Based on the theory of elastic dynamics, the scattering of elasticwaves and dynamic stress concentration of fiber-reinforced compositewith interfaces are studied. Analytical expressions of elastic wavesin different me...Based on the theory of elastic dynamics, the scattering of elasticwaves and dynamic stress concentration of fiber-reinforced compositewith interfaces are studied. Analytical expressions of elastic wavesin different medium areas are presented and an analytic method ofsolving this problem is established. The mode coefficients aredetermined by means of the continuous conditions of displacement andstress on the boundary of the interfaces. The influence of materialproperties and structural size on the dynamic stress con- centrationfactors near the interfaces is analyzed.展开更多
This article presents an analysis of the scattering of anti-plane shear waves from a single cylindrical inhomogeneity partially bonded to an unbounded magneto-electro-elastic matrix. The magneto-electric permeable bou...This article presents an analysis of the scattering of anti-plane shear waves from a single cylindrical inhomogeneity partially bonded to an unbounded magneto-electro-elastic matrix. The magneto-electric permeable boundary conditions are adopted. The crack opening displacement is represented by Chebyshev polynomials and a system of equations is derived and solved for the unknown coefficients. Some examples are calculated and the results are illustrated. The results show that the COD increases when the piezomagnetic coefficient of the inhomogeneity bonded to the piezoelectric matrix becomes larger, and that the COD decreases when the piezomagnetic coefficient of the matrix with the piezoelectric inhomogeneity increases.展开更多
Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates,separated by a gap of finite width,floating horizontally on water of finite depth,ar...Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates,separated by a gap of finite width,floating horizontally on water of finite depth,are investigated in the present work for a two-dimensional time-harmonic case.Within the frame of linear water wave theory,the solutions of the two boundary value problems under consideration have been represented in the forms of eigenfunction expansions.Approximate values of the reflection and transmission coefficients are obtained by solving an over-determined system of linear algebraic equations in each problem.In both the problems,the method of least squares as well as the singular value decomposition have been employed and tables of numerical values of the reflection and transmission coefficients are presented for specific choices of the parameters for modelling the elastic plates.Our main aim is to check the energy balance relation in each problem which plays a very important role in the present approach of solutions of mixed boundary value problems involving Laplace equations.The main advantage of the present approach of solutions is that the results for the values of reflection and transmission coefficients obtained by using both the methods are found to satisfy the energy-balance relations associated with the respective scattering problems under consideration.The absolute values of the reflection and transmission coefficients are presented graphically against different values of the wave numbers.展开更多
The indirect boundary element method (IBEM) is used to study three-dimensional scattering of obliquely incident plane SH waves by an alluvial valley embedded in a layered half-space. The free-field response of the l...The indirect boundary element method (IBEM) is used to study three-dimensional scattering of obliquely incident plane SH waves by an alluvial valley embedded in a layered half-space. The free-field response of the layered half-space is calculated by the direct stiffness method, and dynamic Green's functions of moving distributed loads acting on inclined lines in a layered half-space are calculated to simulate the scattering wave field. The presented method yields very accurate results since the three-dimensional dynamic stiffness matrix is exact and the moving distributed loads can act directly on the valley boundary without singularity. Numerical results and analyses are performed for amplification of obliquely incident plane SH waves around an alluvial valley in a uniform half-space and in single layer over half-space. The results show that the three-dimensional responses are distinctly different from the two-dimensional responses, and the displacement amplitudes around alluvial valleys in a uniform haft-space are obviously different from those in a layered half-space.展开更多
In this work,the three-dimensional(3 D)propagation behaviors in the nonlinear phononic crystal and elastic wave metamaterial with initial stresses are investigated.The analytical solutions of the fundamental wave and ...In this work,the three-dimensional(3 D)propagation behaviors in the nonlinear phononic crystal and elastic wave metamaterial with initial stresses are investigated.The analytical solutions of the fundamental wave and second harmonic with the quasilongitudinal(qP)and quasi-shear(qS_(1) and qS_(2))modes are derived.Based on the transfer and stiffness matrices,band gaps with initial stresses are obtained by the Bloch theorem.The transmission coefficients are calculated to support the band gap property,and the tunability of the nonreciprocal transmission by the initial stress is discussed.This work is expected to provide a way to tune the nonreciprocal transmission with vector characteristics.展开更多
