Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the ...Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the mesoporous characteristics of the template,with cubic symmetry(ia3d).It consists of a β-MnO2 crystalline phase corresponding to pyrolusite,with a rutile structure.Transmission electron microscopy and X-ray photoelectron spectroscopy showed that the 3D-MnO2 catalyst has a large number of exposed Mn4+ ions on the(110)crystal plane surfaces,with a lattice spacing of 0.311 nm; this enhances oxidation of HCHO.Complete conversion of HCHO to CO2 and H2O was achieved at 130 °C on 3D-MnO2; the same conversions on α-MnO2 and β-MnO2 nanorods were obtained at 140 and 180 °C,respectively,under the same conditions.The specific mesoporous structure,high specific surface area,and large number of surface Mn4+ ions are responsible for the catalytic activity of 3D-MnO2 in HCHO oxidation.展开更多
The correspondence principle is an important mathematical technique to compute the non-ageing linear viscoelastic problem as it allows to take advantage of the computational methods originally developed for the elasti...The correspondence principle is an important mathematical technique to compute the non-ageing linear viscoelastic problem as it allows to take advantage of the computational methods originally developed for the elastic case. However, the correspon- dence principle becomes invalid when the materials exhibit ageing. To deal with this problem, a second-order two-scale (SOTS) computational method in the time domain is presented to predict the ageing linear viscoelastic performance of composite materials with a periodic structure. First, in the time domain, the SOTS formulation for calcu- lating the effective relaxation modulus and displacement approximate solutions of the ageing viscoelastic problem is formally derived. Error estimates of the displacement ap- proximate solutions for SOTS method are then given. Numerical results obtained by the SOTS method are shown and compared with those by the finite element method in a very fine mesh. Both the analytical and numerical results show that the SOTS computational method is feasible and efficient to predict the ageing linear viscoelastic performance of composite materials with a periodic structure.展开更多
In this paper, a kind of second-order two-scale (SOTS) computation is developed for conductive-radiative heat trans- fer problem in periodic porous materials. First of all, by the asymptotic expansion of the tempera...In this paper, a kind of second-order two-scale (SOTS) computation is developed for conductive-radiative heat trans- fer problem in periodic porous materials. First of all, by the asymptotic expansion of the temperature field, the cell problem, homogenization problem, and second-order correctors are obtained successively. Then, the corresponding finite element al- gorithms are proposed. Finally, some numerical results are presented and compared with theoretical results. The numerical results of the proposed algorithm conform with those of the FE algorithm well, demonstrating the accuracy of the present method and its potential applications in thermal engineering of porous materials.展开更多
Three-dimensional ordered macroporous (3DOM) La1?xKxNiO3 perovskite-type catalysts were successfully prepared by a colloidal crystal template method and characterized by scanning electron microscopy, transmission elec...Three-dimensional ordered macroporous (3DOM) La1?xKxNiO3 perovskite-type catalysts were successfully prepared by a colloidal crystal template method and characterized by scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray scattering elemental mapping, X-ray diffraction, Raman and X-ray photoelectron spectroscopy, and temperature-programmed reduction of H2. Further, their catalytic activity in soot combustion was determined by temperature-programmed oxidation reaction. K substitution into the LaNiO3 lattice led to remarkably improved catalytic activity of this catalyst in soot combustion. Amongst various catalysts, La0.95K0.05NiO3 exhibited the highest activity in soot combustion (with its T50 and CO2 S values being 338 °C and 98.2%, respectively), which is comparable to the catalytic activities of Pt-based catalysts under the condition of poor contact between the soot and the catalyst. K-substitution improves the valence state of Ni and increases the number of oxygen vacancies, thereby leading to increased density of surface-active oxygen species. The active oxygen species play a vital role in catalyzing the elimination of soot. The perovskite-type La1?xKxNiO3 nanocatalysts with 3DOM structure without noble metals have potential for practical applications in the catalytic combustion of diesel soot particles.展开更多
