期刊文献+
共找到136,647篇文章
< 1 2 250 >
每页显示 20 50 100
A Three-Dimensional Prediction Method for Thermal Diffusion 被引量:1
1
作者 Wang, LX Sun, YL Zheng, LY 《China Ocean Engineering》 SCIE EI 1998年第3期309-321,共13页
A three-dimensional, first order turbulence closure, thermal diffusion model is described in this paper. The governing equations consist of an equation of continuity, three components of momentum, conservation equatio... A three-dimensional, first order turbulence closure, thermal diffusion model is described in this paper. The governing equations consist of an equation of continuity, three components of momentum, conservation equations for salt, temperature and subgridscale energy, and an equation of state. In the model, according to the hypothesis of Kolmogorov and Prandtl, the viscosity coefficient of turbulent flow of homogeneous fluid is related to the local turbulent energy, and the horizontal and vertical exchange coefficients of mass, heat and momentum are computed with the introduction of subgridscale turbulence energy. The governing equations are solved by finite difference techniques. This model is applied to the Jiaozhou bay to predict thermal pollution by the Huangdao power plant. An instantaneous tidal current field is computed, then the distribution of temperature increment is predicted, and finally the effect of wind stress on thermal discharge is discussed. 展开更多
关键词 three-dimensional turbulence closure thermal diffusion model finite difference techniques subgridscale energy exchange coefficient temperature increment
全文增补中
Oxygen tension modulates cell function in an in vitro three-dimensional glioblastoma tumor model 被引量:1
2
作者 Sen Wang Siqi Yao +8 位作者 Na Pei Luge Bai Zhiyan Hao Dichen Li Jiankang He J.Miguel Oliveira Xiaoyan Xue Ling Wang Xinggang Mao 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2024年第3期307-319,共13页
Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor ... Hypoxia is a typical feature of the tumor microenvironment,one of the most critical factors affecting cell behavior and tumor progression.However,the lack of tumor models able to precisely emulate natural brain tumor tissue has impeded the study of the effects of hypoxia on the progression and growth of tumor cells.This study reports a three-dimensional(3D)brain tumor model obtained by encapsulating U87MG(U87)cells in a hydrogel containing type I collagen.It also documents the effect of various oxygen concentrations(1%,7%,and 21%)in the culture environment on U87 cell morphology,proliferation,viability,cell cycle,apoptosis rate,and migration.Finally,it compares two-dimensional(2D)and 3D cultures.For comparison purposes,cells cultured in flat culture dishes were used as the control(2D model).Cells cultured in the 3D model proliferated more slowly but had a higher apoptosis rate and proportion of cells in the resting phase(G0 phase)/gap I phase(G1 phase)than those cultured in the 2D model.Besides,the two models yielded significantly different cell morphologies.Finally,hypoxia(e.g.,1%O2)affected cell morphology,slowed cell growth,reduced cell viability,and increased the apoptosis rate in the 3D model.These results indicate that the constructed 3D model is effective for investigating the effects of biological and chemical factors on cell morphology and function,and can be more representative of the tumor microenvironment than 2D culture systems.The developed 3D glioblastoma tumor model is equally applicable to other studies in pharmacology and pathology. 展开更多
关键词 HYPOXIA GLIOMA three-dimensional glioma model In vitro
下载PDF
Prediction model for corrosion rate of low-alloy steels under atmospheric conditions using machine learning algorithms 被引量:1
3
作者 Jingou Kuang Zhilin Long 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期337-350,共14页
This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while ... This work constructed a machine learning(ML)model to predict the atmospheric corrosion rate of low-alloy steels(LAS).The material properties of LAS,environmental factors,and exposure time were used as the input,while the corrosion rate as the output.6 dif-ferent ML algorithms were used to construct the proposed model.Through optimization and filtering,the eXtreme gradient boosting(XG-Boost)model exhibited good corrosion rate prediction accuracy.The features of material properties were then transformed into atomic and physical features using the proposed property transformation approach,and the dominant descriptors that affected the corrosion rate were filtered using the recursive feature elimination(RFE)as well as XGBoost methods.The established ML models exhibited better predic-tion performance and generalization ability via property transformation descriptors.In addition,the SHapley additive exPlanations(SHAP)method was applied to analyze the relationship between the descriptors and corrosion rate.The results showed that the property transformation model could effectively help with analyzing the corrosion behavior,thereby significantly improving the generalization ability of corrosion rate prediction models. 展开更多