The compression of soil grain and pore fluid as well as viscid coupling of pore fluid and soil skeleton is considered, the scattering problem of incident plane P1 wave (fast compressional wave) by an infinite cylind...The compression of soil grain and pore fluid as well as viscid coupling of pore fluid and soil skeleton is considered, the scattering problem of incident plane P1 wave (fast compressional wave) by an infinite cylindrical shell deeply embedded in isotropic saturated soils is studied by adopting the amended Biot model, amplitude equations about potential functions of scattering and refracting fields are obtained, and the effect of dimensionless frequencies and shell thickness on the back-scattering spectra and dynamic stress concentration factors of two types of cylindrical shells with high and low rigidity are numerically computed and analyzed.展开更多
We extend the multiple-scattering theory (MST) for elastic wave scattering and propagating in two-dimensional composite. The formalism for the band structure calculation is presented by taking into account the full ve...We extend the multiple-scattering theory (MST) for elastic wave scattering and propagating in two-dimensional composite. The formalism for the band structure calculation is presented by taking into account the full vector character of the elastic wave. As a demonstration of application of the formalism we calculate the band structure of elastic wave propagating in a two-dimensional periodic arrangement of cylinders. The results manifest that the MST shows great promise in complementing the plane-wave (PW) approach for the study of elastic wave.展开更多
The problem of elastic wave scattering from a partially debonded elastic cylindrical inclusion is investigated by using the wave function expansion method and singular integral equation technique. The debonding region...The problem of elastic wave scattering from a partially debonded elastic cylindrical inclusion is investigated by using the wave function expansion method and singular integral equation technique. The debonding regions are modeled as interface cracks with non-contacting faces. The mixed boundary conditions of the problem lead to a set of simultanious dual series equations which, by introducing the dislocation density functions as unknowns, can be further converted to a set of singular integral equations of the second type. Solving these equations numerically, we obtain the dynamic stress intensity factor(DSIF), the scattered far-field pattern and the scattering cross section(SCS). The numerical results for an inclusion with one debond are presented to show the distinguishing feature of the problem-the low frequency resonances in both DSIF and SCS. Finally, as a special example, we discuss the scattering of elastic waves by a circular arc-shaped crack in a homogeneous medium. The presented method is valid when stresses have oscillatory behavior.展开更多
The problem of water wave scattering by a thin vertical elastic plate submerged in uniform finite depth water is investigated here.The boundary condition on the elastic plate is derived from the Bernoulli-Euler equati...The problem of water wave scattering by a thin vertical elastic plate submerged in uniform finite depth water is investigated here.The boundary condition on the elastic plate is derived from the Bernoulli-Euler equation of motion satisfied by the plate.Using the Green’s function technique,from this boundary condition,the normal velocity of the plate is expressed in terms of the difference between the velocity potentials(unknown)across the plate.The two ends of the plate are either clamped or free.The reflection and transmission coefficients are obtained in terms of the integrals’involving combinations of the unknown velocity potential on the two sides of the plate,which satisfy three simultaneous integral equations and are solved numerically.These coefficients are computed numerically for various values of different parameters and depicted graphically against the wave number in a number of figures.展开更多
Based on the theory of elastic dynamics, multiple scattering of elastic waves and dynamic stress concentrations in fiber_reinforced composite were studied. The analytical expressions of elastic waves in different regi...Based on the theory of elastic dynamics, multiple scattering of elastic waves and dynamic stress concentrations in fiber_reinforced composite were studied. The analytical expressions of elastic waves in different region were presented and an analytic method to solve this problem was established. The mode coefficients of elastic waves were determined in accordance with the continuous conditions of displacement and stress on the boundary of the multi_interfaces. By making use of the addition theorem of Hankel functions, the formulations of scattered wave fields in different local coordinates were transformed into those in one local coordinate to determine the unknown coefficients and dynamic stress concentration factors. The influence of distance between two inclusions, material properties and structural size on the dynamic stress concentration factors near the interfaces was analyzed. It indicates in the analysis that distance between two inclusions, material properties and structural size has great influence on the dynamic properties of fiber_reinforced composite near the interfaces. As examples, the numerical results of dynamic stress concentration factors near the interfaces in a fiber_reinforced composite are presented and discussed.展开更多