Mesoporous materials with uniform pores and high specific areas are used in many fields including catalysts, separation and adsorbents, etc. In order to find faster and more economical synthesis routes, the use of mic...Mesoporous materials with uniform pores and high specific areas are used in many fields including catalysts, separation and adsorbents, etc. In order to find faster and more economical synthesis routes, the use of microwave heating was deeply studied. Compared to the hydrothermal method, microwave energy can heat the samples to crystallization temperature rapidly and uniformly result in homogeneous nucleation and shorten crystallization time. The basic principles of microwave assisted synthesis and advantages of microwave heating, and the obtained progress concerning ordered mesoporous materials through microwave synthesis were summarized.展开更多
A series of three-dimensional ordered macroporous(3 DOM)W-TiO_(2)catalysts have been prepared through a facile colloidal crystal template method.The prepared materials characterized in detail exhibited enhanced cataly...A series of three-dimensional ordered macroporous(3 DOM)W-TiO_(2)catalysts have been prepared through a facile colloidal crystal template method.The prepared materials characterized in detail exhibited enhanced catalytic activity in aerobic oxidative desulfurization process.The experimental results indicated that the as-prepared materials possessed excellent 3 DOM structure,which is beneficial for the catalytic activity.The sample 3 DOM W-TiO_(2)-20 exhibited the highest activity in ODS process,and the sulfur removal can reach 98%in 6 h.Furthermore,the oxidative product was also analyzed in the reaction process.展开更多
The silica opal templates were prepared from three silica colloids of different diameters of 230 nm, 500 nm and 1.5 mm by a filtration route. The large-scale stable opal template membranes after sintering the deposite...The silica opal templates were prepared from three silica colloids of different diameters of 230 nm, 500 nm and 1.5 mm by a filtration route. The large-scale stable opal template membranes after sintering the deposited SiO2 opal template can be successfully obtained by optimizing the pH value and NaCl concentration in silica colloidal solutions. The three-dimensionally ordered macroporous(3DOM) polyimide membranes without crack were fabricated by reproducing the structure of silica opal template. We prepared the pore-filling composite proton exchange membranes by filling the 3DOM structure with proton conducting organosilane sol. The result indicates that the composite membranes exhibit higher water uptake than pure filling organosilane gel. The proton conductivity increased with the increasing of pore cell in composite membranes.展开更多
The three-dimensional ordered macroporous CeO2:Yb,Er materials were prepared, and the influence of doping concentra- tion of Yb3+ or Er3+ ions on upconversion property was investigated. Green and red upconversion e...The three-dimensional ordered macroporous CeO2:Yb,Er materials were prepared, and the influence of doping concentra- tion of Yb3+ or Er3+ ions on upconversion property was investigated. Green and red upconversion emissions were observed under the excitation of 980 nm at room temperature. It was found that the ratio of red to green upconversion emission intensity increased with increasing of concentration of the Yb3+ or Er3+ ions in the three-dimensional ordered macroporous CeO2:Yb,Er materials. When the concentration of Yb3+ was 10 mol%, pure red upconversion emission was obtained. The varied mechanism of ratio of red to green upconversion emission intensity was discussed with the concentration of Yb3+ or Er3+ ions.展开更多
Au/3DOM(three-dimensionally ordered macroporous) Al2O3 and Au/CeO2/3DOM Al2O3 were prepared using a reduction-deposition method and characterized using scanning electron microscopy,N2 adsorption-desorption,X-ray dif...Au/3DOM(three-dimensionally ordered macroporous) Al2O3 and Au/CeO2/3DOM Al2O3 were prepared using a reduction-deposition method and characterized using scanning electron microscopy,N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed hydrogen reduction,and X-ray photoelectron spectroscopy.Au nanoparticles of similar sizes were well dispersed and supported on the inner walls of uniform macropores.The norminal Au loading is 2%.Al-Ce-O solid solution in CeO2/3DOM Al2O3 catalysts can be formed due to the incorporation of Al^3+ ions into the ceria lattice,which causes the creation of extrinsic oxygen vacancies.The extrinsic oxygen vacancies improved the oxygen-transport properties.The strong metal-support interactions between Au and CeO2 increased the amount of active oxygen on the Au nanoparticle surfaces,and this promoted soot oxidation.The activities of the Au-based catalysts were higher than those of the supports(Al2O3 or CeO2/3DOM Al2O3) at low temperature.Au/CeO2/3DOM Al2O3 had the highest catalytic activity for soot combustion,with T(10),T(50),and T(90) values of 273,364,and 412℃,respectively.展开更多