关键词 machine learning low-alloy steel atmospheric corrosion prediction corrosion rate feature fusion
下载PDF
Flood Velocity Prediction Using Deep Learning Approach 被引量:1
4
作者 LUO Shaohua DING Linfang +2 位作者 TEKLE Gebretsadik Mulubirhan BRULAND Oddbjørn FAN Hongchao 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第1期59-73,共15页
Floods are one of the most serious natural disasters that can cause huge societal and economic losses.Extensive research has been conducted on topics like flood monitoring,prediction,and loss estimation.In these resea... Floods are one of the most serious natural disasters that can cause huge societal and economic losses.Extensive research has been conducted on topics like flood monitoring,prediction,and loss estimation.In these research fields,flood velocity plays a crucial role and is an important factor that influences the reliability of the outcomes.Traditional methods rely on physical models for flood simulation and prediction and could generate accurate results but often take a long time.Deep learning technology has recently shown significant potential in the same field,especially in terms of efficiency,helping to overcome the time-consuming associated with traditional methods.This study explores the potential of deep learning models in predicting flood velocity.More specifically,we use a Multi-Layer Perceptron(MLP)model,a specific type of Artificial Neural Networks(ANNs),to predict the velocity in the test area of the Lundesokna River in Norway with diverse terrain conditions.Geographic data and flood velocity simulated based on the physical hydraulic model are used in the study for the pre-training,optimization,and testing of the MLP model.Our experiment indicates that the MLP model has the potential to predict flood velocity in diverse terrain conditions of the river with acceptable accuracy against simulated velocity results but with a significant decrease in training time and testing time.Meanwhile,we discuss the limitations for the improvement in future work. 展开更多
关键词 flood velocity prediction geographic data MLP deep learning
下载PDF
The combined application of stem cells and three-dimensional bioprinting scaffolds for the repair of spinal cord injury 被引量:1
5
作者 Dingyue Ju Chuanming Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1751-1758,共8页
Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and t... Spinal cord injury is considered one of the most difficult injuries to repair and has one of the worst prognoses for injuries to the nervous system.Following surgery,the poor regenerative capacity of nerve cells and the generation of new scars can make it very difficult for the impaired nervous system to restore its neural functionality.Traditional treatments can only alleviate secondary injuries but cannot fundamentally repair the spinal cord.Consequently,there is a critical need to develop new treatments to promote functional repair after spinal cord injury.Over recent years,there have been seve ral developments in the use of stem cell therapy for the treatment of spinal cord injury.Alongside significant developments in the field of tissue engineering,three-dimensional bioprinting technology has become a hot research topic due to its ability to accurately print complex structures.This led to the loading of three-dimensional bioprinting scaffolds which provided precise cell localization.These three-dimensional bioprinting scaffolds co uld repair damaged neural circuits and had the potential to repair the damaged spinal cord.In this review,we discuss the mechanisms underlying simple stem cell therapy,the application of different types of stem cells for the treatment of spinal cord injury,and the different manufa cturing methods for three-dimensional bioprinting scaffolds.In particular,we focus on the development of three-dimensional bioprinting scaffolds for the treatment of spinal cord injury. 展开更多
关键词 BIOMATERIALS embryonic stem cells induced pluripotent stem cells mesenchymal stem cells nerve regeneration spinal cord injury stem cell therapy stem cells three-dimensional bioprinting
下载PDF
Research on Quantitative Identification of Three-Dimensional Connectivity of Fractured-Vuggy Reservoirs
6
作者 Xingliang Deng Peng Cao +3 位作者 Yintao Zhang Yuhui Zhou Xiao Luo Liang Wang 《Energy Engineering》 EI 2024年第5期1195-1207,共13页