We investigate the three-dimensional (3D) scattering problem of an incident plane shear horizontal wave by a partly through-thickness hole in an isotropic plate, in which the Lamb wave modes are also included due to...We investigate the three-dimensional (3D) scattering problem of an incident plane shear horizontal wave by a partly through-thickness hole in an isotropic plate, in which the Lamb wave modes are also included due to the mode conversions by the scattering obstacle in the 3D problem. An analytical model is presented such that the wave fields are expanded in all of propagating and evanescent SH modes and Lamb modes, and the scattered far-fields of three fundamental guided wave modes are analyzed numerically for different sizes of the holes and frequencies. The numerical results are verified by comparing with those obtained by using the approximate Poisson/Mindlin plate model for small hole radius and low frequency. It is also found that the scattering patterns are different from those of the SO wave incidence. Our work is useful for quantitative evaluation of the plate-like structure by ultrasonic guided waves.展开更多
The indirect boundary element method(IBEM)is applied to investigate the scattering of elastic waves around a 3-D sedimentary basin filled with fluid-saturated poroelastic medium.Based on this method,the free field and...The indirect boundary element method(IBEM)is applied to investigate the scattering of elastic waves around a 3-D sedimentary basin filled with fluid-saturated poroelastic medium.Based on this method,the free field and scattered field can be solved according to the boundary conditions.And the numerical accuracy has been verified.The effects of parameters on elastic wave scattering are studied,such as boundary condition,incident frequency,incident angle and porosity of medium.Numerical results illustrate that the amplification effect of surface displacement near poroelastic sedimentary basin is notable.In addition,for the case of large porosity the drainage condition has a significant impact on the response amplitude.Due to the fluid exchange at the interface under the drained condition,the displacement amplitude can be much larger than that under the undrained condition in present study.The study can provide a theoretical basis for the anti-seismic design of engineering structures located in sedimentary basin.展开更多
In this paper, on the basis of Liu’s complex function and conformal mapping methods, supplemented by local coordinate system method, e-type piezoelectric material and elastic wave scattering and dynamic stress concen...In this paper, on the basis of Liu’s complex function and conformal mapping methods, supplemented by local coordinate system method, e-type piezoelectric material and elastic wave scattering and dynamic stress concentrations problems with double holes question are studied, and an analytical solution is given to the problems. On the basis of multiple scattering of elastic wave theory, put forward the study about microscopic dynamics model to dynamic stress in the structure of piezoelectric composites as well as dynamic playing field. As an example, the numerical results of the dynamic stress distribution around the hole in case double equal diameter holes are given in the paper, and the influence of incident wave number and hole-spacing parameters on the dynamic stress concentration factor is analyzed.展开更多
In this paper, based on complex variables and conformal mapping methods, using the refined dynamic equation of plates, elastic wave scattering and dynamic stress concentrations in plates with two cutouts were studied....In this paper, based on complex variables and conformal mapping methods, using the refined dynamic equation of plates, elastic wave scattering and dynamic stress concentrations in plates with two cutouts were studied. Applying the orthogonal function expansion method, the problem to be solved can be reduced into the solution of a set of infinite algebraic equations. According to free boundary conditions, numerical results of dynamic moment concentration factors in thick plates with two circular cutouts analyze that: there will be more complex interaction changes between two-cutout situation than single cutout situation. In the case of low frequency or high frequency and thin plate, the hole-spacing in the absence of coupling interactions was larger or smaller. The numerical results and method can be used to analyze the dynamics and strength of plate-like structures.展开更多
We investigate the target and intensity dependence of plateau in high-order above threshold ionization(HATI) by simulating the two-dimensional(2D) momentum distributions and the energy spectra of photoelectrons in...We investigate the target and intensity dependence of plateau in high-order above threshold ionization(HATI) by simulating the two-dimensional(2D) momentum distributions and the energy spectra of photoelectrons in HATI of rare gas atoms through using the quantitative rescattering model. The simulated results are compared with the existing experimental measurements. It is found that the slope of the plateau in the HATI photoelectron energy spectrum highly depends on the structure of elastic scattering differential cross section(DCS) of laser-induced returning electron with its parent ion. The investigations of the long- and short-range potential effects in the DCSs reveal that the short-range potential, which reflects the structure of the target, plays an essential role in generating the HATI photoelectron spectra.展开更多