Three-dimensional (3D) ordered macroporous indium tin oxide (ITO) is pre- pared using a polymer colloidal crystal template that is formed by self-assembly of the monodisperse poly(methyl methacrylate) (PMMA) microsphe...Three-dimensional (3D) ordered macroporous indium tin oxide (ITO) is pre- pared using a polymer colloidal crystal template that is formed by self-assembly of the monodisperse poly(methyl methacrylate) (PMMA) microspheres. The morphologies and BET surface area of the macroporous material is examined by scanning electron micro- scope, transmission electron microscopy and N2 adsorption/desorption. Results indicate that the macroporous material has highly ordered arrays of the uniform pores replicated from the PMMA colloidal crystal template when the polymer colloidal crystal template is removed by calcinations at 500℃. The pore diameter (about 450 nm) of macroporous ITO slightly shrank to the PMMA microspheres. The BET surface area and pore volume of the macroporous material are 389 m2·g-1 and 0.36 cm3·g-1, respectively. Moreover, the macroporous ITO, containing 5 mol% Sn and after annealing under vacuum, shows the minimum resistivity of ρ = 8.2×10-3 Ω· cm. The conductive mechanism of macroporous ITO is discussed, and it is believed that the oxygen vacancies are the major factor for excellent electrical properties.展开更多
A novel glucose oxidase immobilized on three-dimensionally ordered macroporous (3DOM) material has been prepared by firstly preparation of hybrid 3DOM SiO2-NH2 materials using colloidal crystal method, and following...A novel glucose oxidase immobilized on three-dimensionally ordered macroporous (3DOM) material has been prepared by firstly preparation of hybrid 3DOM SiO2-NH2 materials using colloidal crystal method, and following covalent immobilization of glucose oxidase on the pore walls of the 3DOM materials. The materials were characterized by SEM, FTIR, DSC and BET techniques. SEM observation shows that the macropores are highly ordered and are interconnected by small windows. FTIR measurement shows that there are amino and organic groups in the pore walls. The surface area of the 3DOM SiO2-NH2 material is about 10.2 m2/g. The loaded amount of enzyme is increased with amino content in the materials. The immobilized enzyme has high activity, thermal stability and can be reused.展开更多
Three-dimensionally (3D) long range ordered macroporous SiC ceramics were prepared through infiltrating polymethylsilane (PMS) into the 3D ordered sacrificial silica template, pyrolysis and the template removal. It wa...Three-dimensionally (3D) long range ordered macroporous SiC ceramics were prepared through infiltrating polymethylsilane (PMS) into the 3D ordered sacrificial silica template, pyrolysis and the template removal. It was found that the pore size (84―658 nm), BET surface area (299.44―584.64 m2/g) and micropore volume (0.25―0.64 cm3/g) of the achieved porous SiC can be tailored by utilizing different sizes silica sphere templates. There exist three kinds of pores in the porous ceramics: sphere inversed pores, windows and mesopores (2―5 nm). The sphere inversed pores were packed as hcp structure and three dimensionally penetrated through the windows, and the mesopores endowed the porous ceramics surprising high BET surface areas and micropore volumes.展开更多
基金supported by the National Natural Science Foundation of China(21325731,21221004 and 51478241)~~
文摘Three-dimensional(3D)ordered mesoporous MnO2 was prepared using KIT-6 mesoporous molecular sieves as a hard template.The material was used for catalytic oxidation of HCHO.The material has high surface areas and the mesoporous characteristics of the template,with cubic symmetry(ia3d).It consists of a β-MnO2 crystalline phase corresponding to pyrolusite,with a rutile structure.Transmission electron microscopy and X-ray photoelectron spectroscopy showed that the 3D-MnO2 catalyst has a large number of exposed Mn4+ ions on the(110)crystal plane surfaces,with a lattice spacing of 0.311 nm; this enhances oxidation of HCHO.Complete conversion of HCHO to CO2 and H2O was achieved at 130 °C on 3D-MnO2; the same conversions on α-MnO2 and β-MnO2 nanorods were obtained at 140 and 180 °C,respectively,under the same conditions.The specific mesoporous structure,high specific surface area,and large number of surface Mn4+ ions are responsible for the catalytic activity of 3D-MnO2 in HCHO oxidation.