The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and ... The fractured-vuggy carbonate oil resources in the western basin of China are extremely rich.The connectivity of carbonate reservoirs is complex,and there is still a lack of clear understanding of the development and topological structure of the pore space in fractured-vuggy reservoirs.Thus,effective prediction of fractured-vuggy reservoirs is difficult.In view of this,this work employs adaptive point cloud technology to reproduce the shape and capture the characteristics of a fractured-vuggy reservoir.To identify the complex connectivity among pores,fractures,and vugs,a simplified one-dimensional connectivity model is established by using the meshless connection element method(CEM).Considering that different types of connection units have different flow characteristics,a sequential coupling calculation method that can efficiently calculate reservoir pressure and saturation is developed.By automatic history matching,the dynamic production data is fitted in real-time,and the characteristic parameters of the connection unit are inverted.Simulation results show that the three-dimensional connectivity model of the fractured-vuggy reservoir built in this work is as close as 90%of the fine grid model,while the dynamic simulation efficiency is much higher with good accuracy. 展开更多
关键词 Fractured-vuggy reservoir three-dimensional connectivity connection unit dynamic prediction automatic history matching
下载PDF
An attention-based teacher-student model for multivariate short-term landslide displacement prediction incorporating weather forecast data
7
作者 CHEN Jun HU Wang +2 位作者 ZHANG Yu QIU Hongzhi WANG Renchao 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2739-2753,共15页
Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection ... Predicting the displacement of landslide is of utmost practical importance as the landslide can pose serious threats to both human life and property.However,traditional methods have the limitation of random selection in sliding window selection and seldom incorporate weather forecast data for displacement prediction,while a single structural model cannot handle input sequences of different lengths at the same time.In order to solve these limitations,in this study,a new approach is proposed that utilizes weather forecast data and incorporates the maximum information coefficient(MIC),long short-term memory network(LSTM),and attention mechanism to establish a teacher-student coupling model with parallel structure for short-term landslide displacement prediction.Through MIC,a suitable input sequence length is selected for the LSTM model.To investigate the influence of rainfall on landslides during different seasons,a parallel teacher-student coupling model is developed that is able to learn sequential information from various time series of different lengths.The teacher model learns sequence information from rainfall intensity time series while incorporating reliable short-term weather forecast data from platforms such as China Meteorological Administration(CMA)and Reliable Prognosis(https://rp5.ru)to improve the model’s expression capability,and the student model learns sequence information from other time series.An attention module is then designed to integrate different sequence information to derive a context vector,representing seasonal temporal attention mode.Finally,the predicted displacement is obtained through a linear layer.The proposed method demonstrates superior prediction accuracies,surpassing those of the support vector machine(SVM),LSTM,recurrent neural network(RNN),temporal convolutional network(TCN),and LSTM-Attention models.It achieves a mean absolute error(MAE)of 0.072 mm,root mean square error(RMSE)of 0.096 mm,and pearson correlation coefficients(PCCS)of 0.85.Additionally,it exhibits enhanced prediction stability and interpretability,rendering it an indispensable tool for landslide disaster prevention and mitigation. 展开更多
关键词 Landslide prediction MIC LSTM Attention mechanism Teacher Student model prediction stability and interpretability
下载PDF
Development of a toroidal soft x-ray imaging system and application for investigating three-dimensional plasma on J-TEXT
8
作者 赵传旭 李建超 +9 位作者 张晓卿 王能超 丁永华 杨州军 江中和 严伟 李杨波 毛飞越 任正康 the J-TEXT Team 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第3期94-99,共6页
