A resistivity distribution with a space of 3mm between test points was measured on a slice-of-silicon monocrystal (diameter 75mm) using an inclined four-point probe. This paper has determined the number of resistivi...A resistivity distribution with a space of 3mm between test points was measured on a slice-of-silicon monocrystal (diameter 75mm) using an inclined four-point probe. This paper has determined the number of resistivity divisions and their separations by statistical methods and introduced fuzzy mathematics to place the data into different fuzzy sets, after choosing the exponent function as a membership function for fuzzy sets and suitable values of thresholds. One fuzzy set corresponds to one resistivity isocontour. Then,the resistivity isocontours can be drawn with a definite separation and fi- nally shown in a map with MATLAB. The deviation of resistivity data on an isocontour is small and there are few residual test points without connections. So, the connection of the isocontours are high-quality and useful in application for instructing practical production.展开更多
This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by...This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by normal tensor voting theory,(2)co ntraction of trace feature points,(3)connection of trace feature points,(4)linearization of trace segments,and(5)connection of trace segments.A sensitivity analysis was then conducted to identify the optimal parameters of the proposed method.Three field cases,a natural rock mass outcrop and two excavated rock tunnel surfaces,were analyzed using the proposed method to evaluate its validity and efficiency.The results show that the proposed method is more efficient and accurate than the traditional trace mapping method,and the efficiency enhancement is more robust as the number of feature points increases.展开更多
BACKGROUND Posterior malleolar fractures have been reported to occur in<40%of ankle fractures.AIM To reveal the recurrent patterns and characteristics of posterior malleolar fractures by creating fracture maps of t...BACKGROUND Posterior malleolar fractures have been reported to occur in<40%of ankle fractures.AIM To reveal the recurrent patterns and characteristics of posterior malleolar fractures by creating fracture maps of the posterior malleolar fractures through the use of computed tomography mapping.METHODS A consecutive series of posterior malleolar fractures was used to create threedimensional reconstruction images,which were oriented and superimposed to fit an ankle model template by both aligning specific biolandmarks and reducing reconstructed fracture fragments.Fracture lines were found and traced in order to generate an ankle fracture map.RESULTS This study involved 112 patients with a mean age of 49,comprising 32 pronationexternal rotation grade IV fractures and 80 supination-external rotation grade IV fractures according to the Lauge-Hansen classification system.Three-dimensional maps showed that the posterior ankle fracture fragments in the supinationexternal rotation grade IV group were relatively smaller than those in the pronation-external rotation grade IV group after posterior malleolus fracture.In addition,the distribution analyses on posterior malleolus fracture lines indicated that the supination-external rotation grade IV group tended to have higher linear density but more concentrated and orderly distribution fractures compared to the pronation-external rotation grade IV group.CONCLUSION Fracture maps revealed the fracture characteristics and recurrent patterns of posterior malleolar fractures,which might help to improve the understanding of ankle fracture as well as increase opportunities for follow-up research and aid clinical decision-making.展开更多
Based on the study of the application of three-dimensional laser scanning technology in ancient building surveying and mapping,this paper briefly describes the working principle and flow of three-dimensional laser sca...Based on the study of the application of three-dimensional laser scanning technology in ancient building surveying and mapping,this paper briefly describes the working principle and flow of three-dimensional laser scanning technology.Based on the practical application,this paper puts forward the discussion of related problems and matters needing attention.This has a certain reference significance for the study of new technology in surveying and mapping of ancient buildings.展开更多
In this study, a population of 119 chromosome segment substitution lines (CSSLs) derived from backcross between indica 9311 and japonica Nipponbare was employed to map quantitative trait loci (QTL) associated with...In this study, a population of 119 chromosome segment substitution lines (CSSLs) derived from backcross between indica 9311 and japonica Nipponbare was employed to map quantitative trait loci (QTL) associated with sheath blight resis-tance in rice with toothpick inoculation method. A total of three sheath blight resis-tance-associated QTLs (qsb8-1, qsb8-2 and qsb8-3) were identified, which were lo-cated on adjacent molecular markers RM3262, RM5485 and RM3496 of chromo-some 8; the genetic interval was 81.7cM-91.7cM, 91.7cM-108.1cM and 108.1cM-119.6cM, respectively. The additive effect of qsb8-2 was negative, indicating that sheath blight resistance of susceptible parent harboring qsb8-2 fragment was en-hanced; additive effects of qsb8-1 and qsb8-3 were positive, indicating that sheath blight resistance of susceptible parent harboring qsb8-1 and qsb8-3 fragments was reduced.展开更多
Chike (accession number Su1900), a Chinese native wheat (Triticum aestivum L.) variety, is resistant to the currently prevailing physiological races of Puccinia striiformis Westend. f. sp. tritici in China. Geneti...Chike (accession number Su1900), a Chinese native wheat (Triticum aestivum L.) variety, is resistant to the currently prevailing physiological races of Puccinia striiformis Westend. f. sp. tritici in China. Genetic analysis indicated that resistance to the physiological race CY32 of the pathogen in the variety was controlled by one dominant gene. In this study, BSA (bulked segregant analysis) methods and SSRs (simple sequence repeats) marker polymorphic analysis are used to map the gene. The resistant and susceptible DNA bulks were prepared from the segregating F2 population of the cross between Taichung 29, a susceptible variety as maternal parent, and Chike as paternal parent. Over 400 SSR primers were screened, and five SSR markers Xwmc44, Xgwm259, Xwmc367, Xcfa2292, and Xbarc80 on the chromosome arm 1BL were found to be polymorphic between the resistant and the susceptible DNA bulks as well as their parents. Genetic linkage was tested on segregating F2 population with 200 plants, including 140 resistant and 60 susceptible plants. All the five SSR markers were linked to the stripe rust resistance gene in Chike. The genetic distances for the markers Xwmc44, Xgwm259, Xwmc367, Xcfa2292, and Xbarc80 to the target gene were 8.3 cM, 9.1 cM, 17.2 cM, 20.6 cM, and 31.6 cM, respectively. Analysis using 21 nulli-tetrasomic Chinese Spring lines further confirmed that all the five markers were located on chromosome lB. On the basis of the above results, it is reasonable to assume that the major stripe rust resistance gene YrChk in Chike was located on the chromosome arm 1BL, and its comparison with the other stripe rust resistance genes located on 1B suggested that YrChk may be a novel gene that provides the resistance against stripe rust in Chike. Exploration and utilization of resources of disease resistance genes in native wheat varieties will be helpful both to diversify the resistance genes and to amend the situation of resistance gene simplification in the commercial wheat cultivars in China.展开更多