The elastic scattering properties in a mixture of sodium and cesium atoms are investigated at cold and ultracold temperatures. Based on the accurate interatomic potential for the NaCs mixture, the interspecies s-wave ...The elastic scattering properties in a mixture of sodium and cesium atoms are investigated at cold and ultracold temperatures. Based on the accurate interatomic potential for the NaCs mixture, the interspecies s-wave scattering lengths, the effective ranges and the p-wave scattering lengths are calculated by the quantal method and the semiclassical method, respectively. The s-wave scattering lengths are 512.7a0 for the singlet state and 33.4a0 for the triplet state. In addition, the spin-change and elastic cross sections are also calculated, and the g-wave shape resonance is found in the total elastic cross sections.展开更多
In this paper,an analytic method is developed to address steady SH-wave scattering and perform dynamic analysis of multiple circular cavities in half space.The scattered wave function used for scattering of SH-waves b...In this paper,an analytic method is developed to address steady SH-wave scattering and perform dynamic analysis of multiple circular cavities in half space.The scattered wave function used for scattering of SH-waves by multiple circular cavities,which automatically satisfies the stress-free condition at the horizontal surface,is constructed by applying the symmetry of the SH-wave scattering and the method of multi-polar coordinates system.Applying this scattered wave function and method of moving coordinates,the original problem can be transformed to the problem of SH-wave scattering by multiple circular cavities in the full space.Finally,the solution of the problem can be reduced to a series of algebraic equations and solved numerically by truncating the infinite algebraic equations to the finite ones.Numerical examples are provided for case with two cavities to show the effect of wave number,and the distances between the centers of the cavities and from the centers to the ground surface on the dynamic stress concentration around the cavity impacted by incident steady SH-wave.展开更多
The method of complex function and the method of Green's function are used to investigate the problem of SH-wave scattering by radial cracks of any limited length along the radius originating at the boundary of an...The method of complex function and the method of Green's function are used to investigate the problem of SH-wave scattering by radial cracks of any limited length along the radius originating at the boundary of an elliptical hole, and the solution of dynamic stress intensity factor at the crack tip was given. A Green's function was constructed for the problem, which is a basic solution of displacement field for an elastic half space containing a half elliptical gap impacted by anti-plane harmonic linear source force at any point of its horizontal boundary. With division of a crack technique, a series of integral equations can be established on the conditions of continuity and the solution of dynamic stress intensity factor can be obtained. The influence of an elliptical hole on the dynamic stress intensity factor at the crack tip was discussed.展开更多
The multi-parameter inverse scattering problem of elastic waveequation with single fre- quency is investigated within Bornapproximation. By use of a wideband measuring scheme in which bothtransmitters and receivers sc...The multi-parameter inverse scattering problem of elastic waveequation with single fre- quency is investigated within Bornapproximation. By use of a wideband measuring scheme in which bothtransmitters and receivers scan over the half-space surface, theformula of the scattering field of elastic wave is derived. Fourtypes of mode conversion of elastic wave(P→P, P→S, S→P, S→S)areseparated from the scattering field. These components containsufficient information for usto recon- struct the configuration ofthe density and Lame parameters of the medium.展开更多
The emergence of new types of composite materials,the depletion of existing hydrocarbon deposits,and the increase in the speed of trains require the development of new research methods based on wave scattering.Therefo...The emergence of new types of composite materials,the depletion of existing hydrocarbon deposits,and the increase in the speed of trains require the development of new research methods based on wave scattering.Therefore,it is necessary to determine the laws of wave scattering in inhomogeneous media.We propose a method that combines the advantages of a numerical simulation with an analytical study of the boundary value problem of elastic and acoustic wave equations.In this letter we present the results of the study using the proposed method:the formation of a response from a shear wave in an acoustic medium and the formation of shear waves when a vertically incident longitudinal wave is scattered by a vertical gas-filled fracture.We have obtained a number of analytical expressions characterising the scattering of these wave types.展开更多
基金the National Natural Science Foundation of China(No.19972018)
文摘Based on the theory of elastic dynamics, the scattering of elasticwaves and dynamic stress concentration of fiber-reinforced compositewith interfaces are studied. Analytical expressions of elastic wavesin different medium areas are presented and an analytic method ofsolving this problem is established. The mode coefficients aredetermined by means of the continuous conditions of displacement andstress on the boundary of the interfaces. The influence of materialproperties and structural size on the dynamic stress con- centrationfactors near the interfaces is analyzed.
