Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st...Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.展开更多
The space block search technology is used to determine a connected three-dimensional fracture network in polygonal shapes,i.e.,seepage paths.After triangulation on these polygons,a finite element mesh for 3D fracture ...The space block search technology is used to determine a connected three-dimensional fracture network in polygonal shapes,i.e.,seepage paths.After triangulation on these polygons,a finite element mesh for 3D fracture network seepage is obtained.Through introduction of the generalized Darcy's law,conservative equations for both fracture surface and fracture interactions are established.Combined with the boundary condition of Signorini's type,a partial differential equation(PDE) formulation is presented for the whole domain concerned.To solve this problem efficiently,an equivalent variational inequality(VI) formulation is given.With the penalized Heaviside function,a finite element procedure for unconfined seepage problem in 3D fracture network is developed.Through an example in a homogeneous rectangular dam,validity of the algorithm is verified.The analysis of an unconfined seepage problem in a complex fracture network shows that the proposed algorithm is very applicable to complex three-dimensional problems,and is effective in describing some interesting phenomenon usually encountered in practice,such as "preferential flow".展开更多
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3080200)the National Natural Science Foundation of China(Grant No.42022053)the China Postdoctoral Science Foundation(Grant No.2023M731264).
文摘Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.
基金supported by the National Natural Science Foundation of China(Grant No.51079110)the National Basic Research Program of China("973"Project)(Grant No.2011CB013506)
文摘The space block search technology is used to determine a connected three-dimensional fracture network in polygonal shapes,i.e.,seepage paths.After triangulation on these polygons,a finite element mesh for 3D fracture network seepage is obtained.Through introduction of the generalized Darcy's law,conservative equations for both fracture surface and fracture interactions are established.Combined with the boundary condition of Signorini's type,a partial differential equation(PDE) formulation is presented for the whole domain concerned.To solve this problem efficiently,an equivalent variational inequality(VI) formulation is given.With the penalized Heaviside function,a finite element procedure for unconfined seepage problem in 3D fracture network is developed.Through an example in a homogeneous rectangular dam,validity of the algorithm is verified.The analysis of an unconfined seepage problem in a complex fracture network shows that the proposed algorithm is very applicable to complex three-dimensional problems,and is effective in describing some interesting phenomenon usually encountered in practice,such as "preferential flow".