the Xujiaweizi fault depression, and to provide new evidence for the classification of its genesis, a source rock pyrolysis experiment in a closed system was designed and carried out. Based on this, kinetic models for describing gas generation from organic matter and carbon isotope fractionation during this process were established, calibrated and then extrapolated to geologic conditions by combining the thermal history data of the Xushen-1 Well. The results indicate that the coal measures in the Xujiaweizi fault depression are typical "high-efficiency gas sources", the natural gas generated from them has a high migration and accumulation efficiency, and consequently a large-scale natural gas accumulation occurred in the area. The highly/over matured coal measures in the Xujiaweizi fault depression generate coaliferous gas with a high δ^13C1 value (〉 -20‰) at the late stage, making the carbon isotope composition of organic alkane gases abnormally heavy. In addition, the mixing and dissipation through the caprock of natural gas can result in the negative carbon isotope sequence (δ^13C1 〉δ^13C2 〉δ^13C3 〉δ^13C4) of organic alkane gases, and the dissipation can also lead to the abnormally heavy carbon isotope composition of organic alkane gases. As for the discovery of inorganic nonhydrocarbon gas reservoirs, it can only serve as an accessorial evidence rather than a direct evidence that the hydrocarbon gas is inorganic. As a result, it needs stronger evidence to classify the hydrocarbon natural gas in the Xujiaweizi fault depression as inorganic gas. 展开更多
关键词 Xujiaweizi fault depression hydrocarbon natural gas migration and accumulation efficiency GENESIS carbon isotope fractionation KINETICS
下载PDF
Development of Diapirs and Accumulation of Natural Gases in Yinggehai Basin 被引量:1
4
作者 Gong Zaisheng China National Offshore Oil Corporation, Beijing 100029 Yang Jiaming Institute of Petroleum Exploration and Development, China National Offshore Oil Corporation, Gaobeidian 074010 Hu Jianwu Hao Fang Faculty of Earth Resources, 《Journal of China University of Geosciences》 SCIE CSCD 2001年第2期127-131,共5页
Overpressure developed throughout most of the Yinggehai basin. The burial depth to top overpressure varied from about 1 600 m to 4 500 m, with the shallowest top overpressure occurring in the depocenter. The main caus... Overpressure developed throughout most of the Yinggehai basin. The burial depth to top overpressure varied from about 1 600 m to 4 500 m, with the shallowest top overpressure occurring in the depocenter. The main cause of the overpressure was disequilibrium compaction resulting from rapid sedimentation of fine grained sediments. The overpressure was strengthened by the retention of fluids including gases due to lack of faults before diapir development. The diapirism in the Yinggehai basin was a combined result of the strong overpressure and the tensile stress field caused by the right lateral slip of the boundary fault. The diapirism, a product of the movement of overpressured fluids and plastic shales, shaped the vertical conduits from source to traps that would be absent without overpressured fluid release. Natural gas accumulation in traps in the diapir structure zones was also intermittent, which can be inferred from the inter reservoir compositional heterogeneity, transient thermal effect of fluid flow and migration fractionation. 展开更多
关键词 Yinggehai basin OVERPRESSURE DIAPIRISM episodic natural gas accumulation.
下载PDF
Accumulation conditions and exploration directions of Ordovician lower assemblage natural gas, Ordos Basin, NW China
5
作者 XU Wanglin LI Jianzhong +9 位作者 LIU Xinshe LI Ningxi ZHANG Caili ZHANG Yueqiao FU Ling BAI Ying HUANG Zhengliang GAO Jianrong SUN Yuanshi SONG Wei 《Petroleum Exploration and Development》 CSCD 2021年第3期641-654,共14页
Based on drilling cores, well logging and seismic data, source rocks and reservoirs are evaluated;and the natural gas genesis is identified through the analysis of natural gas isotopes, components and fluid inclusions... Based on drilling cores, well logging and seismic data, source rocks and reservoirs are evaluated;and the natural gas genesis is identified through the analysis of natural gas isotopes, components and fluid inclusions, to study the gas accumulation conditions of the gypsum salt rock related strata of the Ordovician lower assemblage in Ordos Basin.(1) The natural gas from Ordovician lower assemblage is high thermal evolution dry gas from marine source rock, characterized by relatively light δ^(13)C value of methane and heavy δ^(13)C value of ethane. The natural gas is identified as gas cracking from crude oil according to component analysis. Thermochemical sulfate reduction(TSR) reaction has happened between the hydrocarbon fluid and sulfate as sulfur crystals are found in the cores, hydrogen sulfide is found in the natural gas, and hydrocarbon and hydrogen sulfide fluid inclusions are widespread in secondary minerals.