With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated...With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.展开更多
With the rapid development of information technology,the combination of terminal technology,big data and mobile Internet and textbooks has become an irresistible trend in the modern education field.Under the context o...With the rapid development of information technology,the combination of terminal technology,big data and mobile Internet and textbooks has become an irresistible trend in the modern education field.Under the context of the Internet,carrying out education and teaching activities based on digital textbooks can give full play to the rich media,openness and interaction of digital textbooks,broaden students′horizon,enrich students′knowledge,and promote the improvement of students′ability and all-round development.However,in the specific teaching practice,there are also problems such as old compilation ideas,single compilation mode and low efficiency of personalized learning.Therefore,schools and teachers need to constantly innovate the presentation and arrangement of digital textbooks,strengthen technical support,deepen students′understanding of the teaching content of digital textbooks,promote the comprehensive development of students and improve the effectiveness of digital textbook teaching.展开更多
With complex fractured-vuggy heterogeneous structures, water has to be injected to facilitate oil pro- duction. However, the effect of different water injection modes on oil recovery varies. The limitation of existing...With complex fractured-vuggy heterogeneous structures, water has to be injected to facilitate oil pro- duction. However, the effect of different water injection modes on oil recovery varies. The limitation of existing numerical simulation methods in representing fractured- vuggy carbonate reservoirs makes numerical simulation difficult to characterize the fluid flow in these reservoirs. In this paper, based on a geological example unit in the Tahe Oilfield, a three-dimensional physical model was designed and constructed to simulate fluid flow in a fractured-vuggy reservoir according to similarity criteria. The model was validated by simulating a bottom water drive reservoir, and then subsequent water injection modes were optimized. These were continuous (constant rate), intermittent, and pulsed injection of water. Experimental results reveal that due to the unbalanced formation pressure caused by pulsed water injection, the swept volume was expanded and consequently the highest oil recovery increment was achieved. Similar to continuous water injection, intermit- tent injection was influenced by factors including the connectivity of the fractured-vuggy reservoir, well depth, and the injection-production relationship, which led to a relative low oil recovery. This study may provide a constructive guide to field production and for the devel- opment of the commercial numerical models specialized for fractured-vuggy carbonate reservoirs.展开更多
The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional na...The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.展开更多
This paper addresses the problem of assessing and optimizing the acoustic positioning system for underwater target localization with range measurement.We present a new three-dimensional assessment model to evaluate th...This paper addresses the problem of assessing and optimizing the acoustic positioning system for underwater target localization with range measurement.We present a new three-dimensional assessment model to evaluate the optimal geometric beacon formation whether meets user requirements.For mathematical tractability,it is assumed that the measurements of the range between the target and beacons are corrupted with white Gaussian noise with variance,which is distance-dependent.Then,the relationship between DOP parameters and positioning accuracy can be derived by adopting dilution of precision(DOP)parameters in the assessment model.In addition,the optimal geometric beacon formation yielding the best performance can be achieved via minimizing the values of geometric dilution of precision(GDOP)in the case where the target position is known and fixed.Next,in order to ensure that the estimated positioning accuracy on the region of interest satisfies the precision required by the user,geometric positioning accuracy(GPA),horizontal positioning accuracy(HPA)and vertical positioning accuracy(VPA)are utilized to assess the optimal geometric beacon formation.Simulation examples are designed to illustrate the exactness of the conclusion.Unlike other work that only uses GDOP to optimize the formation and cannot assess the performance of the specified size,this new three-dimensional assessment model can evaluate the optimal geometric beacon formation for each dimension of any point in three-dimensional space,which can provide guidance to optimize the performance of each specified dimension.展开更多
With the reduction of urban land, the three-dimensional garage is increasingly built with its advantages of saving land. But the current three-dimensional garage is built for the car. It is hardly stereo parking garag...With the reduction of urban land, the three-dimensional garage is increasingly built with its advantages of saving land. But the current three-dimensional garage is built for the car. It is hardly stereo parking garage for electric bicycles. This paper designed a hollow tower electric bicycle stereo parking garage with fork comb structure, based on the analysis of the characteristics of electric bicycles and the characteristics of existing three-dimensional garages. A fixed comb is mounted on the garage frame. The movable comb is mounted on the middle lift mechanism of the garage. The access of the vehicle is achieved by the exchange of the comb. The key comb structure was modeled using SolidWorks software and the stress distribution of the structure was analyzed. It was optimized by MATLAB software. The result shows that this structure can improve access efficiency. The quality of the comb structure can be minimized under the constraints of strength requirements.展开更多
Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning usi...Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments.展开更多
In milling around sharp corners, residual materials are left at sharp corners when the stepover is extremely long in the contour-parallel tool path. Milling force at the sharp corner rises momentarily due to the incre...In milling around sharp corners, residual materials are left at sharp corners when the stepover is extremely long in the contour-parallel tool path. Milling force at the sharp corner rises momentarily due to the increase of the cutter contact length, thus shortening the tool life and leading to machine chatter, even cutter breakage. Then a tool path improvement method by inserting biarc transition segments in the contour-parallel tool path is proposed for milling the pocket. Using the method, the cutter moves along the biarc transition tool path. And the corner material is removed. The improved tool path is continuous for clearing residual materials at the sharp corner. Finally, the machining experiment validates the proposed method.展开更多
This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,le...This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.展开更多
Continuum robot is a new type of biomimetic robot,which realizes the motion by bending some parts of its body.So its path planning becomes more difficult even compared with hyper-redundant robots.In this paper a circu...Continuum robot is a new type of biomimetic robot,which realizes the motion by bending some parts of its body.So its path planning becomes more difficult even compared with hyper-redundant robots.In this paper a circular arc spline interpolating method is proposed for the robot shape description,and a new two-stage position-selectable-updating particle swarm optimization(TPPSO)algorithm is put forward to solve this path planning problem.The algorithm decomposes the standard PSO velocity’s single-step updating formula into twostage multi-point updating,specifically adopting three points as candidates and selecting the best one as the updated position in the first half stage,and similarly taking seven points as candidates and selecting the best one as the final position in the last half stage.This scheme refines and widens each particle’s searching trajectory,increases the updating speed of the individual best,and improves the converging speed and precision.Aiming at the optimization objective to minimize the sum of all the motion displacements of every segmental points and all the axial stretching or contracting displacements of every segment,the TPPSO algorithm is used to solve the path planning problem.The detailed solution procedure is presented.Numerical examples of five path planning cases show that the proposed algorithm is simple,robust,and efficient.展开更多
The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission ...The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss.展开更多
When using the beam scanning method for particle beam therapy, the target volume is divided into many iso-energy slices and is irradiated slice by slice. Each slice may comprise thousands of discrete scanning beam pos...When using the beam scanning method for particle beam therapy, the target volume is divided into many iso-energy slices and is irradiated slice by slice. Each slice may comprise thousands of discrete scanning beam positions. An optimized scanning path can decrease the transit dose and may bypass important organs. The minimization of the scanning path length can be considered as a variation of the traveling salesman problem; the simulated annealing algorithm is adopted to solve this problem. The initial scanning path is assumed as a simple zigzag path;subsequently, random searches for accepted new paths are performed through cost evaluation and criteria-based judging. To reduce the optimization time of a given slice,random searches are parallelized by employing thousands of threads. The simultaneous optimization of multiple slices is realized by using many thread blocks of generalpurpose computing on graphics processing units hardware.Running on a computer with an Intel i7-4790 CPU and NVIDIA K2200 GPU, our new method required only 1.3 s to obtain optimized scanning paths with a total of 40 slices in typically studied cases. The procedure and optimization results of this new method are presented in this work.展开更多
Structure design and fabricating methods of three-dimensional (3D) artificial spherical compound eyes have been researched by many scholars. Micro-nano optical manufacturing is mostly used to process 3D artificial c...Structure design and fabricating methods of three-dimensional (3D) artificial spherical compound eyes have been researched by many scholars. Micro-nano optical manufacturing is mostly used to process 3D artificial compound eyes. However, spherical optical compound eyes are less at optical performance than the eyes of insects, and it is difficult to further improve the imaging quality of compound eyes by means of micro-nano optical manufacturing. In this research, nonhomogeneous aspheric compound eyes (ACEs) are designed and fabricated. The nonhomogeneous aspheric structure is applied to calibrate the spherical aberration. Micro milling with advantages in processing three-dimensional micro structures is adopted to manufacture ACEs. In order to obtain ACEs with high imaging quality, the tool paths are optimized by analyzing the influence factors consisting of interpolation allowable error, scallop height and tool path pattern. In the experiments, two kinds of ACEs are manufactured by micro-milling with different too path patterns and cutting parameter on the miniature precision five-axis milling machine tool. The experimental results indicate that the ACEs of high surface quality can be achieved by circularly milling small micro-lens individually with changeable cutting depth. A prototype of the aspheric compound eye (ACE) with surface roughness (Ra) below 0.12 p.m is obtained with good imaging performance. This research ameliorates the imaging quality of 3D artificial compound eyes, and the proposed method of micro-milling can improve surface processing quality of compound eyes.展开更多
Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, concepti...Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, conceptions of neighboring area and smell area were presented. The former can ensure the diversity of paths and the latter ensures that each ant can reach the goal. Then the whole path was divided into three parts and ACO was used to search the second part path. When the three parts pathes were adjusted, the final path was found. The valid path and invalid path were defined to ensure the path valid. Finally, the strategies of the pheromone search were applied to search the optimum path. However, when only the pheromone was used to search the optimum path, ACO converges easily. In order to avoid this premature convergence, combining pheromone search and random search, a hybrid ant colony algorithm(HACO) was used to find the optimum path. The comparison between ACO and HACO shows that HACO can be used to find the shortest path.展开更多
Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical ...Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.展开更多
Using the traditional swarm intelligence algorithm to solve the cooperative path planning problem for multi-UAVs is easy to incur the problems of local optimization and a slow convergence rate.A cooperative path plann...Using the traditional swarm intelligence algorithm to solve the cooperative path planning problem for multi-UAVs is easy to incur the problems of local optimization and a slow convergence rate.A cooperative path planning method for multi-UAVs based on the improved sheep optimization is proposed to tackle these.Firstly,based on the three-dimensional planning space,a multi-UAV cooperative cost function model is established according to the path planning requirements,and an initial track set is constructed by combining multiple-population ideas.Then an improved sheep optimization is proposed and used to solve the path planning problem and obtain multiple cooperative paths.The simulation results show that the sheep optimization can meet the requirements of path planning and realize the cooperative path planning of multi-UAVs.Compared with grey wolf optimizer(GWO),improved gray wolf optimizer(IGWO),chaotic gray wolf optimizer(CGWO),differential evolution(DE)algorithm,and particle swam optimization(PSO),the convergence speed and search accuracy of the improved sheep optimization are significantly improved.展开更多
Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the ...Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the Northern Goshawk Optimization(NGO)algorithm,particularly its tendency towards premature convergence and entrapment in local optima during function optimization processes,this study introduces an advanced Improved Northern Goshawk Optimization(INGO)algorithm.This algorithm incorporates a multifaceted enhancement strategy to boost operational efficiency.Initially,a tent chaotic map is employed in the initialization phase to generate a diverse initial population,providing high-quality feasible solutions.Subsequently,after the first phase of the NGO’s iterative process,a whale fall strategy is introduced to prevent premature convergence into local optima.This is followed by the integration of T-distributionmutation strategies and the State Transition Algorithm(STA)after the second phase of the NGO,achieving a balanced synergy between the algorithm’s exploitation and exploration.This research evaluates the performance of INGO using 23 benchmark functions alongside the IEEE CEC 2017 benchmark functions,accompanied by a statistical analysis of the results.The experimental outcomes demonstrate INGO’s superior achievements in function optimization tasks.Furthermore,its applicability in solving engineering design problems was verified through simulations on Unmanned Aerial Vehicle(UAV)trajectory planning issues,establishing INGO’s capability in addressing complex optimization challenges.展开更多
In this paper, a unique combination among probabilistic roadmap, modified ant colony optimization, and third order B-spline curve has been proposed to solve path planning problems?in complex and very complex environme...In this paper, a unique combination among probabilistic roadmap, modified ant colony optimization, and third order B-spline curve has been proposed to solve path planning problems?in complex and very complex environments. This proposed approach can be divided into three stages. First stage involves constructing a random roadmap depending on the environment complexity using probabilistic roadmap algorithm. Roadmap can be constructed by distributing N nodes randomly in complex and very complex static environments then pairing these nodes together according to some criteria or conditions. The constructed roadmap contains a huge number of possible random paths that may lead to connecting?the start and the goal points together. Second stage includes finding path within the pre-constructed roadmap. Modified ant colony optimization has been proposed to find or to search the best path between start and goal points, where in addition to the proposed combination, ACO has been modified to increase its ability to find shorter path. Finally, the third stage uses B-spline curve?to smooth and reduce the total length of the found path in the previous stage. The results of the proposed approach ensure?the?feasible?path between start and goal points in complex and very complex environments. Also, the path is guaranteed to be short, smooth, continuous?and safe.展开更多