A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and locat... A toroidal soft x-ray imaging(T-SXRI)system has been developed to investigate threedimensional(3D)plasma physics on J-TEXT.This T-SXRI system consists of three sets of SXR arrays.Two sets are newly developed and located on the vacuum chamber wall at toroidal positionsφof 126.4°and 272.6°,respectively,while one set was established previously atφ=65.50.Each set of SXR arrays consists of three arrays viewing the plasma poloidally,and hence can be used separately to obtain SXR images via the tomographic method.The sawtooth precursor oscillations are measured by T-SXRI,and the corresponding images of perturbative SXR signals are successfully reconstructed at these three toroidal positions,hence providing measurement of the 3D structure of precursor oscillations.The observed 3D structure is consistent with the helical structure of the m/n=1/1 mode.The experimental observation confirms that the T-SXRI system is able to observe 3D structures in the J-TEXT plasma. 展开更多
关键词 SXR imaging J-TEXT tokamak three-dimensional measurement MHD
下载PDF
Cardiovascular computed tomography in cardiovascular disease:An overview of its applications from diagnosis to prediction
9
作者 Zhong-Hua SUN 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2024年第5期550-576,共27页
Cardiovascular computed tomography angiography(CTA)is a widely used imaging modality in the diagnosis of cardiovascular disease.Advancements in CT imaging technology have further advanced its applications from high di... Cardiovascular computed tomography angiography(CTA)is a widely used imaging modality in the diagnosis of cardiovascular disease.Advancements in CT imaging technology have further advanced its applications from high diagnostic value to minimising radiation exposure to patients.In addition to the standard application of assessing vascular lumen changes,CTA-derived applications including 3D printed personalised models,3D visualisations such as virtual endoscopy,virtual reality,augmented reality and mixed reality,as well as CT-derived hemodynamic flow analysis and fractional flow reserve(FFRCT)greatly enhance the diagnostic performance of CTA in cardiovascular disease.The widespread application of artificial intelligence in medicine also significantly contributes to the clinical value of CTA in cardiovascular disease.Clinical value of CTA has extended from the initial diagnosis to identification of vulnerable lesions,and prediction of disease extent,hence improving patient care and management.In this review article,as an active researcher in cardiovascular imaging for more than 20 years,I will provide an overview of cardiovascular CTA in cardiovascular disease.It is expected that this review will provide readers with an update of CTA applications,from the initial lumen assessment to recent developments utilising latest novel imaging and visualisation technologies.It will serve as a useful resource for researchers and clinicians to judiciously use the cardiovascular CT in clinical practice. 展开更多
关键词 DIAGNOSIS CARDIOVASCULAR prediction
下载PDF
Note on:“Ballistic model for the prediction of penetration depth and residual velocity in adobe:A new interpretation of the ballistic resistance of earthen masonry”
10
作者 Andreas Heine Matthias Wickert 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第1期607-609,共3页
A recently published modeling approach for the penetration into adobe and previous approaches implicitly criticized are reviewed and discussed.This article contains a note on the paper titled“Ballistic model for the ... A recently published modeling approach for the penetration into adobe and previous approaches implicitly criticized are reviewed and discussed.This article contains a note on the paper titled“Ballistic model for the prediction of penetration depth and residual velocity in adobe:A new interpretation of the ballistic resistance of earthen masonry”(DOI:https://doi.org/10.1016/j.dt.2018.07.017).Reply to the Note from Li Piani et al is linked to this article. 展开更多
关键词 ADOBE prediction earth
下载PDF
Development and validation of a model integrating clinical and coronary lesion-based functional assessment for longterm risk prediction in PCI patients
11
作者 Shao-Yu WU Rui ZHANG +5 位作者 Sheng YUAN Zhong-Xing CAI Chang-Dong GUAN Tong-Qiang ZOU Li-Hua XIE Ke-Fei DOU 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2024年第1期44-63,共20页
OBJECTIVES To establish a scoring system combining the ACEF score and the quantitative blood flow ratio(QFR) to improve the long-term risk prediction of patients undergoing percutaneous coronary intervention(PCI).METH... OBJECTIVES To establish a scoring system combining the ACEF score and the quantitative blood flow ratio(QFR) to improve the long-term risk prediction of patients undergoing percutaneous coronary intervention(PCI).METHODS In this population-based cohort study, a total of 46 features, including patient clinical and coronary lesion characteristics, were assessed for analysis through machine learning models. The ACEF-QFR scoring system was developed using 1263consecutive cases of CAD patients after