(2) Around the gypsum-salt lows, argillaceous rocks are extensive in the Ordovician lower assemblage, reaching a cumulative thickness of 20–80 m. The effective source rocks include argillaceous rock rich in organic laminae, algal clump and algal dolomite. Analysis shows that the source rocks have a dominant TOC of 0.1%–0.5%, 0.31% on average and 3.24% at maximum. The source rocks have an average TOC of 0.58% after recovered through organic acid salt method, indicating the source rocks have high hydrocarbon supply potential.(3) In the sedimentary period, the palaeo-uplift controlled the distribution of reservoirs. The inherited secondary palaeo-uplift in Wushenqi–Jingbian east of the central palaeo-uplift and the low uplift formed by thick salt rocks near Shenmu–Zizhou area controlled the distribution of penecontemporaneous grain shoal dolomite reservoirs. The salinization sedimentary environment of gypsum salt rock can promote the development of reservoir. There are three types of dolomite reservoirs, the one with intercrystalline pore, with dissolution pore, and with fracture;intercrystalline and dissolution pores are main reservoir spaces.(4) There are two types of cap rocks, namely tight carbonate rock and gypsum-salt rock, constituting two types of source-reservoir-cap assemblages respectively. The general accumulation model is characterized by marine source rock supplying hydrocarbon, beach facies limy dolomite reservoir, small fractures acting as migration pathways, and structural-lithologic traps as accumulation zones.(5) The third and fourth members of Majiagou Formation are major target layers in the lower assemblage. The Wushengqi–Jingbian secondary paleo-uplift area and Shenmu–Zizhou low uplift are dolomite and limestone transition zone, there develops tight limestone to the east of the uplift zone, which is conducive to the formation of gas reservoir sealed by lithology in the updip. Two risk exploration wells drilled recently have encouraging results, indicating that the two uplift zones are important prospects. 展开更多
关键词 Ordos Basin Ordovician lower assemblage gypsum-salt rock marine source rock dolomite reservoir natural gas accumulation
下载PDF
Geological conditions of natural gas accumulation and new exploration areas in the Mesoproterozoic to Lower Paleozoic of Ordos Basin, NW China
6
作者 DU Jinhu LI Xiangbo +6 位作者 BAO Hongping XU Wanglin WANG Yating HUANG Junping WANG Hongbo WANYAN Rong WANG Jing 《Petroleum Exploration and Development》 2019年第5期866-882,共17页
Based on field outcrop investigation,interpretation and analysis of drilling and seismic data,and consulting on a large number of previous research results,the characteristics of ancient marine hydrocarbon source rock... Based on field outcrop investigation,interpretation and analysis of drilling and seismic data,and consulting on a large number of previous research results,the characteristics of ancient marine hydrocarbon source rocks,favorable reservoir facies belts,hydrocarbon migration direction and reservoir-forming law in the Ordos Basin have been studied from the viewpoints of North China Craton breakup and Qilian-Qinling oceanic basin opening and closing.Four main results are obtained:(1)Controlled by deep-water shelf-rift,there are three suites of source rocks in the Ordos Basin and its periphery:Mesoproterozoic,Lower Cambrian and Middle-Upper Ordovician.(2)Controlled by littoral environment,paleo-uplift and platform margin,four types of reservoirs are developed in the area:Mesoproterozoic-Lower Cambrian littoral shallow sea quartz sandstone,Middle-Upper Cambrian–Ordovician weathering crust and dolomitized reservoir,and Ordovician L-shape platform margin reef and beach bodies.(3)Reservoir-forming assemblages vary greatly in the study area,with"upper generation and lower storage"as the main pattern in the platform,followed by"self-generation and self-storage".There are both"upper generation and lower storage"and"self-generation and self-storage"in the platform margin zone.In addition,in the case of communication between deep-large faults and the Changchengian system paleo-rift trough,there may also exist a"lower generation and upper reservoir"combination between the platform and the margin.(4)There are four new exploration fields including Qingyang paleo-uplift pre-Carboniferous weathering crust,L-shape platform margin zone in southwestern margin of the basin,Ordovician subsalt assemblage in central and eastern parts of the basin,and Mesoproterozoic–Cambrian.Among them,pre-Carboniferous weathering crust and L-shape platform margin facies zone are more realistic replacement areas,and Ordovician subsalt assemblage and the Proterozoic-Cambrian have certain potential and are worth exploring. 展开更多
关键词 natural gas exploration area hydrocarbon accumulation geological conditions MESOPROTEROZOIC NEOPROTEROZOIC Lower PALEOZOIC ORDOS Basin
下载PDF