基金Project supported by the National Natural Science Foundation of China (Nos. 10132010 and 50135030).
文摘This article presents an analysis of the scattering of anti-plane shear waves from a single cylindrical inhomogeneity partially bonded to an unbounded magneto-electro-elastic matrix. The magneto-electric permeable boundary conditions are adopted. The crack opening displacement is represented by Chebyshev polynomials and a system of equations is derived and solved for the unknown coefficients. Some examples are calculated and the results are illustrated. The results show that the COD increases when the piezomagnetic coefficient of the inhomogeneity bonded to the piezoelectric matrix becomes larger, and that the COD decreases when the piezomagnetic coefficient of the matrix with the piezoelectric inhomogeneity increases.
基金NASI (National Academy of Sciences, India) for providing financial support
文摘Two problems of scattering of surface water waves involving a semi-infinite elastic plate and a pair of semi-infinite elastic plates,separated by a gap of finite width,floating horizontally on water of finite depth,are investigated in the present work for a two-dimensional time-harmonic case.Within the frame of linear water wave theory,the solutions of the two boundary value problems under consideration have been represented in the forms of eigenfunction expansions.Approximate values of the reflection and transmission coefficients are obtained by solving an over-determined system of linear algebraic equations in each problem.In both the problems,the method of least squares as well as the singular value decomposition have been employed and tables of numerical values of the reflection and transmission coefficients are presented for specific choices of the parameters for modelling the elastic plates.Our main aim is to check the energy balance relation in each problem which plays a very important role in the present approach of solutions of mixed boundary value problems involving Laplace equations.The main advantage of the present approach of solutions is that the results for the values of reflection and transmission coefficients obtained by using both the methods are found to satisfy the energy-balance relations associated with the respective scattering problems under consideration.The absolute values of the reflection and transmission coefficients are presented graphically against different values of the wave numbers.
基金sponsored by Project of Natural Science Foundation of China(50908156,50978183)the Application Basis and Front Technology Research Progamme of Tianjin Municipality under Grant 12JCZDJC29000
文摘The indirect boundary element method (IBEM) is used to study three-dimensional scattering of obliquely incident plane SH waves by an alluvial valley embedded in a layered half-space. The free-field response of the layered half-space is calculated by the direct stiffness method, and dynamic Green's functions of moving distributed loads acting on inclined lines in a layered half-space are calculated to simulate the scattering wave field. The presented method yields very accurate results since the three-dimensional dynamic stiffness matrix is exact and the moving distributed loads can act directly on the valley boundary without singularity. Numerical results and analyses are performed for amplification of obliquely incident plane SH waves around an alluvial valley in a uniform half-space and in single layer over half-space. The results show that the three-dimensional responses are distinctly different from the two-dimensional responses, and the displacement amplitudes around alluvial valleys in a uniform haft-space are obviously different from those in a layered half-space.
基金Project supported by the National Natural Science Foundation of China(Nos.11922209,11991031 and 12021002)。
文摘In this work,the three-dimensional(3 D)propagation behaviors in the nonlinear phononic crystal and elastic wave metamaterial with initial stresses are investigated.The analytical solutions of the fundamental wave and second harmonic with the quasilongitudinal(qP)and quasi-shear(qS_(1) and qS_(2))modes are derived.Based on the transfer and stiffness matrices,band gaps with initial stresses are obtained by the Bloch theorem.The transmission coefficients are calculated to support the band gap property,and the tunability of the nonreciprocal transmission by the initial stress is discussed.This work is expected to provide a way to tune the nonreciprocal transmission with vector characteristics.