PCI in PANDA Ⅲ trial database. The newly developed score was then validated on the other remaining 542 patients in the cohort.RESULTS In both the Random Forest Model and the Deep Surv Model, age, renal function(creatinine), cardiac function(LVEF)and post-PCI coronary physiological index(QFR) were identified and confirmed to be significant predictive factors for 2-year adverse cardiac events. The ACEF-QFR score was constructed based on the developmental dataset and computed as age(years)/EF(%) + 1(if creatinine ≥ 2.0 mg/d L) + 1(if post-PCI QFR ≤ 0.92). The performance of the ACEF-QFR scoring system was preliminarily evaluated in the developmental dataset, and then further explored in the validation dataset. The ACEF-QFR score showed superior discrimination(C-statistic = 0.651;95% CI: 0.611-0.691, P < 0.05 versus post-PCI physiological index and other commonly used risk scores) and excellent calibration(Hosmer–Lemeshow χ^(2)= 7.070;P = 0.529) for predicting 2-year patient-oriented composite endpoint(POCE). The good prognostic value of the ACEF-QFR score was further validated by multivariable Cox regression and Kaplan–Meier analysis(adjusted HR = 1.89;95% CI: 1.18–3.04;log-rank P < 0.01) after stratified the patients into high-risk group and low-risk group.CONCLUSIONS An improved scoring system combining clinical and coronary lesion-based functional variables(ACEF-QFR)was developed, and its ability for prognostic prediction in patients with PCI was further validated to be significantly better than the post-PCI physiological index and other commonly used risk scores. 展开更多
关键词 PATIENTS CORONARY prediction
下载PDF
A deep multimodal fusion and multitasking trajectory prediction model for typhoon trajectory prediction to reduce flight scheduling cancellation
12
作者 TANG Jun QIN Wanting +1 位作者 PAN Qingtao LAO Songyang 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第3期666-678,共13页
Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon... Natural events have had a significant impact on overall flight activity,and the aviation industry plays a vital role in helping society cope with the impact of these events.As one of the most impactful weather typhoon seasons appears and continues,airlines operating in threatened areas and passengers having travel plans during this time period will pay close attention to the development of tropical storms.This paper proposes a deep multimodal fusion and multitasking trajectory prediction model that can improve the reliability of typhoon trajectory prediction and reduce the quantity of flight scheduling cancellation.The deep multimodal fusion module is formed by deep fusion of the feature output by multiple submodal fusion modules,and the multitask generation module uses longitude and latitude as two related tasks for simultaneous prediction.With more dependable data accuracy,problems can be analysed rapidly and more efficiently,enabling better decision-making with a proactive versus reactive posture.When multiple modalities coexist,features can be extracted from them simultaneously to supplement each other’s information.An actual case study,the typhoon Lichma that swept China in 2019,has demonstrated that the algorithm can effectively reduce the number of unnecessary flight cancellations compared to existing flight scheduling and assist the new generation of flight scheduling systems under extreme weather. 展开更多
关键词 flight scheduling optimization deep multimodal fusion multitasking trajectory prediction typhoon weather flight cancellation prediction reliability
下载PDF
Three-dimensional cell-based strategies for liver regeneration
13
作者 DAN GUO XI XIA JIAN YANG 《BIOCELL》 SCIE 2024年第7期1023-1036,共14页
Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising ap... Liver regeneration and the development of effective therapies for liver failure remain formidable challenges in modern medicine.In recent years,the utilization of 3D cell-based strategies has emerged as a promising approach for addressing these urgent clinical requirements.This review provides a thorough analysis of the application of 3D cell-based approaches to liver regeneration and their potential impact on patients with end-stage liver failure.Here,we discuss various 3D culture models that incorporate hepatocytes and stem cells to restore liver function and ameliorate the consequences of liver failure.Furthermore,we explored the challenges in transitioning these innovative strategies from preclinical studies to clinical applications.The collective insights presented herein highlight the significance of 3D cell-based strategies as a transformative paradigm for liver regeneration and improved patient care. 展开更多
关键词 three-dimensional Liver regeneration ORGANOIDS Stem cells Cell therapy