Rice blast, caused by Magnaporthe oryzae, is a major disease of rice almost worldwide. The Chinese indica cultivar 93-11 is resistant to numerous isolates of the blast fungus in China, and can be used as broad-spectru...Rice blast, caused by Magnaporthe oryzae, is a major disease of rice almost worldwide. The Chinese indica cultivar 93-11 is resistant to numerous isolates of the blast fungus in China, and can be used as broad-spectrum resistance resource, particularly in japonica rice breeding programs. In this study, we identified and mapped two blast resistance genes, Pi60(t) and Pi61(t), in cv. 93-11 using F2 and F3 populations derived from a cross between the susceptible cv. Lijiangxintuanheigu(LTH) and resistant cv. 93-11 and inoculated with M. oryzae isolates from different geographic origins. Pi60(t) was delimited to a 274 kb region on the short arm of chromosome 11, flanked by InDel markers K1-4 and E12 and cosegregated with InDel markers B1 and Y10. Pi61(t) was mapped to a 200 kb region on the short arm(near the centromere) of chromosome 12, flanked by InDel markers M2 and S29 and cosegregating with InDel marker M9. In the 274 kb region of Pi60(t), 93-11 contains six NBS-LRR genes including the two Pia/ PiCO39 alleles(BGIOSGA034263 and BGIOSGA035032) which are quite close to the two Pia/ PiCO39 alleles(SasRGA4 and SasRGA5) in Sasanishiki and CO39, with only nine amino acids differing in the protein sequences of BGIOSGA035032 and SasRGA5. In the 200 kb region of Pi61(t), 93-11 contains four NBS-LRR genes, all of which show high identities in protein sequence with their corresponding NBS-LRR alleles in susceptible cv. Nipponbare. Comparison of the response spectra and physical positions between the target genes and other R genes in the same chromosome regions indicated that Pi60(t) could be Pia/PiCO39 or its allele, whereas Pi61(t) appears to be different from Pita, Pita-2, Pi19(t), Pi39(t) and Pi42(t) in the same R gene cluster. DNA markers tightly linked to Pi60(t) and Pi61(t) will enable marker-assisted breeding and map-based cloning.展开更多
Soybean mosaic virus (SMV) disease is one of the most destructive viral diseases in soybean (Glycine max (L.) Merr.). SMV strain SC3 is the major prevalent strain in huang-huai and Yangtze valleys, China. The so...Soybean mosaic virus (SMV) disease is one of the most destructive viral diseases in soybean (Glycine max (L.) Merr.). SMV strain SC3 is the major prevalent strain in huang-huai and Yangtze valleys, China. The soybean cultivar Qihuang 1 is of a rich resistance spectrum and has a wide range of application in breeding programs in China. In this study, F1, F2 and F2:3 from Qihuang 1×nannong 1138-2 were used to study inheritance and linkage mapping of the SC3 resistance gene in Qihuang 1. The secondary F2 population and near isogenic lines (nILs) derived from residual heterozygous lines (RhLs) of Qihuang 1×nannong 1138-2 were separatively used in the ifne mapping and candidate gene analysis of the resistance gene. Results indicated that a single dominant gene (designated RSC3Q) controls resistance, which was located on chromosome 13. Two genomic-simple sequence repeat (SSR) markers BARCSOYSSR_13_1114 and BARCSOYSSR_13_1136 were found lfanking the two sides of the RSC3Q. The interval between the two markers was 651 kb. Quantitative real-time PCR analysis of the candidate genes showed that ifve genes (Glyma13g25730, 25750, 25950, 25970 and 26000) were likely involved in soybean SMV resistance. These results would have utility in cloning of RSC3Q resistance candidate gene and marker-assisted selection (MaS) in resistance breeding to SMV.展开更多
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most widespread and destructive wheat diseases in many wheat-growing regions of the world. The winter wheat translocation line H9014-14...Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most widespread and destructive wheat diseases in many wheat-growing regions of the world. The winter wheat translocation line H9014-14-4-6-1 has all stage resistance. To identify stripe rust resistance genes, the segregating populations were developed from the cross between H9014-14-4-6-1 and Mingxian 169 (a wheat cultivar susceptible to all Pst races identified in China). The seedlings of the parents and F1 plants, Fz, F3 and BC1 generations were tested with Pst races under controlled greenhouse conditions. Two genes for resistance to stripe rust were identified, one dominant gene conferred resistance to SUN11-4, temporarily designated YrH9014 and the other recessive gene conferred resistance to CYR33. The bulked segregant analysis and simple sequence repeat (SSR) markers were used to identify polymorphic markers associated with YrH9014. Seven polymorphic SSR markers were used to genotype the F2 population inoculated with SUN11-4. A linkage map was constructed according to the genotypes of seven SSR markers and resistance gene. The molecular map spanned 24.3 cM, and the genetic distance of the two closest markers Xbarc13 and Xbarc55 to gene locus was 1.4 and 3.6 cM, respectively. Based on the position of SSR marker, the resistance gene YrH9014 was located on chromosome arm 2BS. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xbarc13 indicated that YrH9014 was located on chromosome 2B. Based on chromosomal location, the reaction patterns and pedigree analysis, YrH9014 should be a novel resistance gene to stripe rust. This new gene and flanking markers got from this study should be useful for marker-assisted selection (MAS) in breeding programs for stripe rust.展开更多
A rice population consisting of 90 TN1/Guiyigu F3 lines was employed to analyze the linkage between DNA markers and a new gene Wbph6(t) conferring resistance to whitebacked planthopper, Sogatella furcifera By using th...A rice population consisting of 90 TN1/Guiyigu F3 lines was employed to analyze the linkage between DNA markers and a new gene Wbph6(t) conferring resistance to whitebacked planthopper, Sogatella furcifera By using the mapping approach of bulked extremes and recessive class, Wbph6(t) was mapped onto the short arm of chromosome 11 with a genetic distance of 21.2 cM to SSLP marker RM167.展开更多
Several new stripe rust pathogen races emerged in the wheat growing regions of China in recent years.These races were virulent to most of the designated wheat seedling resistance genes.Thus,it is necessary and worthwh...Several new stripe rust pathogen races emerged in the wheat growing regions of China in recent years.These races were virulent to most of the designated wheat seedling resistance genes.Thus,it is necessary and worthwhile to identify new valuable resistant materials for the sake of diversifying resistant sources,pyramiding different resistance genes and achieving durable resistance.Here,we identified the resistance gene,temporarily designated as YrH9017,in wheat-Psathyrostachys huashanica introgression line H9017-14-16-5-3.A total of 146 F2 plants and their derived F2:3 families in a cross of Mingxian 169 and H9017-14-16-5-3 were used to evaluate seedling stripe rust response and as a mapping population.Finally,we constructed a genetic map including eight simple sequence repeat(SSR) markers and expressed sequence tag(EST) markers.YrH9017 was located on the long arm of chromosome 2A and closely linked with two EST-sequence tagged site(EST-STS) markers BG604577 and BE471201 at 1.3 and 1.8 cM distance,respectively.The two closest markers could be used for marker-assisted selection of YrH9017 in breeding.展开更多