文摘The compression of soil grain and pore fluid as well as viscid coupling of pore fluid and soil skeleton is considered, the scattering problem of incident plane P1 wave (fast compressional wave) by an infinite cylindrical shell deeply embedded in isotropic saturated soils is studied by adopting the amended Biot model, amplitude equations about potential functions of scattering and refracting fields are obtained, and the effect of dimensionless frequencies and shell thickness on the back-scattering spectra and dynamic stress concentration factors of two types of cylindrical shells with high and low rigidity are numerically computed and analyzed.
文摘We extend the multiple-scattering theory (MST) for elastic wave scattering and propagating in two-dimensional composite. The formalism for the band structure calculation is presented by taking into account the full vector character of the elastic wave. As a demonstration of application of the formalism we calculate the band structure of elastic wave propagating in a two-dimensional periodic arrangement of cylinders. The results manifest that the MST shows great promise in complementing the plane-wave (PW) approach for the study of elastic wave.
文摘The problem of elastic wave scattering from a partially debonded elastic cylindrical inclusion is investigated by using the wave function expansion method and singular integral equation technique. The debonding regions are modeled as interface cracks with non-contacting faces. The mixed boundary conditions of the problem lead to a set of simultanious dual series equations which, by introducing the dislocation density functions as unknowns, can be further converted to a set of singular integral equations of the second type. Solving these equations numerically, we obtain the dynamic stress intensity factor(DSIF), the scattered far-field pattern and the scattering cross section(SCS). The numerical results for an inclusion with one debond are presented to show the distinguishing feature of the problem-the low frequency resonances in both DSIF and SCS. Finally, as a special example, we discuss the scattering of elastic waves by a circular arc-shaped crack in a homogeneous medium. The presented method is valid when stresses have oscillatory behavior.
基金supported by the NASI Senior Scientist Fellowship project a DST research project (No. SR/S4/MS: 521/08)
文摘The problem of water wave scattering by a thin vertical elastic plate submerged in uniform finite depth water is investigated here.The boundary condition on the elastic plate is derived from the Bernoulli-Euler equation of motion satisfied by the plate.Using the Green’s function technique,from this boundary condition,the normal velocity of the plate is expressed in terms of the difference between the velocity potentials(unknown)across the plate.The two ends of the plate are either clamped or free.The reflection and transmission coefficients are obtained in terms of the integrals’involving combinations of the unknown velocity potential on the two sides of the plate,which satisfy three simultaneous integral equations and are solved numerically.These coefficients are computed numerically for various values of different parameters and depicted graphically against the wave number in a number of figures.
文摘Based on the theory of elastic dynamics, multiple scattering of elastic waves and dynamic stress concentrations in fiber_reinforced composite were studied. The analytical expressions of elastic waves in different region were presented and an analytic method to solve this problem was established. The mode coefficients of elastic waves were determined in accordance with the continuous conditions of displacement and stress on the boundary of the multi_interfaces. By making use of the addition theorem of Hankel functions, the formulations of scattered wave fields in different local coordinates were transformed into those in one local coordinate to determine the unknown coefficients and dynamic stress concentration factors. The influence of distance between two inclusions, material properties and structural size on the dynamic stress concentration factors near the interfaces was analyzed. It indicates in the analysis that distance between two inclusions, material properties and structural size has great influence on the dynamic properties of fiber_reinforced composite near the interfaces. As examples, the numerical results of dynamic stress concentration factors near the interfaces in a fiber_reinforced composite are presented and discussed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11474195,11274226,51478258 and 51405287
文摘We investigate the three-dimensional (3D) scattering problem of an incident plane shear horizontal wave by a partly through-thickness hole in an isotropic plate, in which the Lamb wave modes are also included due to the mode conversions by the scattering obstacle in the 3D problem. An analytical model is presented such that the wave fields are expanded in all of propagating and evanescent SH modes and Lamb modes, and the scattered far-fields of three fundamental guided wave modes are analyzed numerically for different sizes of the holes and frequencies. The numerical results are verified by comparing with those obtained by using the approximate Poisson/Mindlin plate model for small hole radius and low frequency. It is also found that the scattering patterns are different from those of the SO wave incidence. Our work is useful for quantitative evaluation of the plate-like structure by ultrasonic guided waves.
