Three-dimensional ordered macroporous (3DOM) La1?xKxNiO3 perovskite-type catalysts were successfully prepared by a colloidal crystal template method and characterized by scanning electron microscopy, transmission elec...Three-dimensional ordered macroporous (3DOM) La1?xKxNiO3 perovskite-type catalysts were successfully prepared by a colloidal crystal template method and characterized by scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray scattering elemental mapping, X-ray diffraction, Raman and X-ray photoelectron spectroscopy, and temperature-programmed reduction of H2. Further, their catalytic activity in soot combustion was determined by temperature-programmed oxidation reaction. K substitution into the LaNiO3 lattice led to remarkably improved catalytic activity of this catalyst in soot combustion. Amongst various catalysts, La0.95K0.05NiO3 exhibited the highest activity in soot combustion (with its T50 and CO2 S values being 338 °C and 98.2%, respectively), which is comparable to the catalytic activities of Pt-based catalysts under the condition of poor contact between the soot and the catalyst. K-substitution improves the valence state of Ni and increases the number of oxygen vacancies, thereby leading to increased density of surface-active oxygen species. The active oxygen species play a vital role in catalyzing the elimination of soot. The perovskite-type La1?xKxNiO3 nanocatalysts with 3DOM structure without noble metals have potential for practical applications in the catalytic combustion of diesel soot particles.展开更多
The silica opal templates were prepared from three silica colloids of different diameters of 230 nm, 500 nm and 1.5 mm by a filtration route. The large-scale stable opal template membranes after sintering the deposite...The silica opal templates were prepared from three silica colloids of different diameters of 230 nm, 500 nm and 1.5 mm by a filtration route. The large-scale stable opal template membranes after sintering the deposited SiO2 opal template can be successfully obtained by optimizing the pH value and NaCl concentration in silica colloidal solutions. The three-dimensionally ordered macroporous(3DOM) polyimide membranes without crack were fabricated by reproducing the structure of silica opal template. We prepared the pore-filling composite proton exchange membranes by filling the 3DOM structure with proton conducting organosilane sol. The result indicates that the composite membranes exhibit higher water uptake than pure filling organosilane gel. The proton conductivity increased with the increasing of pore cell in composite membranes.展开更多
It is of broad interest to develop emerging photocatalysts with excellent light-harvesting capacity and high charge carrier separation efficiency for visible light photocatalytic hydrogen evolution reaction.However,ac...It is of broad interest to develop emerging photocatalysts with excellent light-harvesting capacity and high charge carrier separation efficiency for visible light photocatalytic hydrogen evolution reaction.However,achieving satisfying hydrogen evolution efficiency under noble metal-free conditions remains challenging.In this study,we demonstrate the fabrication of three-dimensionally ordered macroporous SrTiO_(3)decorated with Zn_(x)Cd_(1−x)S nanoparticles for hydrogen production under visible light irradiation(λ>420 nm).Synergetic enhancement of photocatalytic activity is achieved by the slow photon effect and improved separation efficiency of photogenerated charge carriers.The obtained composites could afford very high hydrogen production efficiencies up to 19.67 mmol·g^(−1)·h^(−1),with an apparent quantum efficiency of 35.9%at 420 nm,which is 4.2 and 23.9 times higher than those of pure Zn_(0.5)Cd_(0.5)S(4.67 mmol·g^(−1)·h^(−1))and CdS(0.82 mmol·g^(−1)·h^(−1)),respectively.In particular,under Pt-free conditions,an attractive hydrogen production rate(3.23 mmol·g^(−1)·h^(−1))was achieved,providing a low-cost and high-efficiency strategy to produce hydrogen from water splitting.Moreover,the composites showed excellent stability,and no obvious loss in activity was observed after five cycling tests.展开更多
基金supported by the National Natural Science Foundation of China(21673142)National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2017A05)+1 种基金PetroChina Innovation Foundation(2018D-5007-0505)Science Foundation of China University of Petroleum,Beijing(242017QNXZ02,2462018BJC005)~~
文摘Three-dimensional ordered macroporous (3DOM) La1?xKxNiO3 perovskite-type catalysts were successfully prepared by a colloidal crystal template method and characterized by scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray scattering elemental mapping, X-ray diffraction, Raman and X-ray photoelectron spectroscopy, and temperature-programmed reduction of H2. Further, their catalytic activity in soot combustion was determined by temperature-programmed oxidation reaction. K substitution into the LaNiO3 lattice led to remarkably improved catalytic activity of this catalyst in soot combustion. Amongst various catalysts, La0.95K0.05NiO3 exhibited the highest activity in soot combustion (with its T50 and CO2 S values being 338 °C and 98.2%, respectively), which is comparable to the catalytic activities of Pt-based catalysts under the condition of poor contact between the soot and the catalyst. K-substitution improves the valence state of Ni and increases the number of oxygen vacancies, thereby leading to increased density of surface-active oxygen species. The active oxygen species play a vital role in catalyzing the elimination of soot. The perovskite-type La1?xKxNiO3 nanocatalysts with 3DOM structure without noble metals have potential for practical applications in the catalytic combustion of diesel soot particles.
基金Supported by the National Natural Science Foundation of China(Nos.20704004, 21074019)the Natural Science Foundation of Jilin Province, China(No.20101539)
文摘The silica opal templates were prepared from three silica colloids of different diameters of 230 nm, 500 nm and 1.5 mm by a filtration route. The large-scale stable opal template membranes after sintering the deposited SiO2 opal template can be successfully obtained by optimizing the pH value and NaCl concentration in silica colloidal solutions. The three-dimensionally ordered macroporous(3DOM) polyimide membranes without crack were fabricated by reproducing the structure of silica opal template. We prepared the pore-filling composite proton exchange membranes by filling the 3DOM structure with proton conducting organosilane sol. The result indicates that the composite membranes exhibit higher water uptake than pure filling organosilane gel. The proton conductivity increased with the increasing of pore cell in composite membranes.
基金supported by the Natural Science Foundation of Tianjin(Grant No.17JCYBJC22600)Tianjin Development Program for Innovation and Entrepreneurshipthe Fundamental Research Funds for the Central Universities.
文摘It is of broad interest to develop emerging photocatalysts with excellent light-harvesting capacity and high charge carrier separation efficiency for visible light photocatalytic hydrogen evolution reaction.However,achieving satisfying hydrogen evolution efficiency under noble metal-free conditions remains challenging.In this study,we demonstrate the fabrication of three-dimensionally ordered macroporous SrTiO_(3)decorated with Zn_(x)Cd_(1−x)S nanoparticles for hydrogen production under visible light irradiation(λ>420 nm).Synergetic enhancement of photocatalytic activity is achieved by the slow photon effect and improved separation efficiency of photogenerated charge carriers.The obtained composites could afford very high hydrogen production efficiencies up to 19.67 mmol·g^(−1)·h^(−1),with an apparent quantum efficiency of 35.9%at 420 nm,which is 4.2 and 23.9 times higher than those of pure Zn_(0.5)Cd_(0.5)S(4.67 mmol·g^(−1)·h^(−1))and CdS(0.82 mmol·g^(−1)·h^(−1)),respectively.In particular,under Pt-free conditions,an attractive hydrogen production rate(3.23 mmol·g^(−1)·h^(−1))was achieved,providing a low-cost and high-efficiency strategy to produce hydrogen from water splitting.Moreover,the composites showed excellent stability,and no obvious loss in activity was observed after five cycling tests.