Loss of variety resistance to stripe rust (Puccinia striiformis Westend f. sp.tritici) is an important factor causing massive periodical epidemic of rust in wheat production. Creation and development of new races of...Loss of variety resistance to stripe rust (Puccinia striiformis Westend f. sp.tritici) is an important factor causing massive periodical epidemic of rust in wheat production. Creation and development of new races of rust pathogen have led to serious crisis of resistance loss in widely planted varieties. This has quickened the search for new resistance resources. Molecular marker could facilitate the identification of the location of novel genes. A line A-3 with high resistance (immune) to currently epidemic yellow rust races (CY29, 31, 32) was screened out in offspring of Triticum aestivura x Thinopyrum ponticum. Segregation in F2 and BC1 populations indicated that the resistance was controlled by two independent genes: one dominant and one recessive. SSR markers were employed to map the two resistant genes in the F2 and BC1 populations. A marker WMC477-167bp located on 2BS was linked to the dominant gene with genetic distance of 0.4 cM. Another marker WMC364-2os bp located on 7BS was linked to the recessive-resistant gene with genetic distance of 5.8 cM. The two genes identified in this paper might be two novel stripe rust resistant genes, which were temporarily designated as YrTpl and YrTp2, respectively. The tightly linking markers facilitate transfer of the two resistant genes into the new varieties to control epidemic of yellow rust.展开更多
Stripe rust is one of the most important diseases of wheat worldwide. Inheritance of stripe rust resistance and mapping of resistance gene with simple sequence repeat (SSR) markers are studied to formulate efficient...Stripe rust is one of the most important diseases of wheat worldwide. Inheritance of stripe rust resistance and mapping of resistance gene with simple sequence repeat (SSR) markers are studied to formulate efficient strategies for breeding cultivars resistant to stripe rust. Zhongliang 88375, a common wheat line, is highly resistant to all three rusts of wheat in China. The gene conferring rust disease was deduced originating from Elytrigia intermedium. Genetic analysis of Zhongliang 88375 indicated that the resistance to PST race CYR31 was controlled by a single dominant gene, temporarily designated as Yr88375. To molecular map Yr88375, a F2 segregating population consisting of 163 individuals was constructed on the basis of the hybridization between Zhongliang 88375 and a susceptible wheat line Mingxian 169; 320 SSR primer pairs were used for analyzing the genetic linkage relation. Six SSR markers, Xgwm335, Xwmc289, Xwmc810, Xgdmll6, Xbarc59, and Xwmc783, are linked to Yr88375 as they were all located on chromosome 5BL Yr88375 was also located on that chromosome arm, closely linked to Xgdmll6 and Xwmc810 with genetic distances of 3.1 and 3.9 cM, respectively. The furthest marker Xwmc783 was 13.5 cM to Yr88375. Hence, pedigree analysis of Zhongliang 88375 combined with SSR markers supports the conclusion that the highly resistance gene Yr88375 derived from Elytrigia intermedium is a novel gene for resistance to stripe rust in wheat. It could play an important role in wheat breeding programs for stripe rust resistance.展开更多
An F2 population derived from the cross of WB01, an introgression line resistant to brown planthopper (BPH) originated from Oryza rufipogon Griff. and a susceptible indica variety 9311, was developed for genetic analy...An F2 population derived from the cross of WB01, an introgression line resistant to brown planthopper (BPH) originated from Oryza rufipogon Griff. and a susceptible indica variety 9311, was developed for genetic analysis and gene mapping. The population with 303 F2:3 families was genotyped by 141 simple sequence repeat (SSR) markers and used for gene mapping. Two softwares, Mapmaker/Exp 3.0 and Windows QTL Cartographer V2.0 were applied to detect QTLs. Totally, two QTLs resistant to BPH, named temporarily as bph22(t) and bph23(t), were identified to locate on chromosomes 4 and 8, individually had LOD values of 2.92 and 3.15, and explained 11.3% and 14 .9% of the phenotypic variation, respectively.展开更多
Tan spot(TS) and Septoria nodorum blotch(SNB), caused by Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively, are important fungal leaf-spotting diseases of wheat that cause significant losses in g...Tan spot(TS) and Septoria nodorum blotch(SNB), caused by Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively, are important fungal leaf-spotting diseases of wheat that cause significant losses in grain yield. In this study, two recombinant inbred line populations, ‘Bartai’ × ‘Ciano T79’(referred to as B × C) and ‘Cascabel’ × ‘Ciano T79’(C × C) were tested for TS and SNB response in order to determine the genetic basis of seedling resistance. Genotyping was performed with the DAr Tseq genotypingby-sequencing(GBS) platform. A chromosome region on 5 AL conferred resistance to TS and SNB in both populations, but the effects were larger in B × C(R^2= 11.2%–16.8%) than in C × C(R^2= 2.5%–9.7%). Additionally, the chromosome region on 5BL(presumably Tsn1)was significant for both TS and SNB in B × C but not in C × C. Quantitative trait loci(QTL)with minor effects were identified on chromosomes 1B, 2A, 2B, 3A, 3B, 4D, 5A, 5B, 5D, 6B,and 6D. The two CIMMYT breeding lines ‘Bartai’ and ‘Cascabel’ contributed resistance alleles at both 5AL and 5BL QTL mentioned above. The QTL on 5AL showed linkage with the Vrn-A1 locus, whereas the vrn-A1 allele conferring lateness was associated with resistance to TS and SNB.展开更多
Cytogenetic maps of four clusters of disease resistance genes were generated by ISH of the two RFLP markers tightly linked to and flanking each of maize resistance genes and the cloned resistance genes from other plan...Cytogenetic maps of four clusters of disease resistance genes were generated by ISH of the two RFLP markers tightly linked to and flanking each of maize resistance genes and the cloned resistance genes from other plant species onto maize chromosomes, combining with data published before. These genes include Helminthosporium turcium Pass resistance genes Ht1, Htn1 and Ht2, Helminthosporium maydis Nisik resistance genes Rhm1 and Rhm2, maize dwarf mosaic virus resistance gene Mdm1, wheat streak mosaic virus resistance gene Wsm1, Helminthosporium carbonum ULLstrup resistance gene Hml and the cloned Xanthomonas oryzae pv. Oryzae resistance gene Xa21 of rice, Cladosporium fulvum resistance genes Cf-9 and Cf-2.1 of tomato,and Pseudomonas syringae resistance gene RPS2 of Arabidopsis. Most of the tested disease resistance genes located on the four chromosomes, i.e., chromosomes1, 3, 6 and 8, and they closely distributed at the interstitial regions of these chromosomal long arms with percentage distances ranging 31.44(±3.72)-72.40(±3.25) except for genes Rhm1, Rhm2, Mdm1 and Wsm1 which mapped on the satellites of the short arms of chromosome6. It showed that the tested RFLP markers and genes were duplicated or triplicated in maize genome. Homology and conservation of disease resistance genes among species, and relationship between distribution features and functions of the genes were discussed. The results provide important scientific basis for deeply understanding structure and function of disease resistance genes and breeding in maize.展开更多