A bi-objective optimization problem for flapping airfoils is solved to maximize the time-averaged thrust coefficient and the propulsive efficiency. Design variables include the plunging amplitude, the pitching amplitu...A bi-objective optimization problem for flapping airfoils is solved to maximize the time-averaged thrust coefficient and the propulsive efficiency. Design variables include the plunging amplitude, the pitching amplitude and the phase shift angle. A well defined Kriging model is used to substitute the time-consuming high fidelity model, and a multi-objective genetic algorithm is employed as the search algorithm. The optimization results show that the propulsive efficiency can be improved by reducing the plunging amplitude and the phase shift angle in a proper way. The results of global sensitivity analysis using the Sobol’s method show that both of the time-averaged thrust coefficient and the propulsive efficiency are most sensitive to the plunging amplitude, and second most sensitive to the pitching amplitude. It is also observed that the phase shift angle has an un-negligible influence on the propulsive efficiency, and has little effect on the time-averaged thrust coefficient.展开更多
A new genetic algorithm named niche pseudo-parallel genetic algorithm (NPPGA) is presented for path evolution and genetic optimization of autonomous mobile robot. The NPPGA is an effective improvement to maintain th...A new genetic algorithm named niche pseudo-parallel genetic algorithm (NPPGA) is presented for path evolution and genetic optimization of autonomous mobile robot. The NPPGA is an effective improvement to maintain the population diversity as well for the sake of avoiding premature and strengthen parallelism of the population to accelerate the search process combined with niche genetic algorithms and pseudo-parallel genetic algorithms. The proposed approach is evaluated by robotic path optimization, which is a specific application of traveler salesman problem (TSP). Experimental results indicated that a shortest path could be obtained in the practical traveling salesman problem named "Robot tour around Pekin", and the performance conducted by NPPGA is better than simple genetic algorithm (SGA) and distributed paralell genetic algorithms (DPGA).展开更多
基金supported in part by National Natural Science Foundation of China under Grants 62122069, 62071431, 62072490 and 62301490in part by Science and Technology Development Fund of Macao SAR, China under Grant 0158/2022/A+2 种基金in part by the Guangdong Basic and Applied Basic Research Foundation (2022A1515011287)in part by MYRG202000107-IOTSCin part by FDCT SKL-IOTSC (UM)-2021-2023
文摘With the development of the Internet of Things(IoT),it requires better performance from wireless sensor networks(WSNs),such as larger coverage,longer lifetime,and lower latency.However,a large amount of data generated from monitoring and long-distance transmission places a heavy burden on sensor nodes with the limited battery power.For this,we investigate an unmanned aerial vehicles assisted mobile wireless sensor network(UAV-assisted WSN)to prolong the network lifetime in this paper.Specifically,we use UAVs to assist the WSN in collecting data.In the current UAV-assisted WSN,the clustering and routing schemes are determined sequentially.However,such a separate consideration might not maximize the lifetime of the whole WSN due to the mutual coupling of clustering and routing.To efficiently prolong the lifetime of the WSN,we propose an integrated clustering and routing scheme that jointly optimizes the clustering and routing together.In the whole network space,it is intractable to efficiently obtain the optimal integrated clustering and routing scheme.Therefore,we propose the Monte-Las search strategy based on Monte Carlo and Las Vegas ideas,which can generate the chain matrix to guide the algorithm to find the solution faster.Unnecessary point-to-point collection leads to long collection paths,so a triangle optimization strategy is then proposed that finds a compromise path to shorten the collection path based on the geometric distribution and energy of sensor nodes.To avoid the coverage hole caused by the death of sensor nodes,the deployment of mobile sensor nodes and the preventive mechanism design are indispensable.An emergency data transmission mechanism is further proposed to reduce the latency of collecting the latency-sensitive data due to the absence of UAVs.Compared with the existing schemes,the proposed scheme can prolong the lifetime of the UAVassisted WSN at least by 360%,and shorten the collection path of UAVs by 56.24%.
基金supported by Second Batch of Curriculum Assessment Reform Pilot Project of Sanya University,(SYJGKH2023029)。
文摘With the rapid development of information technology,the combination of terminal technology,big data and mobile Internet and textbooks has become an irresistible trend in the modern education field.Under the context of the Internet,carrying out education and teaching activities based on digital textbooks can give full play to the rich media,openness and interaction of digital textbooks,broaden students′horizon,enrich students′knowledge,and promote the improvement of students′ability and all-round development.However,in the specific teaching practice,there are also problems such as old compilation ideas,single compilation mode and low efficiency of personalized learning.Therefore,schools and teachers need to constantly innovate the presentation and arrangement of digital textbooks,strengthen technical support,deepen students′understanding of the teaching content of digital textbooks,promote the comprehensive development of students and improve the effectiveness of digital textbook teaching.