下载PDF
A HEVC Video Steganalysis Method Using the Optimality of Motion Vector Prediction
14
作者 Jun Li Minqing Zhang +2 位作者 Ke Niu Yingnan Zhang Xiaoyuan Yang 《Computers, Materials & Continua》 SCIE EI 2024年第5期2085-2103,共19页
Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detectio... Among steganalysis techniques,detection against MV(motion vector)domain-based video steganography in the HEVC(High Efficiency Video Coding)standard remains a challenging issue.For the purpose of improving the detection performance,this paper proposes a steganalysis method that can perfectly detectMV-based steganography in HEVC.Firstly,we define the local optimality of MVP(Motion Vector Prediction)based on the technology of AMVP(Advanced Motion Vector Prediction).Secondly,we analyze that in HEVC video,message embedding either usingMVP index orMVD(Motion Vector Difference)may destroy the above optimality of MVP.And then,we define the optimal rate of MVP as a steganalysis feature.Finally,we conduct steganalysis detection experiments on two general datasets for three popular steganographymethods and compare the performance with four state-ofthe-art steganalysis methods.The experimental results demonstrate the effectiveness of the proposed feature set.Furthermore,our method stands out for its practical applicability,requiring no model training and exhibiting low computational complexity,making it a viable solution for real-world scenarios. 展开更多
关键词 Video steganography video steganalysis motion vector prediction motion vector difference advanced motion vector prediction local optimality
下载PDF
Advancing Malaria Prediction in Uganda through AI and Geospatial Analysis Models
15
作者 Maria Assumpta Komugabe Richard Caballero +1 位作者 Itamar Shabtai Simon Peter Musinguzi 《Journal of Geographic Information System》 2024年第2期115-135,共21页
The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication e... The resurgence of locally acquired malaria cases in the USA and the persistent global challenge of malaria transmission highlight the urgent need for research to prevent this disease. Despite significant eradication efforts, malaria remains a serious threat, particularly in regions like Africa. This study explores how integrating Gregor’s Type IV theory with Geographic Information Systems (GIS) improves our understanding of disease dynamics, especially Malaria transmission patterns in Uganda. By combining data-driven algorithms, artificial intelligence, and geospatial analysis, the research aims to determine the most reliable predictors of Malaria incident rates and assess the impact of different factors on transmission. Using diverse predictive modeling techniques including Linear Regression, K-Nearest Neighbor, Neural Network, and Random Forest, the study found that;Random Forest model outperformed the others, demonstrating superior predictive accuracy with an R<sup>2</sup> of approximately 0.88 and a Mean Squared Error (MSE) of 0.0534, Antimalarial treatment was identified as the most influential factor, with mosquito net access associated with a significant reduction in incident rates, while higher temperatures correlated with increased rates. Our study concluded that the Random Forest model was effective in predicting malaria incident rates in Uganda and highlighted the significance of climate factors and preventive measures such as mosquito nets and antimalarial drugs. We recommended that districts with malaria hotspots lacking Indoor Residual Spraying (IRS) coverage prioritize its implementation to mitigate incident rates, while those with high malaria rates in 2020 require immediate attention. By advocating for the use of appropriate predictive models, our research emphasized the importance of evidence-based decision-making in malaria control strategies, aiming to reduce transmission rates and save lives. 展开更多
关键词 MALARIA predictive Modeling Geospatial Analysis Climate Factors Preventive Measures
下载PDF
Privacy-Preserving Federated Mobility Prediction with Compound Data and Model Perturbation Mechanism
16
作者 Long Qingyue Wang Huandong +4 位作者 Chen Huiming Jin Depeng Zhu Lin Yu Li Li Yong 《China Communications》 SCIE CSCD 2024年第3期160-173,共14页