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. Th...Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. The winter wheat cultivar Lantian 1 has high-temperature resistance to stripe rust. To determing the gene(s) for the stripe rust resistance, Lantian 1 was crossed with Mingxian 169 (M169). Seedlings of the parents, and F 1 , F 2 and F 2-3 progenies were tested with races CYR32 of Pst under controlled greenhouse conditions. Lantian 1 has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. Simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrLT1. A linkage group of five SSR markers was constructed for YrLT1 using 166 F 2 plants. Based on the SSR marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome 2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xwmc797 confirmed that the resistance gene was located on the long arm of chromosome 2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. The molecular map spanned 29.9 cM, and the genetic distance of two close markers Xbarc228 and Xcfd16 to resistance gene locus was 4.0 and 5.7 cM, respectively. The polymorphism rates of the flanking markers in 46 wheat lines were 2.1 and 2.1%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 97.9% of tested genotypes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.展开更多
The study integrates both the geological and geophysical mapping techniques for groundwater potential studies at Ekwegbe-Agu and the environs, Enugu state, Nigeria for optimal citing of borehole. Located in the Anambr...The study integrates both the geological and geophysical mapping techniques for groundwater potential studies at Ekwegbe-Agu and the environs, Enugu state, Nigeria for optimal citing of borehole. Located in the Anambra Basin between latitudes 6˚43'N and 6˚47'N and longitudes 7˚28'E and 7˚32'E, it is stratigraphycally underlain by, from bottom to top, the Enugu/Nkporo, Mamu and Ajali Formation respectively, a complex geology that make citing of productive borehole in the area problematic leading to borehole failure and dry holes due to inadequate sampling. The study adopted a field and analytic sampling approach, integrating field geological, electrical resistivity and self-potential methods. The software, SedLog v3.1, InterpexIx1Dv.3, and Surfer v10 were employed for the data integration and interpretation. The result of the geological field and borehole data shows 11 sedimentary facies consisting of sandstone, shales and heterolith of sandstone/shale, with the aquifer zone mostly prevalent in the more porous sand-dominated horizons. Mostly the AK and HK were the dominant curve types. An average of 6 geo-electric layers were delineated across all transects with resistivity values ranging from 25.42 - 105.85 Ωm, 186.38 - 3383.3 Ωm, and 2992 - 6286.4 Ωm in the Enugu, Mamu and Ajali Formations respectively. The resistivity of the main aquifer layer ranges from 1 to 500 Ωm. The aquifer thickness within the study area varies between 95 and 140 m. The western and northwestern part of the study area which is underlain mainly by the Ajali Formation showed the highest groundwater potential in the area and suitable for citing productive boreholes.展开更多
Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant find...Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant findings of 89 major re- sistance gene mapping studies and 25 quantitative trait loci (QTL) mapping studies. Major Pm resistance genes and QTLs were found on all wheat chromosomes, but the Pm resistance genes/QTLs were not randomly distributed on each chromosome of wheat. The summarized data showed that the A or B genome has more major Pm resistance genes than the D genome and chromosomes 1A, 2A, 2B, 5B, 5D, 6B, 7A and 7B harbor more major Pm resistance genes than the other chromosomes. For adult plant resistance (APR) genes/QTLs, B genome of wheat harbors more APR genes than A and D genomes, and chromo- somes 2A, 4A, 5A, 1B, 2B, 3B, 5B, 6B, 7B, 2D, 5D and 7D harbor more Pm resistance QTLs than the other chromosomes, suggesting that A genome except 1A, 3A and 6A, B genome except 4B, D genome except 1D, 3D, 4D, and 6D play an impor- tant role in wheat combating against powdery mildew. Furthermore, Pm resistance genes are derived from wheat and its rela- tives, which suggested that the resistance sources are diverse and Pm resistance genes are diverse and useful in combating against the powdery mildew isolates. In this review, four APR genes, Pm38/Lr34/Yr18/Sr57, Pm46/Lr67/Yr46/Sr55, Pm?/Lr27/Yr30/ SY2 and Pm39/Lr46/Yr29, are not only resistant to powdery mildew but also effective for rust diseases in the field, indicating that such genes are stable and useful in wheat breeding programmes. The summarized data also provide chromosome locations or linked markers for Pm resistance genes/QTLs. Markers linked to these genes can also be utilized to pyramid diverse Pm resis- tance genes/QTLs more efficiently by marker-assisted selection.展开更多
Powdery mildew,caused by Blumeria graminis f.sp.tritici,is one of the most severe wheat diseases.Mining powdery mildew resistance genes in wheat cultivars and their appliance in breeding program is a promising way to ...Powdery mildew,caused by Blumeria graminis f.sp.tritici,is one of the most severe wheat diseases.Mining powdery mildew resistance genes in wheat cultivars and their appliance in breeding program is a promising way to control this disease.Genetic analysis revealed that a single dominant resistance gene named PmTm4 originated from Chinese wheat line Tangmai 4 confers resistance to prevailing isolates of B.graminis f.sp.tritici isolate E09.Detailed comparative genomics analyses helped to develop closely linked markers to PmTm4 and a fine genetic map was constructed using large F2population,in which PmTm4 was located into a 0.66-c M genetic interval.The orthologous subgenome region of PmTm4in Aegilops tauschii was identified,and two resistance gene analogs(RGA)were characterized from the corresponding sequence scaffolds of Ae.tauschii draft assembly.The closely linked markers and identified Ae.tauschii orthologs in the mapping interval provide an entry point for chromosome landing and map-based cloning of PmTm4.展开更多
文摘A resistivity distribution with a space of 3mm between test points was measured on a slice-of-silicon monocrystal (diameter 75mm) using an inclined four-point probe. This paper has determined the number of resistivity divisions and their separations by statistical methods and introduced fuzzy mathematics to place the data into different fuzzy sets, after choosing the exponent function as a membership function for fuzzy sets and suitable values of thresholds. One fuzzy set corresponds to one resistivity isocontour. Then,the resistivity isocontours can be drawn with a definite separation and fi- nally shown in a map with MATLAB. The deviation of resistivity data on an isocontour is small and there are few residual test points without connections. So, the connection of the isocontours are high-quality and useful in application for instructing practical production.