Superimposed hydrocarbon accumulation through multi-source and multi-stage evolution in the Cambrian Xixiangchi Group of eastern Sichuan Basin:A case study of the Pingqiao gas-bearing anticline
7
作者 Ziming Sun 《Energy Geoscience》 2023年第1期131-142,共12页
The Xixiangchi Group in eastern Sichuan Basin has great potential for natural gas exploration.However,there is a lack of in-depth studies of the hydrocarbon sources and the formation and evolution of gas reservoirs in... The Xixiangchi Group in eastern Sichuan Basin has great potential for natural gas exploration.However,there is a lack of in-depth studies of the hydrocarbon sources and the formation and evolution of gas reservoirs in this Group.Systematic investigation about the gas reservoir in Pingqiao anticline was consequently carried out in terms of characteristics of reservoir bitumen,the geochemical characteristics of natural gas,diagenetic minerals,and fluid inclusions.Based on this,combined with the reconstruction of the burial history,thermal evolution history and uplifting history of strata,and analysis of the regional tectonic settings,the hydrocarbon sources were identified and the formation and evolutionary processes of the gas reservoirs in Xixiangchi Group was revealed in this study.It was shown that the gas reservoirs have mixed gas sources from the shale source rocks in the Lower Cambrian Qiongzhusi Formation and in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation,and experienced several evolutionary stages,including the paleo-oil reservoir stage from the Late Siliurian to the Middle Permian,the paleo-gas reservoir stage from the Late Permian to the Early Cretaceous,and the superimposed accumulation and mixed-source gas reservoir stage since the Late Cretaceous.The mixed-source gas reservoir is formed by the adjustment of the Xixiangchi Group paleo-gas reservoirs and depressurization of the overpressure Wufeng-Longmaxi shale gas reservoirs and the charging of gas into the Xixiangchi Group reservoir of the Pingqiao anticline since the Late Cretaceous,which show obvious superimposed accumulation characteristics.There are different accumulation patterns in different geological periods.The accumulation pattern of the“old source-young reservoir”(i.e.hydrocarbons generated from older source rocks accumulating in younger reservoirs)dominates before the Late Cretaceous,and that of“juxtaposed young source-old reservoir”(i.e.hydrocarbons generated from younger source rocks accumulating in juxtaposed older reservoirs)dominates after the Early Cretaceous.Moreover,faults acted as critical vertical pathways for hydrocarbon migration during the evolution of the Xixiangchi Group gas reservoirs.This model provides new insights and theoretical basis for evaluation and mapping of the Xixiangchi Group play fairway in eastern Sichuan Basin. 展开更多
关键词 Superimposed accumulation model natural gas Xixiangchi group CAMBRIAN Eastern Sichuan basin
下载PDF
Thermodynamic Modeling of Fluid-Bearing Natural Gas Inclusions for Geothermometer and Geobarometer of Overpressured Environments in Qiongdongnan Basin, South China Sea 被引量:7
8
作者 Chen Honghan Yao Shuzhen Wang Jiahao Li Chunquan Institute of Resources, China University of Geosciences, Wuhan 430074 《Journal of China University of Geosciences》 SCIE CSCD 2002年第3期240-247,共8页
It is a very difficult problem to directly determine fluid pressure during hydrocarbon migration and accumulation in sedimentary basins. pVt modeling of coupling hydrocarbon fluid inclusion of its coeval aqueous fluid... It is a very difficult problem to directly determine fluid pressure during hydrocarbon migration and accumulation in sedimentary basins. pVt modeling of coupling hydrocarbon fluid inclusion of its coeval aqueous fluid inclusion provides a powerful tool for establishing the relationship of formation pressure evolution with time. Homogenization temperature of fluid inclusion can routinely be measured under microthermometric microscopy. Crushing technique has been employed to obtain the composition of fluid inclusions, and the commercial software VTFLINC easily and rapidly completes the construction of p t phase diagram. The minimum trapping pressure of hydrocarbon fluid inclusion would be then determined in the p t space. In this paper, three samples of YC21 1 1 and YC21 1 4 wells at YC21 1 structural closure, Qiongdongnan basin, South China Sea, were selected for the pVt modeling practice, and the formation pressure coefficient (equals to fluid pressure/hydrostatic pressure) changing trend with time has primarily been established. The modeling results also indicate that the reservoirs of Lingshui and Yacheng formations in YC21 1 structure are within a very high potential system and would have undergone a discharging of thermal fluids through top seal rupture, which depicts that there is a very high risk for natural gas exploration in this area. 展开更多
关键词 hydrocarbon FLUID inclusion pVt modeling natural gas migration and accumulation Qiongdongnan basin South China Sea.
