Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Su...Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Surgery from June 2022 to April 2024 who underwent rib fracture osteotomy and internal fixation were selected. According to the types of drainage tubes left in the patients after the operation, they were divided into the observation group (35 cases who were left with disposable grooved negative pressure drainage tubes) and the control group (40 cases who were left with closed silicone thoracic drainage tubes). Comparison of chest drainage, pain, postoperative complications, secondary chest penetration rate, drain placement time, hospitalization time, and treatment costs were compared between the two groups. Results: The total postoperative chest drainage volume of the observation group was less than that of the control group (P < 0.05);the degree of pain, the incidence of postoperative complications, and the rate of secondary chest puncture in the observation group were lower than that of the control group three days after the operation (P < 0.05);and the time of drain placement in the observation group was shorter than that of the control group (P < 0.05). Conclusion: The application of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation can significantly improve patients’ postoperative pain and discomfort, reduce complications, lower the rate of secondary chest penetration, promote patients’ postoperative recovery, decrease the amount of postoperative chest drainage, and shorten the time of drain placement, which is worthy of clinical promotion and application.展开更多
This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. Th...This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.展开更多
Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch an...Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid.展开更多
Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with pre...Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.展开更多
Using the upper bound element technique (UBET), a numerical model was proposed for analyzing the metal deformation behavior in the extrusion process of ribbed thin wall pipes through a porthole die. Optimization param...Using the upper bound element technique (UBET), a numerical model was proposed for analyzing the metal deformation behavior in the extrusion process of ribbed thin wall pipes through a porthole die. Optimization parameters were contained in the numerical model and determined through minimizing the total work of metal deformation. Taking the extrusion process of thin wall pipe with one rib as an example, the calculated results using the proposed model are as follows: the extrusion pressure p is linearly related to the extrusion ratio R by p = a+bR 0.683 , where a = 14.13, b = 0.911. When the length of the billet remaining in container is shorter than a quarter of the container diameter, the plastic region extends over the whole of the remained billet and the extrusion process reaches the state of funnel deformation. There exists an optimum depth of welding chamber in respect of the extrusion pressure, and to the calculated example the optimum depth is about 10% of the circumscribed diameter of portholes. To obtain more equitable metal flow in welding chamber, it is required to make the dividing planes in container to be consistent with corresponding welding planes in the chamber ( θ max i = θ′ max i ) through choosing different entering area for each of the portholes.展开更多
Backward ball spinning was applied for manufacturing thin-walled tubular parts with longitudinal inner ribs. Rigid-plastic finite element method(FEM) was used for simulating the backward ball spinning process in order...Backward ball spinning was applied for manufacturing thin-walled tubular parts with longitudinal inner ribs. Rigid-plastic finite element method(FEM) was used for simulating the backward ball spinning process in order to calculate the height of the inner ribs. With a view to guarantee a better simulation accuracy, it is essential to enhance and improve some general problems of FEM, such as generation of initial velocity field, choice of penalty factor, determination of boundary conditions, treatment of rigid region and description of convergence criteria. It is evident that whether the problems with respect to FEM are dealt with appropriately or not, they have a significant influence on the modeling accuracy and efficiency. By reasonable solving the general problems, rigid-plastic FEM can successfully simulate the height of the inner ribs and the calculated values are in good agreement with the measured values.展开更多
The effect of revend con ede and length of Plug on nstalnt nd elimination of distortion of internal spi-ral ribs is theoretically analysed. Metheds of the Plug in rifled tubes drawing and a uniform-Pitch Plug with a c...The effect of revend con ede and length of Plug on nstalnt nd elimination of distortion of internal spi-ral ribs is theoretically analysed. Metheds of the Plug in rifled tubes drawing and a uniform-Pitch Plug with a certainreversed cone angle is proposed for drawing rifled tubes.展开更多
文摘Objective: To explore the application value of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation. Methods: Seventy-five patients admitted to our Department of Trauma Surgery from June 2022 to April 2024 who underwent rib fracture osteotomy and internal fixation were selected. According to the types of drainage tubes left in the patients after the operation, they were divided into the observation group (35 cases who were left with disposable grooved negative pressure drainage tubes) and the control group (40 cases who were left with closed silicone thoracic drainage tubes). Comparison of chest drainage, pain, postoperative complications, secondary chest penetration rate, drain placement time, hospitalization time, and treatment costs were compared between the two groups. Results: The total postoperative chest drainage volume of the observation group was less than that of the control group (P < 0.05);the degree of pain, the incidence of postoperative complications, and the rate of secondary chest puncture in the observation group were lower than that of the control group three days after the operation (P < 0.05);and the time of drain placement in the observation group was shorter than that of the control group (P < 0.05). Conclusion: The application of disposable grooved negative pressure drainage tubes in rib fracture incision and internal fixation can significantly improve patients’ postoperative pain and discomfort, reduce complications, lower the rate of secondary chest penetration, promote patients’ postoperative recovery, decrease the amount of postoperative chest drainage, and shorten the time of drain placement, which is worthy of clinical promotion and application.