基金supported by the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China(Grant No.4182780021)Emeishan-Hanyuan Highway ProgramTaihang Mountain Highway Program。
文摘This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by normal tensor voting theory,(2)co ntraction of trace feature points,(3)connection of trace feature points,(4)linearization of trace segments,and(5)connection of trace segments.A sensitivity analysis was then conducted to identify the optimal parameters of the proposed method.Three field cases,a natural rock mass outcrop and two excavated rock tunnel surfaces,were analyzed using the proposed method to evaluate its validity and efficiency.The results show that the proposed method is more efficient and accurate than the traditional trace mapping method,and the efficiency enhancement is more robust as the number of feature points increases.
基金Supported by Multicenter Clinical Trial of h UC-MSCs in the Treatment of Late Chronic Spinal Cord Injury,No.2017YFA0105404Key Discipline Construction Project of Pudong Health Bureau of Shanghai,No.PWZxk2017-08
文摘BACKGROUND Posterior malleolar fractures have been reported to occur in<40%of ankle fractures.AIM To reveal the recurrent patterns and characteristics of posterior malleolar fractures by creating fracture maps of the posterior malleolar fractures through the use of computed tomography mapping.METHODS A consecutive series of posterior malleolar fractures was used to create threedimensional reconstruction images,which were oriented and superimposed to fit an ankle model template by both aligning specific biolandmarks and reducing reconstructed fracture fragments.Fracture lines were found and traced in order to generate an ankle fracture map.RESULTS This study involved 112 patients with a mean age of 49,comprising 32 pronationexternal rotation grade IV fractures and 80 supination-external rotation grade IV fractures according to the Lauge-Hansen classification system.Three-dimensional maps showed that the posterior ankle fracture fragments in the supinationexternal rotation grade IV group were relatively smaller than those in the pronation-external rotation grade IV group after posterior malleolus fracture.In addition,the distribution analyses on posterior malleolus fracture lines indicated that the supination-external rotation grade IV group tended to have higher linear density but more concentrated and orderly distribution fractures compared to the pronation-external rotation grade IV group.CONCLUSION Fracture maps revealed the fracture characteristics and recurrent patterns of posterior malleolar fractures,which might help to improve the understanding of ankle fracture as well as increase opportunities for follow-up research and aid clinical decision-making.
基金Jiangxi Social Science Planning Project:Research on the Activation of Traditional Villages in Jiangxi Province from the Perspective of Cultural Conservation:A Case Study of Fuhe River Basin(Grant No.17BJ16).
文摘Based on the study of the application of three-dimensional laser scanning technology in ancient building surveying and mapping,this paper briefly describes the working principle and flow of three-dimensional laser scanning technology.Based on the practical application,this paper puts forward the discussion of related problems and matters needing attention.This has a certain reference significance for the study of new technology in surveying and mapping of ancient buildings.
基金Supported by Specific Fund for the Independent Innovation of Agricultural Science and Technology[CX(11)1020]~~
文摘In this study, a population of 119 chromosome segment substitution lines (CSSLs) derived from backcross between indica 9311 and japonica Nipponbare was employed to map quantitative trait loci (QTL) associated with sheath blight resis-tance in rice with toothpick inoculation method. A total of three sheath blight resis-tance-associated QTLs (qsb8-1, qsb8-2 and qsb8-3) were identified, which were lo-cated on adjacent molecular markers RM3262, RM5485 and RM3496 of chromo-some 8; the genetic interval was 81.7cM-91.7cM, 91.7cM-108.1cM and 108.1cM-119.6cM, respectively. The additive effect of qsb8-2 was negative, indicating that sheath blight resistance of susceptible parent harboring qsb8-2 fragment was en-hanced; additive effects of qsb8-1 and qsb8-3 were positive, indicating that sheath blight resistance of susceptible parent harboring qsb8-1 and qsb8-3 fragments was reduced.
基金the National Natural Science Foundation of China (No. 30571157) the National Basic Research Program (973 Program) (No. 2006CB100203).
文摘Chike (accession number Su1900), a Chinese native wheat (Triticum aestivum L.) variety, is resistant to the currently prevailing physiological races of Puccinia striiformis Westend. f. sp. tritici in China. Genetic analysis indicated that resistance to the physiological race CY32 of the pathogen in the variety was controlled by one dominant gene. In this study, BSA (bulked segregant analysis) methods and SSRs (simple sequence repeats) marker polymorphic analysis are used to map the gene. The resistant and susceptible DNA bulks were prepared from the segregating F2 population of the cross between Taichung 29, a susceptible variety as maternal parent, and Chike as paternal parent. Over 400 SSR primers were screened, and five SSR markers Xwmc44, Xgwm259, Xwmc367, Xcfa2292, and Xbarc80 on the chromosome arm 1BL were found to be polymorphic between the resistant and the susceptible DNA bulks as well as their parents. Genetic linkage was tested on segregating F2 population with 200 plants, including 140 resistant and 60 susceptible plants. All the five SSR markers were linked to the stripe rust resistance gene in Chike. The genetic distances for the markers Xwmc44, Xgwm259, Xwmc367, Xcfa2292, and Xbarc80 to the target gene were 8.3 cM, 9.1 cM, 17.2 cM, 20.6 cM, and 31.6 cM, respectively. Analysis using 21 nulli-tetrasomic Chinese Spring lines further confirmed that all the five markers were located on chromosome lB. On the basis of the above results, it is reasonable to assume that the major stripe rust resistance gene YrChk in Chike was located on the chromosome arm 1BL, and its comparison with the other stripe rust resistance genes located on 1B suggested that YrChk may be a novel gene that provides the resistance against stripe rust in Chike. Exploration and utilization of resources of disease resistance genes in native wheat varieties will be helpful both to diversify the resistance genes and to amend the situation of resistance gene simplification in the commercial wheat cultivars in China.