下载PDF
Distribution Characteristics and Accumulation Model for the Coal-formed Gas Generated from Permo-Carboniferous Coal Measures in Bohai Bay Basin, China: A Review 被引量:4
9
作者 JIANG Youlu HU Hongjin +1 位作者 Jon GLUYAS ZHAO Kai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第6期1869-1884,共16页
Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin,offshore eastern China.However,the proven gas r... Coal-formed gas generated from the Permo-Carboniferous coal measures has become one of the most important targets for deep hydrocarbon exploration in the Bohai Bay Basin,offshore eastern China.However,the proven gas reserves from this source rock remain low to date,and the distribution characteristics and accumulation model for the coal-formed gas are not clear.Here we review the coal-formed gas deposits formed from the Permo-Carboniferous coal measures in the Bohai Bay Basin.The accumulations are scattered,and dominated by middle-small sized gas fields,of which the proven reserves ranging from 0.002 to 149.4×108 m3 with an average of 44.30×108 m3 and a mid-point of 8.16×108 m3.The commercially valuable gas fields are mainly found in the central and southern parts of the basin.Vertically,the coal-formed gas is accumulated at multiple stratigraphic levels from Paleogene to Archaeozoic,among which the Paleogene and PermoCarboniferous are the main reservoir strata.According to the transporting pathway,filling mechanism and the relationship between source rocks and reservoir,the coal-formed gas accumulation model can be defined into three types:"Upward migrated,fault transported gas"accumulation model,"Laterally migrated,sandbody transported gas"accumulation model,and"Downward migrated,sub-source,fracture transported gas"accumulation model.Source rock distribution,thermal evolution and hydrocarbon generation capacity are the fundamental controlling factors for the macro distribution and enrichment of the coal-formed gas.The fault activity and the configuration of fault and caprock control the vertical enrichment pattern. 展开更多
关键词 distribution characteristics of natural gas accumulation model coal-formed gas Permo-Carboniferous coal measures Bohai Bay Basin
下载PDF
Two highly efficient accumulation models of large gas fields in China 被引量:2
10
作者 Wang Hongjun Bian Congsheng +2 位作者 Liu Guangdi Sun Mingliang Li Yongxin 《Petroleum Science》 SCIE CAS CSCD 2014年第1期28-38,共11页
Based on reserve abundance,large gas fields in China can be divided into two types:type one of high abundance large gas fields,dominated by structural gas reservoirs; type two of low abundance large gas fields,domina... Based on reserve abundance,large gas fields in China can be divided into two types:type one of high abundance large gas fields,dominated by structural gas reservoirs; type two of low abundance large gas fields,dominated by stratigraphic and lithologic gas reservoirs.The formation of these two types of large gas fields is related to the highly efficient accumulation of natural gas.The accumulation of high abundance gas fields is dependent on the rapid maturation of the source kitchen and huge residual pressure difference between the gas source kitchen and reservoir,which is the strong driving force for natural gas migration to traps.Whereas the accumulation of low abundance gas fields is more complicated,involving both volume flow charge during the burial stage and diffusion flow charge during the uplift stage,which results in large area accumulation and preservation of natural gas in low porosity and low permeability reservoirs.This conclusion should assist gas exploration in different geological settings. 展开更多
关键词 natural gas gas source kitchen highly efficient accumulation large gas field reserve abundance resource potential
下载PDF
Large-scale gas accumulation mechanisms and reservoir-forming geological effects in sandstones of Central and Western China 被引量:1
11
作者 LI Wei WANG Xueke +3 位作者 ZHANG Benjian CHEN Zhuxin PEI Senqi YU Zhichao 《Petroleum Exploration and Development》 2020年第4期714-725,共12页
Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of nat... Large-scale gas accumulation areas in large oil-gas basins in central and Western China have multiple special accumulation mechanisms and different accumulation effects.Based on the geological theory and method of natural gas reservoir formation,this study examined the regional geological and structural background,formation burial evolution,basic characteristics of gas reservoirs,and fluid geology and geochemistry of typical petroliferous basins.The results show that the geological processes such as structural pumping,mudstone water absorption,water-soluble gas degasification and fluid sequestration caused by uplift and denudation since Himalayan stage all can form large-scale gas accumulation and different geological effects of gas accumulation.For example,the large-scale structural pumping effect and fluid sequestration effect are conducive to the occurrence of regional ultra-high pressure fluid and the formation of large-scale ultra-high pressure gas field;mudstone water absorption effect in the formation with low thickness ratio of sandstone to formation is conducive to the development of regional low-pressure and water free gas reservoir;the water-soluble gas degasification effect in large-scale thick sandstone can not only form large-scale natural gas accumulation;moreover,the degasification of water-soluble gas produced by the lateral migration of formation water will produce regional and regular isotopic fractionation effect of natural gas,that is,the farther the migration distance of water-soluble gas is,the heavier the carbon isotopic composition of methane formed by the accumulation. 展开更多