基金Project supported by the National Natural Science Foundation of China(No.11471262)
文摘The correspondence principle is an important mathematical technique to compute the non-ageing linear viscoelastic problem as it allows to take advantage of the computational methods originally developed for the elastic case. However, the correspon- dence principle becomes invalid when the materials exhibit ageing. To deal with this problem, a second-order two-scale (SOTS) computational method in the time domain is presented to predict the ageing linear viscoelastic performance of composite materials with a periodic structure. First, in the time domain, the SOTS formulation for calcu- lating the effective relaxation modulus and displacement approximate solutions of the ageing viscoelastic problem is formally derived. Error estimates of the displacement ap- proximate solutions for SOTS method are then given. Numerical results obtained by the SOTS method are shown and compared with those by the finite element method in a very fine mesh. Both the analytical and numerical results show that the SOTS computational method is feasible and efficient to predict the ageing linear viscoelastic performance of composite materials with a periodic structure.
基金Project supported by the National Basic Research Program of China(Grant No.2010CB832702)the National Natural Science Foundation of China(Grant No.90916027)
文摘In this paper, a kind of second-order two-scale (SOTS) computation is developed for conductive-radiative heat trans- fer problem in periodic porous materials. First of all, by the asymptotic expansion of the temperature field, the cell problem, homogenization problem, and second-order correctors are obtained successively. Then, the corresponding finite element al- gorithms are proposed. Finally, some numerical results are presented and compared with theoretical results. The numerical results of the proposed algorithm conform with those of the FE algorithm well, demonstrating the accuracy of the present method and its potential applications in thermal engineering of porous materials.
基金supported by the National Natural Science Foundation of China(21673142)National Engineering Laboratory for Mobile Source Emission Control Technology(NELMS2017A05)+1 种基金PetroChina Innovation Foundation(2018D-5007-0505)Science Foundation of China University of Petroleum,Beijing(242017QNXZ02,2462018BJC005)~~
文摘Three-dimensional ordered macroporous (3DOM) La1?xKxNiO3 perovskite-type catalysts were successfully prepared by a colloidal crystal template method and characterized by scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, energy-dispersive X-ray scattering elemental mapping, X-ray diffraction, Raman and X-ray photoelectron spectroscopy, and temperature-programmed reduction of H2. Further, their catalytic activity in soot combustion was determined by temperature-programmed oxidation reaction. K substitution into the LaNiO3 lattice led to remarkably improved catalytic activity of this catalyst in soot combustion. Amongst various catalysts, La0.95K0.05NiO3 exhibited the highest activity in soot combustion (with its T50 and CO2 S values being 338 °C and 98.2%, respectively), which is comparable to the catalytic activities of Pt-based catalysts under the condition of poor contact between the soot and the catalyst. K-substitution improves the valence state of Ni and increases the number of oxygen vacancies, thereby leading to increased density of surface-active oxygen species. The active oxygen species play a vital role in catalyzing the elimination of soot. The perovskite-type La1?xKxNiO3 nanocatalysts with 3DOM structure without noble metals have potential for practical applications in the catalytic combustion of diesel soot particles.