基金supported by grants from the National Natural Science Foundation of China (Grant No. 30871606)the Special Fund for Agro-scientific Research in the Public Interest Program of China (Grant No. 20120314)the Major Science and Technology Project to Create New Crop Cultivars using Gene Transfer Technology (Grant No. 2011ZX08001-002)
文摘Rice blast, caused by Magnaporthe oryzae, is a major disease of rice almost worldwide. The Chinese indica cultivar 93-11 is resistant to numerous isolates of the blast fungus in China, and can be used as broad-spectrum resistance resource, particularly in japonica rice breeding programs. In this study, we identified and mapped two blast resistance genes, Pi60(t) and Pi61(t), in cv. 93-11 using F2 and F3 populations derived from a cross between the susceptible cv. Lijiangxintuanheigu(LTH) and resistant cv. 93-11 and inoculated with M. oryzae isolates from different geographic origins. Pi60(t) was delimited to a 274 kb region on the short arm of chromosome 11, flanked by InDel markers K1-4 and E12 and cosegregated with InDel markers B1 and Y10. Pi61(t) was mapped to a 200 kb region on the short arm(near the centromere) of chromosome 12, flanked by InDel markers M2 and S29 and cosegregating with InDel marker M9. In the 274 kb region of Pi60(t), 93-11 contains six NBS-LRR genes including the two Pia/ PiCO39 alleles(BGIOSGA034263 and BGIOSGA035032) which are quite close to the two Pia/ PiCO39 alleles(SasRGA4 and SasRGA5) in Sasanishiki and CO39, with only nine amino acids differing in the protein sequences of BGIOSGA035032 and SasRGA5. In the 200 kb region of Pi61(t), 93-11 contains four NBS-LRR genes, all of which show high identities in protein sequence with their corresponding NBS-LRR alleles in susceptible cv. Nipponbare. Comparison of the response spectra and physical positions between the target genes and other R genes in the same chromosome regions indicated that Pi60(t) could be Pia/PiCO39 or its allele, whereas Pi61(t) appears to be different from Pita, Pita-2, Pi19(t), Pi39(t) and Pi42(t) in the same R gene cluster. DNA markers tightly linked to Pi60(t) and Pi61(t) will enable marker-assisted breeding and map-based cloning.
基金supported by the National Natural Science Foundation of China (31171574, 31371646)the National Soybean Industrial Technology System of China (CARS-004)the Fund for Transgenic Breeding of Soybean Resistant to Soybean Mosaic Virus, China (2008ZX08004-004)
文摘Soybean mosaic virus (SMV) disease is one of the most destructive viral diseases in soybean (Glycine max (L.) Merr.). SMV strain SC3 is the major prevalent strain in huang-huai and Yangtze valleys, China. The soybean cultivar Qihuang 1 is of a rich resistance spectrum and has a wide range of application in breeding programs in China. In this study, F1, F2 and F2:3 from Qihuang 1×nannong 1138-2 were used to study inheritance and linkage mapping of the SC3 resistance gene in Qihuang 1. The secondary F2 population and near isogenic lines (nILs) derived from residual heterozygous lines (RhLs) of Qihuang 1×nannong 1138-2 were separatively used in the ifne mapping and candidate gene analysis of the resistance gene. Results indicated that a single dominant gene (designated RSC3Q) controls resistance, which was located on chromosome 13. Two genomic-simple sequence repeat (SSR) markers BARCSOYSSR_13_1114 and BARCSOYSSR_13_1136 were found lfanking the two sides of the RSC3Q. The interval between the two markers was 651 kb. Quantitative real-time PCR analysis of the candidate genes showed that ifve genes (Glyma13g25730, 25750, 25950, 25970 and 26000) were likely involved in soybean SMV resistance. These results would have utility in cloning of RSC3Q resistance candidate gene and marker-assisted selection (MaS) in resistance breeding to SMV.
基金supported by the 111 Project from the Education Ministry of China(B07049)the National 11th Five-Year Plan Key Project(2006BAD08A05)Toxicity Variation of Wheat Stripe Rust Pathogen and Demonstration of Integrated Management of Stripe Rust, China (200903035-02)
文摘Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most widespread and destructive wheat diseases in many wheat-growing regions of the world. The winter wheat translocation line H9014-14-4-6-1 has all stage resistance. To identify stripe rust resistance genes, the segregating populations were developed from the cross between H9014-14-4-6-1 and Mingxian 169 (a wheat cultivar susceptible to all Pst races identified in China). The seedlings of the parents and F1 plants, Fz, F3 and BC1 generations were tested with Pst races under controlled greenhouse conditions. Two genes for resistance to stripe rust were identified, one dominant gene conferred resistance to SUN11-4, temporarily designated YrH9014 and the other recessive gene conferred resistance to CYR33. The bulked segregant analysis and simple sequence repeat (SSR) markers were used to identify polymorphic markers associated with YrH9014. Seven polymorphic SSR markers were used to genotype the F2 population inoculated with SUN11-4. A linkage map was constructed according to the genotypes of seven SSR markers and resistance gene. The molecular map spanned 24.3 cM, and the genetic distance of the two closest markers Xbarc13 and Xbarc55 to gene locus was 1.4 and 3.6 cM, respectively. Based on the position of SSR marker, the resistance gene YrH9014 was located on chromosome arm 2BS. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xbarc13 indicated that YrH9014 was located on chromosome 2B. Based on chromosomal location, the reaction patterns and pedigree analysis, YrH9014 should be a novel resistance gene to stripe rust. This new gene and flanking markers got from this study should be useful for marker-assisted selection (MAS) in breeding programs for stripe rust.
文摘A rice population consisting of 90 TN1/Guiyigu F3 lines was employed to analyze the linkage between DNA markers and a new gene Wbph6(t) conferring resistance to whitebacked planthopper, Sogatella furcifera By using the mapping approach of bulked extremes and recessive class, Wbph6(t) was mapped onto the short arm of chromosome 11 with a genetic distance of 21.2 cM to SSLP marker RM167.
基金funded by the National Natural Science Foundation of China (31660513,31501620 and 31701911)the Provincial Natural Science Foundation of Qinghai,China (2017-ZJ-793)
文摘Several new stripe rust pathogen races emerged in the wheat growing regions of China in recent years.These races were virulent to most of the designated wheat seedling resistance genes.Thus,it is necessary and worthwhile to identify new valuable resistant materials for the sake of diversifying resistant sources,pyramiding different resistance genes and achieving durable resistance.Here,we identified the resistance gene,temporarily designated as YrH9017,in wheat-Psathyrostachys huashanica introgression line H9017-14-16-5-3.A total of 146 F2 plants and their derived F2:3 families in a cross of Mingxian 169 and H9017-14-16-5-3 were used to evaluate seedling stripe rust response and as a mapping population.Finally,we constructed a genetic map including eight simple sequence repeat(SSR) markers and expressed sequence tag(EST) markers.YrH9017 was located on the long arm of chromosome 2A and closely linked with two EST-sequence tagged site(EST-STS) markers BG604577 and BE471201 at 1.3 and 1.8 cM distance,respectively.The two closest markers could be used for marker-assisted selection of YrH9017 in breeding.