文摘This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.
基金Supported by the National Natural Science Foundation of China(11472093 and21276056)
文摘Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid.
基金supported by the National Natural Science Foundation of China(91963202,52072372,52372241,52232007,12325203)HFIPS Director’s Fund(BJPY2023A07,YZJJ-GGZX-2022-01).
文摘Electric double-layer capacitors(EDLCs)with fast frequency response are regarded as small-scale alternatives to the commercial bulky aluminum electrolytic capacitors.Creating carbon-based nanoarray electrodes with precise alignment and smooth ion channels is crucial for enhancing EDLCs’performance.However,controlling the density of macropore-dominated nanoarray electrodes poses challenges in boosting the capacitance of line-filtering EDLCs.Herein,a simple technique to finely adjust the vertical-pore diameter and inter-spacing in three-dimensional nanoporous anodic aluminum oxide(3D-AAO)template is achieved,and 3D compactly arranged carbon tube(3D-CACT)nanoarrays are created as electrodes for symmetrical EDLCs using nanoporous 3D-AAO template-assisted chemical vapor deposition of carbon.The 3D-CACT electrodes demonstrate a high surface area of 253.0 m^(2) g^(−1),a D/G band intensity ratio of 0.94,and a C/O atomic ratio of 8.As a result,the high-density 3D-CT nanoarray-based sandwich-type EDLCs demonstrate a record high specific areal capacitance of 3.23 mF cm^(-2) at 120 Hz and exceptional fast frequency response due to the vertically aligned and highly ordered nanoarray of closely packed CT units.The 3D-CT nanoarray electrode-based EDLCs could serve as line filters in integrated circuits,aiding power system miniaturization.
文摘Using the upper bound element technique (UBET), a numerical model was proposed for analyzing the metal deformation behavior in the extrusion process of ribbed thin wall pipes through a porthole die. Optimization parameters were contained in the numerical model and determined through minimizing the total work of metal deformation. Taking the extrusion process of thin wall pipe with one rib as an example, the calculated results using the proposed model are as follows: the extrusion pressure p is linearly related to the extrusion ratio R by p = a+bR 0.683 , where a = 14.13, b = 0.911. When the length of the billet remaining in container is shorter than a quarter of the container diameter, the plastic region extends over the whole of the remained billet and the extrusion process reaches the state of funnel deformation. There exists an optimum depth of welding chamber in respect of the extrusion pressure, and to the calculated example the optimum depth is about 10% of the circumscribed diameter of portholes. To obtain more equitable metal flow in welding chamber, it is required to make the dividing planes in container to be consistent with corresponding welding planes in the chamber ( θ max i = θ′ max i ) through choosing different entering area for each of the portholes.
文摘Backward ball spinning was applied for manufacturing thin-walled tubular parts with longitudinal inner ribs. Rigid-plastic finite element method(FEM) was used for simulating the backward ball spinning process in order to calculate the height of the inner ribs. With a view to guarantee a better simulation accuracy, it is essential to enhance and improve some general problems of FEM, such as generation of initial velocity field, choice of penalty factor, determination of boundary conditions, treatment of rigid region and description of convergence criteria. It is evident that whether the problems with respect to FEM are dealt with appropriately or not, they have a significant influence on the modeling accuracy and efficiency. By reasonable solving the general problems, rigid-plastic FEM can successfully simulate the height of the inner ribs and the calculated values are in good agreement with the measured values.
文摘The effect of revend con ede and length of Plug on nstalnt nd elimination of distortion of internal spi-ral ribs is theoretically analysed. Metheds of the Plug in rifled tubes drawing and a uniform-Pitch Plug with a certainreversed cone angle is proposed for drawing rifled tubes.