关键词 Central and Western China basins large-scale natural gas accumulation mechanism structural pumping effect mudstone water absorption effect water-soluble gas degasification effect fluid sequestration effect natural gas reservoir formation
下载PDF
Different Hydrocarbon Accumulation Histories in the Kelasu-Yiqikelike Structural Belt of the Kuqa Foreland Basin 被引量:9
12
作者 WANG Zhaoming LONG Huashan 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2010年第5期1195-1208,共14页
The Kuqa foreland basin is an important petroliferous basin where gas predominates. The Kela-2 large natural gas reservoir and the Yinan-2, Dabei-1, Tuzi and Dina-11 gas reservoirs have been discovered in the basin up... The Kuqa foreland basin is an important petroliferous basin where gas predominates. The Kela-2 large natural gas reservoir and the Yinan-2, Dabei-1, Tuzi and Dina-11 gas reservoirs have been discovered in the basin up to the present. Natural gases in the Kelasu district and the Yinan district are generated from different source rocks indicated by methane and ethane carbon isotopes. The former is derived from both Jurassic and Triassic source rocks, while the latter is mainly from the Jurassic. Based on its multistage evolution and superposition and the intense tectonic transformation in the basin, the hydrocarbon charging history can be divided into the early and middle Himalayan hydrocarbon accumulation and the late Himalayan redistribution and re-enrichment. The heavier carbon isotope composition and the high natural gas ratio of C1/C1-4 indicate that the accumulated natural gas in the early Himalayan stage is destroyed and the present trapped natural gas was charged mainly in the middle and late Himalayan stages. Comparison and contrast of the oils produced in the Kelasu and Yinan regions indicate the hydrocarbon charging histories in the above two regions are complex and should be characterized by multistage hydrocarbon migration and accumulation. 展开更多
关键词 natural gas geochemistry natural gas migration and accumulation Kuqa depression
下载PDF
Buoyance-driven hydrocarbon accumulation depth and its implication for unconventional resource prediction 被引量:12
13
作者 Xiongqi Pang Chengzao Jia +6 位作者 Wenyang Wang Zhangxin Chen Maowen Li Fujie Jiang Tao Hu Ke Wang Yingxun Wang 《Geoscience Frontiers》 SCIE CAS CSCD 2021年第4期93-109,共17页
The discovery of unconventional hydrocarbon resources since the late 20th century changed geologists’understanding of hydrocarbon migration and accumulations and provides a solution to energy shortage.In 2016,unconve... The discovery of unconventional hydrocarbon resources since the late 20th century changed geologists’understanding of hydrocarbon migration and accumulations and provides a solution to energy shortage.In 2016,unconventional oil production in the USA accounted for 41%of the total oil production;and unconventional natural gas production in China accounted for 35%of total gas production,showing strong growth momentum of unconventional hydrocarbons explorations.Unconventional hydrocarbons generally coexist with conventional petroleum resources;they sometimes distribute in a separate system,not coexisting with a conventional system.Identification and prediction of unconventional resources and their potentials are prominent challenges for geologists.This study analyzed the results of 12,237 drilling wells in six representative petroliferous basins in China and studied the correlations and differences between conventional and unconventional hydrocarbons by comparing their geological features.Migration and accumulation of conventional hydrocarbon are caused dominantly by buoyance.Wepropose a concept of buoyance-driven hydrocarbon accumulation depth to describe the deepest hydrocarbon accumulation depth driven dominantly by buoyance;beyond this depth the buoyance becomes unimportant for hydrocarbon accumulation.We found that the buoyance-driven hydrocarbon accumulation depth in petroliferous basins controls the different oil/gas reservoirs distribution and resource potentials.Hydrocarbon migration and accumulations above this depth is dominated by buoyancy,forming conventional reservoirs in traps with high porosity and permeability,while hydrocarbon migration and accumulation below this depth is dominated by non-buoyancy forces(mainly refers to capillary force,hydrocarbon volumeexpansion force,etc.),forming unconventional reservoirs in tight layers.The buoyance-driven hydrocarbon accumulation depths in six basins in China range from 1200mto 4200 m,which become shallowerwith increasing geothermal gradient,decreasing particle size of sandstone reservoir layers,or an uplift in the whole petroliferous basin.The predicted unconventional resource potential belowthe buoyance-driven hydrocarbon accumulation depth in six basins in China is more than 15.71×10^(9) t oil equivalent,among them 4.71×10^(9) t reserves have been proved.Worldwide,94%of 52,926 oil and gas reservoirs in 1186 basins are conventional reservoirs and only 6%of them are unconventional reservoirs.These 94%conventional reservoirs show promising exploration prospects in the deep area below buoyance-driven hydrocarbon accumulation depth. 展开更多