基金supported by China National Science and Technology Major Project(2011ZX05009-004,2011ZX05014-003)National Key Basic Research and Development Program(973 Program),China(2011CB201006)Science Foundation of China University of Petroleum,Beijing(2462014YJRC053)
文摘With complex fractured-vuggy heterogeneous structures, water has to be injected to facilitate oil pro- duction. However, the effect of different water injection modes on oil recovery varies. The limitation of existing numerical simulation methods in representing fractured- vuggy carbonate reservoirs makes numerical simulation difficult to characterize the fluid flow in these reservoirs. In this paper, based on a geological example unit in the Tahe Oilfield, a three-dimensional physical model was designed and constructed to simulate fluid flow in a fractured-vuggy reservoir according to similarity criteria. The model was validated by simulating a bottom water drive reservoir, and then subsequent water injection modes were optimized. These were continuous (constant rate), intermittent, and pulsed injection of water. Experimental results reveal that due to the unbalanced formation pressure caused by pulsed water injection, the swept volume was expanded and consequently the highest oil recovery increment was achieved. Similar to continuous water injection, intermit- tent injection was influenced by factors including the connectivity of the fractured-vuggy reservoir, well depth, and the injection-production relationship, which led to a relative low oil recovery. This study may provide a constructive guide to field production and for the devel- opment of the commercial numerical models specialized for fractured-vuggy carbonate reservoirs.
基金supported by the National Natural Science Foundation of China(61803357)。
文摘The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.
基金This work was supported by Natural Science Foundation of Hainan Province of China(No.117212)National Natural Science Foundation of China(Nos.61633008,61374007,61601262 and 61701487)Natural Science Foundation of Heilongjiang Province of China(No.F2017005)and China Scholarship Council.
文摘This paper addresses the problem of assessing and optimizing the acoustic positioning system for underwater target localization with range measurement.We present a new three-dimensional assessment model to evaluate the optimal geometric beacon formation whether meets user requirements.For mathematical tractability,it is assumed that the measurements of the range between the target and beacons are corrupted with white Gaussian noise with variance,which is distance-dependent.Then,the relationship between DOP parameters and positioning accuracy can be derived by adopting dilution of precision(DOP)parameters in the assessment model.In addition,the optimal geometric beacon formation yielding the best performance can be achieved via minimizing the values of geometric dilution of precision(GDOP)in the case where the target position is known and fixed.Next,in order to ensure that the estimated positioning accuracy on the region of interest satisfies the precision required by the user,geometric positioning accuracy(GPA),horizontal positioning accuracy(HPA)and vertical positioning accuracy(VPA)are utilized to assess the optimal geometric beacon formation.Simulation examples are designed to illustrate the exactness of the conclusion.Unlike other work that only uses GDOP to optimize the formation and cannot assess the performance of the specified size,this new three-dimensional assessment model can evaluate the optimal geometric beacon formation for each dimension of any point in three-dimensional space,which can provide guidance to optimize the performance of each specified dimension.
基金supported by Supported by National Natural Science Fund(U1704156)
文摘With the reduction of urban land, the three-dimensional garage is increasingly built with its advantages of saving land. But the current three-dimensional garage is built for the car. It is hardly stereo parking garage for electric bicycles. This paper designed a hollow tower electric bicycle stereo parking garage with fork comb structure, based on the analysis of the characteristics of electric bicycles and the characteristics of existing three-dimensional garages. A fixed comb is mounted on the garage frame. The movable comb is mounted on the middle lift mechanism of the garage. The access of the vehicle is achieved by the exchange of the comb. The key comb structure was modeled using SolidWorks software and the stress distribution of the structure was analyzed. It was optimized by MATLAB software. The result shows that this structure can improve access efficiency. The quality of the comb structure can be minimized under the constraints of strength requirements.
基金Supported by State Key Laboratory of Robotics and System (HIT) under Grant No.SKLRS200706the Heilongjiang Scientific Research Foundation for Postdoctoral Financial Assistance under Grant No.323630221the Project of Harbin Technological Talent Research Foundation under Grant No.RC2006QN009015
文摘Path planning is an important issue for autonomous underwater vehicles (AUVs) traversing an unknown environment such as a sea floor, a jungle, or the outer celestial planets. For this paper, global path planning using large-scale chart data was studied, and the principles of ant colony optimization (ACO) were applied. This paper introduced the idea of a visibility graph based on the grid workspace model. It also brought a series of pheromone updating rules for the ACO planning algorithm. The operational steps of the ACO algorithm are proposed as a model for a global path planning method for AUV. To mimic the process of smoothing a planned path, a cutting operator and an insertion-point operator were designed. Simulation results demonstrated that the ACO algorithm is suitable for global path planning. The system has many advantages, including that the operating path of the AUV can be quickly optimized, and it is shorter, safer, and smoother. The prototype system successfully demonstrated the feasibility of the concept, proving it can be applied to surveys of unstructured unmanned environments.