Human mobility prediction is important for many applications.However,training an accurate mobility prediction model requires a large scale of human trajectories,where privacy issues become an important problem.The ris... Human mobility prediction is important for many applications.However,training an accurate mobility prediction model requires a large scale of human trajectories,where privacy issues become an important problem.The rising federated learning provides us with a promising solution to this problem,which enables mobile devices to collaboratively learn a shared prediction model while keeping all the training data on the device,decoupling the ability to do machine learning from the need to store the data in the cloud.However,existing federated learningbased methods either do not provide privacy guarantees or have vulnerability in terms of privacy leakage.In this paper,we combine the techniques of data perturbation and model perturbation mechanisms and propose a privacy-preserving mobility prediction algorithm,where we add noise to the transmitted model and the raw data collaboratively to protect user privacy and keep the mobility prediction performance.Extensive experimental results show that our proposed method significantly outperforms the existing stateof-the-art mobility prediction method in terms of defensive performance against practical attacks while having comparable mobility prediction performance,demonstrating its effectiveness. 展开更多
关键词 federated learning mobility prediction PRIVACY
下载PDF
Development,validation,and transportability of several machine-learned,non-exercise-based VO_(2max)prediction models for older adults
17
作者 Benjamin T.Schumacher Michael J.LaMonte +5 位作者 Andrea Z.LaCroix Eleanor M.Simonsick Steven P.Hooker Humberto Parada Jr. John Bellettiere Arun Kumar 《Journal of Sport and Health Science》 SCIE CAS CSCD 2024年第5期611-620,共10页
Background:There exist few maximal oxygen uptake(VO_(2max))non-exercise-based prediction equations,fewer using machine learning(ML),and none specifically for older adults.Since direct measurement of VO_(2max)is infeas... Background:There exist few maximal oxygen uptake(VO_(2max))non-exercise-based prediction equations,fewer using machine learning(ML),and none specifically for older adults.Since direct measurement of VO_(2max)is infeasible in large epidemiologic cohort studies,we sought to develop,validate,compare,and assess the transportability of several ML VO_(2max)prediction algorithms.Methods:The Baltimore Longitudinal Study of Aging(BLSA)participants with valid VO2_(max)tests were included(n=1080).Least absolute shrinkage and selection operator,linear-and tree-boosted extreme gradient boosting,random forest,and support vector machine(SVM)algorithms were trained to predict VO_(2max)values.We developed these algorithms for:(a)the overall BLSA,(b)by sex,(c)using all BLSA variables,and(d)variables common in aging cohorts.Finally,we quantified the associations between measured and predicted VO_(2max)and mortality.Results:The age was 69.0±10.4 years(mean±SD)and the measured VO_(2max)was 21.6±5.9 mL/kg/min.Least absolute shrinkage and selection operator,linear-and tree-boosted extreme gradient boosting,random forest,and support vector machine yielded root mean squared errors of 3.4 mL/kg/min,3.6 mL/kg/min,3.4 mL/kg/min,3.6 mL/kg/min,and 3.5 mL/kg/min,respectively.Incremental quartiles of measured VO_(2max)showed an inverse gradient in mortality risk.Predicted VO_(2max)variables yielded similar effect estimates but were not robust to adjustment.Conclusion:Measured VO_(2max)is a strong predictor of mortality.Using ML can improve the accuracy of prediction as compared to simpler approaches but estimates of association with mortality remain sensitive to adjustment.Future studies should seek to reproduce these results so that VO_(2max),an important vital sign,can be more broadly studied as a modifiable target for promoting functional resiliency and healthy aging. 展开更多
关键词 Cardiorespiratory fitness prediction algorithms EPIDEMIOLOGY MORTALITY
下载PDF
Computer-assisted three-dimensional individualized extreme liver resection for hepatoblastoma in proximity to the major liver vasculature
18
作者 Wen-Li Xiu Jie Liu +7 位作者 Jing-Li Zhang Jing-Miao Wang Xue-Feng Wang Fei-Fei Wang Jie Mi Xi-Wei Hao NanXia Qian Dong 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第4期1066-1077,共12页
BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,e... BACKGROUND The management of hepatoblastoma(HB)becomes challenging when the tumor remains in close proximity to the major liver vasculature(PMV)even after a full course of neoadjuvant chemotherapy(NAC).In such cases,extreme liver resection can be considered a potential option.AIM To explore whether computer-assisted three-dimensional individualized extreme liver resection is safe and feasible for children with HB who still have PMV after a full course of NAC.METHODS We retrospectively collected data from children with HB who underwent surgical resection at our center from June 2013 to June 2023.We then analyzed the detailed clinical and three-dimensional characteristics of children with HB who still had PMV after a full course of NAC.RESULTS Sixty-seven children diagnosed with HB underwent surgical resection.The