关键词 nature energy Fossil energy Oil and gas resources Conventional hydrocarbon reservoirs Unconventional hydrocarbon reservoirs Buoyance-driven hydrocarbon accumulation DEPTH
下载PDF
Migration and accumulation of natural gas in Kela-2 gas field 被引量:16
14
作者 WANG Zhaoming WANG Tingdong +3 位作者 XIAO Zhongyao XU Zhiming LI Mei LIN Feng 《Chinese Science Bulletin》 SCIE EI CAS 2002年第S1期107-112,共6页
With the guidance of petroleum system theory,the dynamic filling history of natural gas in the Kela-2 gasfield is analyzed by using a large suite of oil and gas geo-chemistry evidence in combination with the tectonic ... With the guidance of petroleum system theory,the dynamic filling history of natural gas in the Kela-2 gasfield is analyzed by using a large suite of oil and gas geo-chemistry evidence in combination with the tectonic evolu-tion history and reservoir evolution history. It concludes thatthe Kela-2 gas field was formed by capturing the gas gener-ated during the main gas generation period, while the latekerogen cracking gas contributed a little to the gas field. Itsuggests that the gas generated during the main gas genera-tion accumulated in the early-formed wide-gentle anticline,which is the necessary condition for natural gas to re-migrateand enrich late to form the large-scale gas reservoir. Thenewest research shows that the filling history of gas in theDabei-1, Yinan-2, Tuziluoke and Dina-2 gas fields was re-lated with the natural gas accumulation in the early wide-gentle anticline as well as late re-migration and enrichmentof natural gas. 展开更多
关键词 Kela-2 gas field migration and accumulation of natural gas carbon ISOTOPE gas RESERVOIR geochemistry.
原文传递
Abnormal overpressure distribution and natural gas accumulation in foreland basins, Western China 被引量:3
15
作者 SONG Yan XIA Xinyu +2 位作者 HONG Feng QIN Shengfei FU Guoyou 《Chinese Science Bulletin》 SCIE EI CAS 2002年第S1期71-77,共7页
Abnormal overpressure occurs in the forelandbasins of Kuqa, South Junggar and West Sichuan in China.The pressure coefficients are high. Overpressure exists inwide areas and various strata. The layers of overpressureha... Abnormal overpressure occurs in the forelandbasins of Kuqa, South Junggar and West Sichuan in China.The pressure coefficients are high. Overpressure exists inwide areas and various strata. The layers of overpressurehave a very close relationship with lithology, and the area ofoverpressure is controlled by the piedmont depression. Themechanisms of overpressure formation in the Kuqa andSouth Junggar Depression include disequilibrium compac-tion and tectonic compression; the importance of these twofactors varies in different basins and in different stages of thesame basin. Different models of gas accumulation are estab-lished to explain the relationship between overpressure dis-tribution and gas pool formation, and the influence of over-pressure on the gas pools. These models include: (i) theviolent tectonic movement leads to the pool formation inoverpressure belt (Kela-2 gas field in Kuqa); (ii) the pres-sure releases at shallow part and the gas pool forms in latetime (Hutubi gas field in southern Junggar Basin); (iii)through the pressure transfer the gas migrates and accumu-lates (Xinchang gas field in Western Sichuan Basin). 展开更多
关键词 FORELAND basin ABNORMAL pressure GENESIS natural gas accumulation.
原文传递
Tectonic evolution of Tethyan tectonic field, formation of Northern Margin basin and explorative perspective of natural gas in Tarim Basin 被引量:8
16
作者 YANG Shufeng JIA Chengzao +4 位作者 CHEN HanlinWEI Guoqi CHENG Xiaogan JIA Dong XIAO Ancheng GUO Shaojie 《Chinese Science Bulletin》 SCIE EI CAS 2002年第S1期34-41,共8页
Analyzing the characteristics of the Tethyantectonic field, the authors think that the Tethyan tectonicfield underwent three evolutional stages: closing of Pa-leo-Tethys and rifting of Neo-Tethys from early Permian to... Analyzing the characteristics of the Tethyantectonic field, the authors think that the Tethyan tectonicfield underwent three evolutional stages: closing of Pa-leo-Tethys and rifting of Neo-Tethys from early Permian tolate Triassic, subduction of Neo-Tethys and collision betweenthe Indian plate and the Eurasia plate from Jurassic to earlyof low Tertiary, and collision between the Arab plate and theEurasia plate and the A-type subduction of Indian plate fromlate of low Tertiary to the present. Combining the evolutionof the Tethyan orogenic belt with the characteristics of theNorthern Margin basin, it is suggested that the sedimentaryand tectonic characteristics and types of the Northern Mar-gin basin are controlled by the formation and evolution ofthe Tethyan orogenic belt and the ingression of Tethys. Theevolution of Northern Margin basin can be divided into threedevelopment stages: back-arc foreland basin from late Per-mian to Triassic, the back-arc fault subsidence and depres-sion from Jurassic to the early of low Tertiary, and the reac-tive foreland basin from the late of low Tertiary to the pre-sent. The Northern Margin basin in the Tethyan tectonicfield is an important region for natural gas accumulation,and the Tarim Basin is a part of this region. 展开更多
关键词 TETHYS NORTHERN MARGIN BASIN TECTONIC evolution type of BASIN accumulation of natural gas.