文摘In milling around sharp corners, residual materials are left at sharp corners when the stepover is extremely long in the contour-parallel tool path. Milling force at the sharp corner rises momentarily due to the increase of the cutter contact length, thus shortening the tool life and leading to machine chatter, even cutter breakage. Then a tool path improvement method by inserting biarc transition segments in the contour-parallel tool path is proposed for milling the pocket. Using the method, the cutter moves along the biarc transition tool path. And the corner material is removed. The improved tool path is continuous for clearing residual materials at the sharp corner. Finally, the machining experiment validates the proposed method.
基金supported by the National Natural Science Foundation of China(6167321461673217+2 种基金61673219)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China(18KJB120011)the Postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX19_0299)
文摘This paper presents a path planning approach for rotary unmanned aerial vehicles(R-UAVs)in a known static rough terrain environment.This approach aims to find collision-free and feasible paths with minimum altitude,length and angle variable rate.First,a three-dimensional(3D)modeling method is proposed to reduce the computation burden of the dynamic models of R-UAVs.Considering the length,height and tuning angle of a path,the path planning of R-UAVs is described as a tri-objective optimization problem.Then,an improved multi-objective particle swarm optimization algorithm is developed.To render the algorithm more effective in dealing with this problem,a vibration function is introduced into the collided solutions to improve the algorithm efficiency.Meanwhile,the selection of the global best position is taken into account by the reference point method.Finally,the experimental environment is built with the help of the Google map and the 3D terrain generator World Machine.Experimental results under two different rough terrains from Guilin and Lanzhou of China demonstrate the capabilities of the proposed algorithm in finding Pareto optimal paths.
基金Supported by the Fundamental Research Funds for the Central Universities(Grant No.DL09CB02)the Heilongjiang Province Natural Science Fund(Grant No.E201013)
文摘Continuum robot is a new type of biomimetic robot,which realizes the motion by bending some parts of its body.So its path planning becomes more difficult even compared with hyper-redundant robots.In this paper a circular arc spline interpolating method is proposed for the robot shape description,and a new two-stage position-selectable-updating particle swarm optimization(TPPSO)algorithm is put forward to solve this path planning problem.The algorithm decomposes the standard PSO velocity’s single-step updating formula into twostage multi-point updating,specifically adopting three points as candidates and selecting the best one as the updated position in the first half stage,and similarly taking seven points as candidates and selecting the best one as the final position in the last half stage.This scheme refines and widens each particle’s searching trajectory,increases the updating speed of the individual best,and improves the converging speed and precision.Aiming at the optimization objective to minimize the sum of all the motion displacements of every segmental points and all the axial stretching or contracting displacements of every segment,the TPPSO algorithm is used to solve the path planning problem.The detailed solution procedure is presented.Numerical examples of five path planning cases show that the proposed algorithm is simple,robust,and efficient.
基金National Natural Science Foundation of China(Grant Nos.51805385,71471143)Hubei Provincial Natural Science Foundation of China(Grant No.2018CFB265)Center for Service Science and Engineering of Wuhan University of Science and Technology(Grant No.CSSE2017KA04)
文摘The information transmission path optimization(ITPO) can often a ect the e ciency and accuracy of remanufactur?ing service. However, there is a greater degree of uncertainty and complexity in information transmission of remanu?facturing service system, which leads to a critical need for designing planning models to deal with this added uncer?tainty and complexity. In this paper, a three?dimensional(3D) model of remanufacturing service information network for information transmission is developed, which combines the physic coordinate and the transmitted properties of all the devices in the remanufacturing service system. In order to solve the basic ITPO in the 3D model, an improved 3D ant colony algorithm(Improved AC) was put forward. Moreover, to further improve the operation e ciency of the algorithm, an improved ant colony?genetic algorithm(AC?GA) that combines the improved AC and genetic algorithm was developed. In addition, by taking the transmission of remanufacturing service demand information of certain roller as example, the e ectiveness of AC?GA algorithm was analyzed and compared with that of improved AC, and the results demonstrated that AC?GA algorithm was superior to AC algorithm in aspects of information transmission delay, information transmission cost, and rate of information loss.