age at diagnosis was 21.4±18.8 months,and 40 boys and 27 girls were included.Fifty-nine(88.1%)patients had a single tumor,39(58.2%)of which was located in the right lobe of the liver.A total of 47 patients(70.1%)had PRE-TEXT III or IV.Thirty-nine patients(58.2%)underwent delayed resection.After a full course of NAC,16 patients still had close PMV(within 1 cm in two patients,touching in 11 patients,compressing in four patients,and showing tumor thrombus in three patients).There were 6 patients of tumors in the middle lobe of the liver,and four of those patients exhibited liver anatomy variations.These 16 children underwent extreme liver resection after comprehensive preoperative evaluation.Intraoperative procedures were performed according to the preoperative plan,and the operations were successfully performed.Currently,the 3-year event-free survival of 67 children with HB is 88%.Among the 16 children who underwent extreme liver resection,three experienced recurrence,and one died due to multiple metastases.CONCLUSION Extreme liver resection for HB that is still in close PMV after a full course of NAC is both safe and feasible.This approach not only reduces the necessity for liver transplantation but also results in a favorable prognosis.Individualized three-dimensional surgical planning is beneficial for accurate and complete resection of HB,particularly for assessing vascular involvement,remnant liver volume and anatomical variations. 展开更多
关键词 Children HEPATOBLASTOMA Surgery three-dimensional COMPUTER-ASSISTED
下载PDF
Two-Way Neural Network Performance PredictionModel Based onKnowledge Evolution and Individual Similarity
19
作者 Xinzheng Wang Bing Guo Yan Shen 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1183-1206,共24页
Predicting students’academic achievements is an essential issue in education,which can benefit many stakeholders,for instance,students,teachers,managers,etc.Compared with online courses such asMOOCs,students’academi... Predicting students’academic achievements is an essential issue in education,which can benefit many stakeholders,for instance,students,teachers,managers,etc.Compared with online courses such asMOOCs,students’academicrelateddata in the face-to-face physical teaching environment is usually sparsity,and the sample size is relativelysmall.It makes building models to predict students’performance accurately in such an environment even morechallenging.This paper proposes a Two-WayNeuralNetwork(TWNN)model based on the bidirectional recurrentneural network and graph neural network to predict students’next semester’s course performance using only theirprevious course achievements.Extensive experiments on a real dataset show that our model performs better thanthe baselines in many indicators. 展开更多
关键词 COMPUTER EDUCATION performance prediction deep learning
下载PDF
ASLP-DL—A Novel Approach Employing Lightweight Deep Learning Framework for Optimizing Accident Severity Level Prediction
20
作者 Saba Awan Zahid Mehmood 《Computers, Materials & Continua》 SCIE EI 2024年第2期2535-2555,共21页
Highway safety researchers focus on crash injury severity,utilizing deep learning—specifically,deep neural networks(DNN),deep convolutional neural networks(D-CNN),and deep recurrent neural networks(D-RNN)—as the pre... Highway safety researchers focus on crash injury severity,utilizing deep learning—specifically,deep neural networks(DNN),deep convolutional neural networks(D-CNN),and deep recurrent neural networks(D-RNN)—as the preferred method for modeling accident severity.Deep learning’s strength lies in handling intricate relation-ships within extensive datasets,making it popular for accident severity level(ASL)prediction and classification.Despite prior success,there is a need for an efficient system recognizing ASL in diverse road conditions.To address this,we present an innovative Accident Severity Level Prediction Deep Learning(ASLP-DL)framework,incorporating DNN,D-CNN,and D-RNN models fine-tuned through iterative hyperparameter selection with Stochastic Gradient Descent.The framework optimizes hidden layers and integrates data augmentation,Gaussian noise,and dropout regularization for improved generalization.Sensitivity and factor contribution analyses identify influential predictors.Evaluated on three diverse crash record databases—NCDB 2018–2019,UK 2015–2020,and US 2016–2021—the D-RNN model excels with an ACC score of 89.0281%,a Roc Area of 0.751,an F-estimate of 0.941,and a Kappa score of 0.0629 over the NCDB dataset.The proposed framework consistently outperforms traditional methods,existing machine learning,and deep learning techniques. 展开更多
关键词 Injury SEVERITY prediction deep learning feature
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部