原文传递
Reservoir accumulation conditions and key exploration&development technologies for Keshen gas field in Tarim Basin 被引量:3
17
作者 Haijun Yang Yong Li +10 位作者 Yangang Tang Ganglin Lei Xiongwei Sun Peng Zhou Lu Zhou Anming Xu Jingjie Tang Wenhui Zhu Jiangwei Shang Weili Chen Mei Li 《Petroleum Research》 2019年第4期295-313,共19页
The Keshen gas field is located in the central part of Kuqa foreland thrust belt in Tarim Basin,and is another large gas field discovered in Kuqa depression after Kela 2 gas field.Since the breakthrough in 2008,a numb... The Keshen gas field is located in the central part of Kuqa foreland thrust belt in Tarim Basin,and is another large gas field discovered in Kuqa depression after Kela 2 gas field.Since the breakthrough in 2008,a number of large and medium scale gas reservoirs including Keshen 2,Keshen 5 and Keshen 8 have been discovered,that are characterized by ultra depth,ultra-high pressure,ultra-low porosity,ultra-low permeability,high temperature and high pressure.With natural gas geological reserves of nearly trillion cubic meters and production capacity of nearly 5.5 billion cubic meters,the Keshen gas field is the main natural gas producing area in Tarim Oilfield.The Keshen gas field is located in a series of thrusting imbrication structures in the Kelasu structural belt of Kuqa foreland thrust belt.The salt roof structure,plastic rheology of salt beds and pre-salt faulted anticlinal structure constitute the large wedge-shaped thrust body.The thick delta sandstone of the Cretaceous Bashijike Formation is widely distributed,and it forms the superior reservoir-caprock combination with overlying Paleogene thick gypsum-salt bed.The deep Jurassic-Triassic oil and gas migrate vertically along fault system formed in Late Himalaya,break through the thick Cretaceous mudstone and move laterally along the fracture system of the pre-salt reservoirs,to form anticline and fault anticline high pressure reservoir groups.Through near ten years of studies,the three-dimensional seismic acquisition and processing technology for complex mountainous areas,extrusion salt-related structural modeling technology and fractured low-porosity sandstone reservoir evaluation technology have been established,which lay a foundation for realization of oil and gas exploration objectives.Logging acquisition and evaluation technology for high temperature,high pressure,ultra-deep and low-porosity sandstone gas reservoirs,and efficient development technology for fractured tight sandstone gas reservoirs have been developed,which provide a technical support for efficient exploration&development and rapid production of the Keshen gas field. 展开更多
关键词 Oil and gas accumulation three-dimensional mountainous seismic EXPLORATION Ultra-deep high temperature and high pressure gas reservoirs High efficiency exploration and DEVELOPMENT Keshen gas field Tarim Basin
原文传递
Hydrate formation and distribution within unconsolidated sediment:Insights from laboratory electrical resistivity tomography
18
作者 Yanlong Li Nengyou Wu +5 位作者 Changling Liu Qiang Chen Fulong Ning Shuoshi Wang Gaowei Hu Deli Gao 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2022年第9期127-136,共10页
Laboratory visual detection on the hydrate accumulation process provides an effective and low-cost method to uncover hydrate accumulation mechanisms in nature.However,the spatial hydrate distribution and its dynamic e... Laboratory visual detection on the hydrate accumulation process provides an effective and low-cost method to uncover hydrate accumulation mechanisms in nature.However,the spatial hydrate distribution and its dynamic evolutionary behaviors are still not fully understood due to the lack of methods and experimental systems.Toward this goal,we built a two-dimensional electrical resistivity tomography(ERT)apparatus capable of measuring spatial and temporal characteristics of hydrate-bearing porous media.Beach sand(0.05–0.85 mm)was used to form artificial methane hydrate-bearing sediment.The experiments were conducted at 1°C under excess water conditions and the ERT data were acquired and analyzed.This study demonstrates the utility of the ERT method for hydrate mapping in laboratory-scale.The results indicate that the average electrical conductivity decreases nonlinearly with the formation of the hydrate.At some special time-intervals,the average conductivity fluctuates within a certain scope.The plane conductivity fields evolve heterogeneously and the local preferential hydrate-forming positions alternate throughout the experimental duration.We speculate that the combination of hydrate formation itself and salt-removal effect plays a dominant role in the spatial and temporal hydrate distribution,as well as geophysical parameters changing behaviors during hydrate accumulation. 展开更多
