期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Prediction of three-dimensional ocean temperature in the South China Sea based on time series gridded data and a dynamic spatiotemporal graph neural network
1
作者 Feng Nan Zhuolin Li +3 位作者 Jie Yu Suixiang Shi Xinrong Wu Lingyu Xu 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2024年第7期26-39,共14页
Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean... Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales. 展开更多
关键词 dynamic associations three-dimensional ocean temperature prediction graph neural network time series gridded data
下载PDF
Discontinuity development patterns and the challenges for 3D discrete fracture network modeling on complicated exposed rock surfaces 被引量:1
2
作者 Wen Zhang Ming Wei +8 位作者 Ying Zhang Tengyue Li Qing Wang Chen Cao Chun Zhu Zhengwei Li Zhenbang Nie Shuonan Wang Han Yin 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2154-2171,共18页
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st... Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues. 展开更多
关键词 Complicated exposed rock surfaces discontinuity characteristic variation three-dimensional discrete fracture network modeling Outcrop study Vegetation cover and rockfalls
下载PDF
面向流体力学的物理神经网络综述
3
作者 田松岩 黄鑫格 +2 位作者 段焰辉 陈洪波 陈文秀 《计算机应用》 CSCD 北大核心 2024年第S01期133-141,共9页
针对融合了物理控制方程,尤为适用于物理场预测的新兴神经网络方法——物理神经网络(PINN),开展深入的文献调研,形成对面向流体力学的物理神经网络方法发展趋势的研判。首先,对神经网络融合物理信息的思路进行溯源;其次,介绍当前物理神... 针对融合了物理控制方程,尤为适用于物理场预测的新兴神经网络方法——物理神经网络(PINN),开展深入的文献调研,形成对面向流体力学的物理神经网络方法发展趋势的研判。首先,对神经网络融合物理信息的思路进行溯源;其次,介绍当前物理神经网络基本架构,针对全连接型物理神经网络,从间断问题的高精度预测研究、偏微分方程(PDE)植入形式、流场重建问题、损失函数形式、多精度数据及多尺度问题以及训练控制等方面进行文献综述;再次,对于基于卷积神经网络(CNN)和其他新兴网络架构的物理神经网络进行文献梳理;最后,形成面向流体力学的物理神经网络发展趋势与思考。通过对2017年至2023年间近百篇文献的研究及相关数值实验可知,针对强间断的高分辨率预测是面向高速流动问题的物理神经网络研究中需要解决的重要问题;基于全连接网络的物理神经网络拥有无网格化的优势,可用于各类流动问题的求解;基于卷积网络的物理神经网络具备与已有传统数值方法深度融合的优势,可有效利用已有的流场图像、物理量云图等结构化数据,进行复杂流动问题的求解。 展开更多
关键词 流场预测 物理神经网络 损失函数 偏微分方程 间断问题
下载PDF
岩质边坡不连续面预测方法
4
作者 王常明 陈剑平 +2 位作者 肖树芳 滕建仁 薛果夫 《长春科技大学学报》 CSCD 1998年第1期70-74,共5页
利用计算机技术再现了岩质边坡上不连续面的空间形态,提出了利用三维网络原理预测岩质边坡不连续面空间展布的方法,并用C语言在微机上实现。
关键词 不连续面 三维网络 预测法 岩石边坡 滑坡
下载PDF
针对高阶DG数值格式的非定常流场预测建模
5
作者 丁子元 安慰 +1 位作者 刘学军 吕宏强 《空气动力学学报》 CSCD 北大核心 2022年第6期51-63,共13页
高阶间断伽辽金方法作为一种数值求解方法,具备精度高和适用于复杂外形等特点,同时由于其良好的色散以及耗散特性,非常适用于隐式大涡模拟。然而在求解非定常流场时,通常需要计算很长的时长,如何降低计算代价仍然是一个挑战。针对这一问... 高阶间断伽辽金方法作为一种数值求解方法,具备精度高和适用于复杂外形等特点,同时由于其良好的色散以及耗散特性,非常适用于隐式大涡模拟。然而在求解非定常流场时,通常需要计算很长的时长,如何降低计算代价仍然是一个挑战。针对这一问题,提出了一种由三维卷积、二维残差网络和注意力机制组成的深度神经网络,该网络能够从数据中捕捉隐含的流场时空特征。对不同雷诺数下的圆柱绕流进行数值模拟得到用于训练的数据集,将训练完成后的网络用于预测未来时间段的流场原始数据,实验结果显示深度神经网络对圆柱绕流实验数据具备良好的建模能力,用该深度神经网络预测的流场与直接用CFD求解器计算出的结果高度一致。 展开更多
关键词 深度学习 三维卷积 残差网络 注意力机制 高阶间断伽辽金方法 非定常流场预测
下载PDF
Improving Wind Forecasts Using a Gale-Aware Deep Attention Network
6
作者 Keran CHEN Yuan ZHOU +4 位作者 Ping WANG Pingping WANG Xiaojun YANG Nan ZHANG Di WANG 《Journal of Meteorological Research》 SCIE CSCD 2023年第6期775-789,共15页
Numerical weather prediction of wind speed requires statistical postprocessing of systematic errors to obtain reliable and accurate forecasts.However,use of postprocessing models is often undesirable for extreme weath... Numerical weather prediction of wind speed requires statistical postprocessing of systematic errors to obtain reliable and accurate forecasts.However,use of postprocessing models is often undesirable for extreme weather events such as gales.Here,we propose a postprocessing algorithm based on a gale-aware deep attention network to simultaneously improve wind speed forecasts and gale area warnings.Specifically,the algorithm includes both a galeaware loss function that focuses the model on potential gale areas,and an observation station supervision strategy that alleviates the problem of missing extreme values caused by data gridding.The effectiveness of the proposed model was verified by using data from 235 wind speed observation stations.Experimental results show that our model can produce wind speed forecasts with a root-mean-square error of 1.1547 m s^(-1),and a Hanssen–Kuipers discriminant score of 0.517,performance that is superior to that of the other postprocessing algorithms considered. 展开更多
关键词 wind speed prediction deep attention network numerical model three-dimensional(3D)fully convolutional network attention mechanism
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部