基金Project(20775096/B050104) supported by the National Natural Science Foundation of ChinaProject(20080440696) supported by China Postdoctoral Science Foundation
文摘Mesoporous materials with uniform pores and high specific areas are used in many fields including catalysts, separation and adsorbents, etc. In order to find faster and more economical synthesis routes, the use of microwave heating was deeply studied. Compared to the hydrothermal method, microwave energy can heat the samples to crystallization temperature rapidly and uniformly result in homogeneous nucleation and shorten crystallization time. The basic principles of microwave assisted synthesis and advantages of microwave heating, and the obtained progress concerning ordered mesoporous materials through microwave synthesis were summarized.
基金the financial support from the National Natural Science Foundation of China(Nos.21722604 and 21776116)China Postdoctoral Science Foundation(2020M671365)+2 种基金Jiangsu Postdoctoral Research Funding Program(No.2021K343C)Natural Science Foundation of Jiangsu Province(No.BK20190243)the Society Development Fund of Zhenjiang City(SH2020020)。
文摘A series of three-dimensional ordered macroporous(3 DOM)W-TiO_(2)catalysts have been prepared through a facile colloidal crystal template method.The prepared materials characterized in detail exhibited enhanced catalytic activity in aerobic oxidative desulfurization process.The experimental results indicated that the as-prepared materials possessed excellent 3 DOM structure,which is beneficial for the catalytic activity.The sample 3 DOM W-TiO_(2)-20 exhibited the highest activity in ODS process,and the sulfur removal can reach 98%in 6 h.Furthermore,the oxidative product was also analyzed in the reaction process.
基金Supported by the National Natural Science Foundation of China(Nos.20704004, 21074019)the Natural Science Foundation of Jilin Province, China(No.20101539)
文摘The silica opal templates were prepared from three silica colloids of different diameters of 230 nm, 500 nm and 1.5 mm by a filtration route. The large-scale stable opal template membranes after sintering the deposited SiO2 opal template can be successfully obtained by optimizing the pH value and NaCl concentration in silica colloidal solutions. The three-dimensionally ordered macroporous(3DOM) polyimide membranes without crack were fabricated by reproducing the structure of silica opal template. We prepared the pore-filling composite proton exchange membranes by filling the 3DOM structure with proton conducting organosilane sol. The result indicates that the composite membranes exhibit higher water uptake than pure filling organosilane gel. The proton conductivity increased with the increasing of pore cell in composite membranes.
基金supported by the Reserve Talents Project of Yunnan Province(2013HB068)Applied Basic Research Program of Yunnan Province(2014FB127)
文摘The three-dimensional ordered macroporous CeO2:Yb,Er materials were prepared, and the influence of doping concentra- tion of Yb3+ or Er3+ ions on upconversion property was investigated. Green and red upconversion emissions were observed under the excitation of 980 nm at room temperature. It was found that the ratio of red to green upconversion emission intensity increased with increasing of concentration of the Yb3+ or Er3+ ions in the three-dimensional ordered macroporous CeO2:Yb,Er materials. When the concentration of Yb3+ was 10 mol%, pure red upconversion emission was obtained. The varied mechanism of ratio of red to green upconversion emission intensity was discussed with the concentration of Yb3+ or Er3+ ions.