文摘Loss of variety resistance to stripe rust (Puccinia striiformis Westend f. sp.tritici) is an important factor causing massive periodical epidemic of rust in wheat production. Creation and development of new races of rust pathogen have led to serious crisis of resistance loss in widely planted varieties. This has quickened the search for new resistance resources. Molecular marker could facilitate the identification of the location of novel genes. A line A-3 with high resistance (immune) to currently epidemic yellow rust races (CY29, 31, 32) was screened out in offspring of Triticum aestivura x Thinopyrum ponticum. Segregation in F2 and BC1 populations indicated that the resistance was controlled by two independent genes: one dominant and one recessive. SSR markers were employed to map the two resistant genes in the F2 and BC1 populations. A marker WMC477-167bp located on 2BS was linked to the dominant gene with genetic distance of 0.4 cM. Another marker WMC364-2os bp located on 7BS was linked to the recessive-resistant gene with genetic distance of 5.8 cM. The two genes identified in this paper might be two novel stripe rust resistant genes, which were temporarily designated as YrTpl and YrTp2, respectively. The tightly linking markers facilitate transfer of the two resistant genes into the new varieties to control epidemic of yellow rust.
基金the National 973 Programof China(G2000016200)Program for Changjiang Scholars and Innovative Research Teamin University from Ministry of Education of China(200558)
文摘Stripe rust is one of the most important diseases of wheat worldwide. Inheritance of stripe rust resistance and mapping of resistance gene with simple sequence repeat (SSR) markers are studied to formulate efficient strategies for breeding cultivars resistant to stripe rust. Zhongliang 88375, a common wheat line, is highly resistant to all three rusts of wheat in China. The gene conferring rust disease was deduced originating from Elytrigia intermedium. Genetic analysis of Zhongliang 88375 indicated that the resistance to PST race CYR31 was controlled by a single dominant gene, temporarily designated as Yr88375. To molecular map Yr88375, a F2 segregating population consisting of 163 individuals was constructed on the basis of the hybridization between Zhongliang 88375 and a susceptible wheat line Mingxian 169; 320 SSR primer pairs were used for analyzing the genetic linkage relation. Six SSR markers, Xgwm335, Xwmc289, Xwmc810, Xgdmll6, Xbarc59, and Xwmc783, are linked to Yr88375 as they were all located on chromosome 5BL Yr88375 was also located on that chromosome arm, closely linked to Xgdmll6 and Xwmc810 with genetic distances of 3.1 and 3.9 cM, respectively. The furthest marker Xwmc783 was 13.5 cM to Yr88375. Hence, pedigree analysis of Zhongliang 88375 combined with SSR markers supports the conclusion that the highly resistance gene Yr88375 derived from Elytrigia intermedium is a novel gene for resistance to stripe rust in wheat. It could play an important role in wheat breeding programs for stripe rust resistance.
基金funded by the Science and Technology Project for Agriculture in China: Conservation, Utilization and Exploration of Agricultural Wild Plant Sources (2010-2014)
文摘An F2 population derived from the cross of WB01, an introgression line resistant to brown planthopper (BPH) originated from Oryza rufipogon Griff. and a susceptible indica variety 9311, was developed for genetic analysis and gene mapping. The population with 303 F2:3 families was genotyped by 141 simple sequence repeat (SSR) markers and used for gene mapping. Two softwares, Mapmaker/Exp 3.0 and Windows QTL Cartographer V2.0 were applied to detect QTLs. Totally, two QTLs resistant to BPH, named temporarily as bph22(t) and bph23(t), were identified to locate on chromosomes 4 and 8, individually had LOD values of 2.92 and 3.15, and explained 11.3% and 14 .9% of the phenotypic variation, respectively.
基金supported by the Bill and Melinda Gates Foundation and the United States Agency for International Development (USAID) through the Cereal Systems Initiative for South Asia (CSISA), Durable Rust Resistance in Wheat (DRRW)/Delivering Genetic Gains in Wheat (DGGW) and the CGIAR Research Program for Wheat (CRP WHEAT) projectthe financial support of The National Key Research and Development Program of China on Molecular Design Breeding in Wheat (2016YFD0101802)
文摘Tan spot(TS) and Septoria nodorum blotch(SNB), caused by Pyrenophora tritici-repentis and Parastagonospora nodorum, respectively, are important fungal leaf-spotting diseases of wheat that cause significant losses in grain yield. In this study, two recombinant inbred line populations, ‘Bartai’ × ‘Ciano T79’(referred to as B × C) and ‘Cascabel’ × ‘Ciano T79’(C × C) were tested for TS and SNB response in order to determine the genetic basis of seedling resistance. Genotyping was performed with the DAr Tseq genotypingby-sequencing(GBS) platform. A chromosome region on 5 AL conferred resistance to TS and SNB in both populations, but the effects were larger in B × C(R^2= 11.2%–16.8%) than in C × C(R^2= 2.5%–9.7%). Additionally, the chromosome region on 5BL(presumably Tsn1)was significant for both TS and SNB in B × C but not in C × C. Quantitative trait loci(QTL)with minor effects were identified on chromosomes 1B, 2A, 2B, 3A, 3B, 4D, 5A, 5B, 5D, 6B,and 6D. The two CIMMYT breeding lines ‘Bartai’ and ‘Cascabel’ contributed resistance alleles at both 5AL and 5BL QTL mentioned above. The QTL on 5AL showed linkage with the Vrn-A1 locus, whereas the vrn-A1 allele conferring lateness was associated with resistance to TS and SNB.
文摘Cytogenetic maps of four clusters of disease resistance genes were generated by ISH of the two RFLP markers tightly linked to and flanking each of maize resistance genes and the cloned resistance genes from other plant species onto maize chromosomes, combining with data published before. These genes include Helminthosporium turcium Pass resistance genes Ht1, Htn1 and Ht2, Helminthosporium maydis Nisik resistance genes Rhm1 and Rhm2, maize dwarf mosaic virus resistance gene Mdm1, wheat streak mosaic virus resistance gene Wsm1, Helminthosporium carbonum ULLstrup resistance gene Hml and the cloned Xanthomonas oryzae pv. Oryzae resistance gene Xa21 of rice, Cladosporium fulvum resistance genes Cf-9 and Cf-2.1 of tomato,and Pseudomonas syringae resistance gene RPS2 of Arabidopsis. Most of the tested disease resistance genes located on the four chromosomes, i.e., chromosomes1, 3, 6 and 8, and they closely distributed at the interstitial regions of these chromosomal long arms with percentage distances ranging 31.44(±3.72)-72.40(±3.25) except for genes Rhm1, Rhm2, Mdm1 and Wsm1 which mapped on the satellites of the short arms of chromosome6. It showed that the tested RFLP markers and genes were duplicated or triplicated in maize genome. Homology and conservation of disease resistance genes among species, and relationship between distribution features and functions of the genes were discussed. The results provide important scientific basis for deeply understanding structure and function of disease resistance genes and breeding in maize.