文摘When using the beam scanning method for particle beam therapy, the target volume is divided into many iso-energy slices and is irradiated slice by slice. Each slice may comprise thousands of discrete scanning beam positions. An optimized scanning path can decrease the transit dose and may bypass important organs. The minimization of the scanning path length can be considered as a variation of the traveling salesman problem; the simulated annealing algorithm is adopted to solve this problem. The initial scanning path is assumed as a simple zigzag path;subsequently, random searches for accepted new paths are performed through cost evaluation and criteria-based judging. To reduce the optimization time of a given slice,random searches are parallelized by employing thousands of threads. The simultaneous optimization of multiple slices is realized by using many thread blocks of generalpurpose computing on graphics processing units hardware.Running on a computer with an Intel i7-4790 CPU and NVIDIA K2200 GPU, our new method required only 1.3 s to obtain optimized scanning paths with a total of 40 slices in typically studied cases. The procedure and optimization results of this new method are presented in this work.
基金Supported by National Natural Science Foundation of China(Grant No.50935003)National Numerical Control Major Projects of China(Grant No.2013ZX04001000215)
文摘Structure design and fabricating methods of three-dimensional (3D) artificial spherical compound eyes have been researched by many scholars. Micro-nano optical manufacturing is mostly used to process 3D artificial compound eyes. However, spherical optical compound eyes are less at optical performance than the eyes of insects, and it is difficult to further improve the imaging quality of compound eyes by means of micro-nano optical manufacturing. In this research, nonhomogeneous aspheric compound eyes (ACEs) are designed and fabricated. The nonhomogeneous aspheric structure is applied to calibrate the spherical aberration. Micro milling with advantages in processing three-dimensional micro structures is adopted to manufacture ACEs. In order to obtain ACEs with high imaging quality, the tool paths are optimized by analyzing the influence factors consisting of interpolation allowable error, scallop height and tool path pattern. In the experiments, two kinds of ACEs are manufactured by micro-milling with different too path patterns and cutting parameter on the miniature precision five-axis milling machine tool. The experimental results indicate that the ACEs of high surface quality can be achieved by circularly milling small micro-lens individually with changeable cutting depth. A prototype of the aspheric compound eye (ACE) with surface roughness (Ra) below 0.12 p.m is obtained with good imaging performance. This research ameliorates the imaging quality of 3D artificial compound eyes, and the proposed method of micro-milling can improve surface processing quality of compound eyes.
基金Projects(60234030, 60404021) supported by the National Natural Science Foundation of China
文摘Ant colony optimization (ACO) algorithm was modified to optimize the global path. In order to simulate the real ant colonies, according to the foraging behavior of ant colonies and the characteristic of food, conceptions of neighboring area and smell area were presented. The former can ensure the diversity of paths and the latter ensures that each ant can reach the goal. Then the whole path was divided into three parts and ACO was used to search the second part path. When the three parts pathes were adjusted, the final path was found. The valid path and invalid path were defined to ensure the path valid. Finally, the strategies of the pheromone search were applied to search the optimum path. However, when only the pheromone was used to search the optimum path, ACO converges easily. In order to avoid this premature convergence, combining pheromone search and random search, a hybrid ant colony algorithm(HACO) was used to find the optimum path. The comparison between ACO and HACO shows that HACO can be used to find the shortest path.
文摘Aiming at the practical application of Unmanned Underwater Vehicle(UUV)in underwater combat,this paper proposes a battlefield ambush scene with UUV considering ocean current.Firstly,by establishing these mathematical models of ocean current environment,target movement,and sonar detection,the probability calculation methods of single UUV searching target and multiple UUV cooperatively searching target are given respectively.Then,based on the Hybrid Quantum-behaved Particle Swarm Optimization(HQPSO)algorithm,the path with the highest target search probability is found.Finally,through simulation calculations,the influence of different UUV parameters and target parameters on the target search probability is analyzed,and the minimum number of UUVs that need to be deployed to complete the ambush task is demonstrated,and the optimal search path scheme is obtained.The method proposed in this paper provides a theoretical basis for the practical application of UUV in the future combat.
基金supported in part by the Fundamental Research Funds for the Central Universities(No.NZ18008)。
文摘Using the traditional swarm intelligence algorithm to solve the cooperative path planning problem for multi-UAVs is easy to incur the problems of local optimization and a slow convergence rate.A cooperative path planning method for multi-UAVs based on the improved sheep optimization is proposed to tackle these.Firstly,based on the three-dimensional planning space,a multi-UAV cooperative cost function model is established according to the path planning requirements,and an initial track set is constructed by combining multiple-population ideas.Then an improved sheep optimization is proposed and used to solve the path planning problem and obtain multiple cooperative paths.The simulation results show that the sheep optimization can meet the requirements of path planning and realize the cooperative path planning of multi-UAVs.Compared with grey wolf optimizer(GWO),improved gray wolf optimizer(IGWO),chaotic gray wolf optimizer(CGWO),differential evolution(DE)algorithm,and particle swam optimization(PSO),the convergence speed and search accuracy of the improved sheep optimization are significantly improved.