基金supported by the National Natural Science Foundation of China (21477146,21303263)the National High Technology Research and Development Program of China (863 Program,2015AA034603)+2 种基金Beijing Nova Program (Z141109001814072)the Specialized Research Fund for the Doctoral Program of Higher Education of China (20130007120011)the Science Foundation of China University of Petroleum-Beijing (YJRC-2013-13,2462013BJRC003)~~
文摘Au/3DOM(three-dimensionally ordered macroporous) Al2O3 and Au/CeO2/3DOM Al2O3 were prepared using a reduction-deposition method and characterized using scanning electron microscopy,N2 adsorption-desorption,X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,temperature-programmed hydrogen reduction,and X-ray photoelectron spectroscopy.Au nanoparticles of similar sizes were well dispersed and supported on the inner walls of uniform macropores.The norminal Au loading is 2%.Al-Ce-O solid solution in CeO2/3DOM Al2O3 catalysts can be formed due to the incorporation of Al^3+ ions into the ceria lattice,which causes the creation of extrinsic oxygen vacancies.The extrinsic oxygen vacancies improved the oxygen-transport properties.The strong metal-support interactions between Au and CeO2 increased the amount of active oxygen on the Au nanoparticle surfaces,and this promoted soot oxidation.The activities of the Au-based catalysts were higher than those of the supports(Al2O3 or CeO2/3DOM Al2O3) at low temperature.Au/CeO2/3DOM Al2O3 had the highest catalytic activity for soot combustion,with T(10),T(50),and T(90) values of 273,364,and 412℃,respectively.
文摘Three-dimensional (3D) ordered macroporous indium tin oxide (ITO) is pre- pared using a polymer colloidal crystal template that is formed by self-assembly of the monodisperse poly(methyl methacrylate) (PMMA) microspheres. The morphologies and BET surface area of the macroporous material is examined by scanning electron micro- scope, transmission electron microscopy and N2 adsorption/desorption. Results indicate that the macroporous material has highly ordered arrays of the uniform pores replicated from the PMMA colloidal crystal template when the polymer colloidal crystal template is removed by calcinations at 500℃. The pore diameter (about 450 nm) of macroporous ITO slightly shrank to the PMMA microspheres. The BET surface area and pore volume of the macroporous material are 389 m2·g-1 and 0.36 cm3·g-1, respectively. Moreover, the macroporous ITO, containing 5 mol% Sn and after annealing under vacuum, shows the minimum resistivity of ρ = 8.2×10-3 Ω· cm. The conductive mechanism of macroporous ITO is discussed, and it is believed that the oxygen vacancies are the major factor for excellent electrical properties.
文摘A novel glucose oxidase immobilized on three-dimensionally ordered macroporous (3DOM) material has been prepared by firstly preparation of hybrid 3DOM SiO2-NH2 materials using colloidal crystal method, and following covalent immobilization of glucose oxidase on the pore walls of the 3DOM materials. The materials were characterized by SEM, FTIR, DSC and BET techniques. SEM observation shows that the macropores are highly ordered and are interconnected by small windows. FTIR measurement shows that there are amino and organic groups in the pore walls. The surface area of the 3DOM SiO2-NH2 material is about 10.2 m2/g. The loaded amount of enzyme is increased with amino content in the materials. The immobilized enzyme has high activity, thermal stability and can be reused.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 59972042)the Korea National Research Laboratory Program (Grant No. M10400000061-04J0000-06110) the Doctor Innovation Fund of National University of Defense Technology in China (2001-2004).
文摘Three-dimensionally (3D) long range ordered macroporous SiC ceramics were prepared through infiltrating polymethylsilane (PMS) into the 3D ordered sacrificial silica template, pyrolysis and the template removal. It was found that the pore size (84―658 nm), BET surface area (299.44―584.64 m2/g) and micropore volume (0.25―0.64 cm3/g) of the achieved porous SiC can be tailored by utilizing different sizes silica sphere templates. There exist three kinds of pores in the porous ceramics: sphere inversed pores, windows and mesopores (2―5 nm). The sphere inversed pores were packed as hcp structure and three dimensionally penetrated through the windows, and the mesopores endowed the porous ceramics surprising high BET surface areas and micropore volumes.