基金support of the 111 Project from the Ministryof Education of China(B07049)the Key Technologies R&D Program of China during the 11th Five-Year Plan period(2006BAD08A05)the project of Toxicity Variation of Wheat Stripe Rust Pathogen and Demonstration of Integrated Management of Stripe Rust,China(200903035-02)are thankfully acknowledged
文摘Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. The winter wheat cultivar Lantian 1 has high-temperature resistance to stripe rust. To determing the gene(s) for the stripe rust resistance, Lantian 1 was crossed with Mingxian 169 (M169). Seedlings of the parents, and F 1 , F 2 and F 2-3 progenies were tested with races CYR32 of Pst under controlled greenhouse conditions. Lantian 1 has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. Simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrLT1. A linkage group of five SSR markers was constructed for YrLT1 using 166 F 2 plants. Based on the SSR marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome 2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xwmc797 confirmed that the resistance gene was located on the long arm of chromosome 2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. The molecular map spanned 29.9 cM, and the genetic distance of two close markers Xbarc228 and Xcfd16 to resistance gene locus was 4.0 and 5.7 cM, respectively. The polymorphism rates of the flanking markers in 46 wheat lines were 2.1 and 2.1%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 97.9% of tested genotypes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.
文摘The study integrates both the geological and geophysical mapping techniques for groundwater potential studies at Ekwegbe-Agu and the environs, Enugu state, Nigeria for optimal citing of borehole. Located in the Anambra Basin between latitudes 6˚43'N and 6˚47'N and longitudes 7˚28'E and 7˚32'E, it is stratigraphycally underlain by, from bottom to top, the Enugu/Nkporo, Mamu and Ajali Formation respectively, a complex geology that make citing of productive borehole in the area problematic leading to borehole failure and dry holes due to inadequate sampling. The study adopted a field and analytic sampling approach, integrating field geological, electrical resistivity and self-potential methods. The software, SedLog v3.1, InterpexIx1Dv.3, and Surfer v10 were employed for the data integration and interpretation. The result of the geological field and borehole data shows 11 sedimentary facies consisting of sandstone, shales and heterolith of sandstone/shale, with the aquifer zone mostly prevalent in the more porous sand-dominated horizons. Mostly the AK and HK were the dominant curve types. An average of 6 geo-electric layers were delineated across all transects with resistivity values ranging from 25.42 - 105.85 Ωm, 186.38 - 3383.3 Ωm, and 2992 - 6286.4 Ωm in the Enugu, Mamu and Ajali Formations respectively. The resistivity of the main aquifer layer ranges from 1 to 500 Ωm. The aquifer thickness within the study area varies between 95 and 140 m. The western and northwestern part of the study area which is underlain mainly by the Ajali Formation showed the highest groundwater potential in the area and suitable for citing productive boreholes.
基金Supported by the NSF of China(Grant no.31471488)State Key Laboratory of Crop Biology(2017KF03)+3 种基金Shandong Province Key Technology Innovation Project(2014GJJS0201-1)Transgenic Special Item(2016ZX08002003)National Modern Agricultural Industry System Construction Project(CARS-03-1-8)The Scholars of Taishan Seed Industry Project(2014-2019)
文摘Wheat powdery mildew (Pro) is a major disease of wheat worldwide. During the past years, numerous studies have been published on molecular mapping of Pm resistance gene(s) in wheat. We summarized the relevant findings of 89 major re- sistance gene mapping studies and 25 quantitative trait loci (QTL) mapping studies. Major Pm resistance genes and QTLs were found on all wheat chromosomes, but the Pm resistance genes/QTLs were not randomly distributed on each chromosome of wheat. The summarized data showed that the A or B genome has more major Pm resistance genes than the D genome and chromosomes 1A, 2A, 2B, 5B, 5D, 6B, 7A and 7B harbor more major Pm resistance genes than the other chromosomes. For adult plant resistance (APR) genes/QTLs, B genome of wheat harbors more APR genes than A and D genomes, and chromo- somes 2A, 4A, 5A, 1B, 2B, 3B, 5B, 6B, 7B, 2D, 5D and 7D harbor more Pm resistance QTLs than the other chromosomes, suggesting that A genome except 1A, 3A and 6A, B genome except 4B, D genome except 1D, 3D, 4D, and 6D play an impor- tant role in wheat combating against powdery mildew. Furthermore, Pm resistance genes are derived from wheat and its rela- tives, which suggested that the resistance sources are diverse and Pm resistance genes are diverse and useful in combating against the powdery mildew isolates. In this review, four APR genes, Pm38/Lr34/Yr18/Sr57, Pm46/Lr67/Yr46/Sr55, Pm?/Lr27/Yr30/ SY2 and Pm39/Lr46/Yr29, are not only resistant to powdery mildew but also effective for rust diseases in the field, indicating that such genes are stable and useful in wheat breeding programmes. The summarized data also provide chromosome locations or linked markers for Pm resistance genes/QTLs. Markers linked to these genes can also be utilized to pyramid diverse Pm resis- tance genes/QTLs more efficiently by marker-assisted selection.
基金financially supported by the National Natural Science Foundation of China (31371624, 31210103902)
文摘Powdery mildew,caused by Blumeria graminis f.sp.tritici,is one of the most severe wheat diseases.Mining powdery mildew resistance genes in wheat cultivars and their appliance in breeding program is a promising way to control this disease.Genetic analysis revealed that a single dominant resistance gene named PmTm4 originated from Chinese wheat line Tangmai 4 confers resistance to prevailing isolates of B.graminis f.sp.tritici isolate E09.Detailed comparative genomics analyses helped to develop closely linked markers to PmTm4 and a fine genetic map was constructed using large F2population,in which PmTm4 was located into a 0.66-c M genetic interval.The orthologous subgenome region of PmTm4in Aegilops tauschii was identified,and two resistance gene analogs(RGA)were characterized from the corresponding sequence scaffolds of Ae.tauschii draft assembly.The closely linked markers and identified Ae.tauschii orthologs in the mapping interval provide an entry point for chromosome landing and map-based cloning of PmTm4.