关键词 natural gas hydrate electrical resistivity electrical resistivity tomography accumulation mechanism electrical conductivity
下载PDF
Accumulation mechanism of mantle-derived helium resources in petroliferous basins, eastern China
19
作者 Xiaofeng WANG Quanyou LIU +3 位作者 Wenhui LIU Dongdong ZHANG Xiaofu LI Dong ZHAO 《Science China Earth Sciences》 SCIE EI CAS CSCD 2022年第12期2322-2334,共13页
A series of marginal-sea basins and fault-depression basins were formed in eastern China under the background of subduction of the West Pacific plate.Different types of helium-rich natural gas reservoirs(He>1000 pp... A series of marginal-sea basins and fault-depression basins were formed in eastern China under the background of subduction of the West Pacific plate.Different types of helium-rich natural gas reservoirs(He>1000 ppm,1 ppm=1μmol mol^(-1))have been found in these basins:helium-rich CO_(2)gas reservoirs,helium-rich N_(2)gas reservoirs,and helium-rich hydrocarbon gas reservoirs.Based on the analysis of gas geochemical data,the source and accumulation mechanism of helium in these heliumrich natural gas reservoirs were discussed.Helium-rich natural gas has relatively high 3He/4He ratios(0.88-4.91 Ra,average 2.82 Ra).The ^(3)He/^(4)He ratio characteristics of mantle xenoliths and mantle-derived CO_(2)gas reservoirs indicate that the helium in these helium-rich natural gas reservoirs is mainly mantle-derived(>70%).The original mantle volatile is mainly CO_(2)with a low helium concentration(He<200 ppm),and the enrichment of mantle-derived helium in the gas reservoir is mainly related to the dissolution and mineralization of CO_(2).During this process,the CO_(2)/3He ratio decreases from 2×10^(9)to approximately 2×10^(6).As CO_(2)dissolves and mineralizes,the concentration of conservative gases(He and N_(2))increases in the remaining CO_(2)gas proportionally to the loss of CO_(2).Large amounts of carbonate minerals,such as dawsonite,which are relatively enriched in 13C,are found in CO_(2)reservoirs in eastern China.The relative enrichment of^(12)C in residual CO_(2)gas is important evidence of the dissolution and mineralization of CO_(2).The relative abundance of mantle-derived helium and N_(2)gas increases thousands of times during the dissolution and mineralization of CO_(2),which is the main accumulation mechanism of mantle-derived helium-rich CO_(2)gas reservoirs and helium-rich N_(2)gas reservoirs.Helium-rich gas from the mantle is mixed with alkane gas generated by organic matter in the sedimentary basin to form helium-rich hydrocarbon gas reservoirs. 展开更多
关键词 Mantle-derived helium ^(3)He/4He ratio Helium resources Helium-rich natural gas accumulation mechanism
原文传递
Evidence of fluid inclusion for thermal fluid-bearing hydrocarbon movements in Qiongdongnan Basin, South China Sea 被引量:10
20
作者 陈红汉 张启明 施继锡 《Science China Earth Sciences》 SCIE EI CAS 1997年第6期648-655,共8页
Diagenetic research and inclusion observance indicate that there are seven types of inlcusion in the reservoirs in the Qiongdongnan Basin. Based on the fluorescence color, ratio of gas/liquid, formation temperature, s... Diagenetic research and inclusion observance indicate that there are seven types of inlcusion in the reservoirs in the Qiongdongnan Basin. Based on the fluorescence color, ratio of gas/liquid, formation temperature, salinity and organic component of fluid inclusions, three events of thermal fluid movement were found, and only the second and third events are relative to hydrocarbon migration and accumulation with the temperatures of 140-150℃ and 170-190℃, respectively. The mechanism of gas migration in aqueous phase suggests that the discharging site of thermal fluid i.s the favourable location for natural gas accumulation. 展开更多
关键词 fluid INCLUSION active thermal FLUIDS natural gas migration and accumulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部