基金supported by theKey Research and Development Project of Hubei Province(No.2023BAB094)the Key Project of Science and Technology Research Program of Hubei Educational Committee(No.D20211402)the Open Foundation of HubeiKey Laboratory for High-Efficiency Utilization of Solar Energy and Operation Control of Energy Storage System(No.HBSEES202309).
文摘Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the Northern Goshawk Optimization(NGO)algorithm,particularly its tendency towards premature convergence and entrapment in local optima during function optimization processes,this study introduces an advanced Improved Northern Goshawk Optimization(INGO)algorithm.This algorithm incorporates a multifaceted enhancement strategy to boost operational efficiency.Initially,a tent chaotic map is employed in the initialization phase to generate a diverse initial population,providing high-quality feasible solutions.Subsequently,after the first phase of the NGO’s iterative process,a whale fall strategy is introduced to prevent premature convergence into local optima.This is followed by the integration of T-distributionmutation strategies and the State Transition Algorithm(STA)after the second phase of the NGO,achieving a balanced synergy between the algorithm’s exploitation and exploration.This research evaluates the performance of INGO using 23 benchmark functions alongside the IEEE CEC 2017 benchmark functions,accompanied by a statistical analysis of the results.The experimental outcomes demonstrate INGO’s superior achievements in function optimization tasks.Furthermore,its applicability in solving engineering design problems was verified through simulations on Unmanned Aerial Vehicle(UAV)trajectory planning issues,establishing INGO’s capability in addressing complex optimization challenges.
文摘In this paper, a unique combination among probabilistic roadmap, modified ant colony optimization, and third order B-spline curve has been proposed to solve path planning problems?in complex and very complex environments. This proposed approach can be divided into three stages. First stage involves constructing a random roadmap depending on the environment complexity using probabilistic roadmap algorithm. Roadmap can be constructed by distributing N nodes randomly in complex and very complex static environments then pairing these nodes together according to some criteria or conditions. The constructed roadmap contains a huge number of possible random paths that may lead to connecting?the start and the goal points together. Second stage includes finding path within the pre-constructed roadmap. Modified ant colony optimization has been proposed to find or to search the best path between start and goal points, where in addition to the proposed combination, ACO has been modified to increase its ability to find shorter path. Finally, the third stage uses B-spline curve?to smooth and reduce the total length of the found path in the previous stage. The results of the proposed approach ensure?the?feasible?path between start and goal points in complex and very complex environments. Also, the path is guaranteed to be short, smooth, continuous?and safe.
基金Supported by the National Science Foundation for Post-doctoral Scientists of China (20090460216 )the National Defense Fundamental Research Foundation of China(B222006060)
文摘A bi-objective optimization problem for flapping airfoils is solved to maximize the time-averaged thrust coefficient and the propulsive efficiency. Design variables include the plunging amplitude, the pitching amplitude and the phase shift angle. A well defined Kriging model is used to substitute the time-consuming high fidelity model, and a multi-objective genetic algorithm is employed as the search algorithm. The optimization results show that the propulsive efficiency can be improved by reducing the plunging amplitude and the phase shift angle in a proper way. The results of global sensitivity analysis using the Sobol’s method show that both of the time-averaged thrust coefficient and the propulsive efficiency are most sensitive to the plunging amplitude, and second most sensitive to the pitching amplitude. It is also observed that the phase shift angle has an un-negligible influence on the propulsive efficiency, and has little effect on the time-averaged thrust coefficient.
文摘A new genetic algorithm named niche pseudo-parallel genetic algorithm (NPPGA) is presented for path evolution and genetic optimization of autonomous mobile robot. The NPPGA is an effective improvement to maintain the population diversity as well for the sake of avoiding premature and strengthen parallelism of the population to accelerate the search process combined with niche genetic algorithms and pseudo-parallel genetic algorithms. The proposed approach is evaluated by robotic path optimization, which is a specific application of traveler salesman problem (TSP). Experimental results indicated that a shortest path could be obtained in the practical traveling salesman problem named "Robot tour around Pekin", and the performance conducted by NPPGA is better than simple genetic algorithm (SGA) and distributed paralell genetic algorithms (DPGA).