基金National Natural Science Foundation of China(No.51878434)Tianjin Key Research Program of Application Foundation Advanced Technology(No.18JCZDJC39200)Tianjin City Science and Technology Support Program(No.17YFZCSF01140).
文摘The indirect boundary element method(IBEM)is applied to investigate the scattering of elastic waves around a 3-D sedimentary basin filled with fluid-saturated poroelastic medium.Based on this method,the free field and scattered field can be solved according to the boundary conditions.And the numerical accuracy has been verified.The effects of parameters on elastic wave scattering are studied,such as boundary condition,incident frequency,incident angle and porosity of medium.Numerical results illustrate that the amplification effect of surface displacement near poroelastic sedimentary basin is notable.In addition,for the case of large porosity the drainage condition has a significant impact on the response amplitude.Due to the fluid exchange at the interface under the drained condition,the displacement amplitude can be much larger than that under the undrained condition in present study.The study can provide a theoretical basis for the anti-seismic design of engineering structures located in sedimentary basin.
文摘In this paper, on the basis of Liu’s complex function and conformal mapping methods, supplemented by local coordinate system method, e-type piezoelectric material and elastic wave scattering and dynamic stress concentrations problems with double holes question are studied, and an analytical solution is given to the problems. On the basis of multiple scattering of elastic wave theory, put forward the study about microscopic dynamics model to dynamic stress in the structure of piezoelectric composites as well as dynamic playing field. As an example, the numerical results of the dynamic stress distribution around the hole in case double equal diameter holes are given in the paper, and the influence of incident wave number and hole-spacing parameters on the dynamic stress concentration factor is analyzed.
文摘In this paper, based on complex variables and conformal mapping methods, using the refined dynamic equation of plates, elastic wave scattering and dynamic stress concentrations in plates with two cutouts were studied. Applying the orthogonal function expansion method, the problem to be solved can be reduced into the solution of a set of infinite algebraic equations. According to free boundary conditions, numerical results of dynamic moment concentration factors in thick plates with two circular cutouts analyze that: there will be more complex interaction changes between two-cutout situation than single cutout situation. In the case of low frequency or high frequency and thin plate, the hole-spacing in the absence of coupling interactions was larger or smaller. The numerical results and method can be used to analyze the dynamics and strength of plate-like structures.
基金Project supported by the National Natural Science Foundation of China(Grant No.11274219)the STU Scientific Research Foundation for Talentsthe Scientific Research Foundation for the Returned Overseas Chinese Scholars,State Education Ministry,China
文摘We investigate the target and intensity dependence of plateau in high-order above threshold ionization(HATI) by simulating the two-dimensional(2D) momentum distributions and the energy spectra of photoelectrons in HATI of rare gas atoms through using the quantitative rescattering model. The simulated results are compared with the existing experimental measurements. It is found that the slope of the plateau in the HATI photoelectron energy spectrum highly depends on the structure of elastic scattering differential cross section(DCS) of laser-induced returning electron with its parent ion. The investigations of the long- and short-range potential effects in the DCSs reveal that the short-range potential, which reflects the structure of the target, plays an essential role in generating the HATI photoelectron spectra.
基金Project supported by the National Natural Science Foundation of China (Grant No.10874064)the National Science Foundation of Henan Province,China (Grant No.2011A140017)the Youth Foundation of Henan Normal University,China (Grant No.2010qk03)
文摘The elastic scattering properties in a mixture of sodium and cesium atoms are investigated at cold and ultracold temperatures. Based on the accurate interatomic potential for the NaCs mixture, the interspecies s-wave scattering lengths, the effective ranges and the p-wave scattering lengths are calculated by the quantal method and the semiclassical method, respectively. The s-wave scattering lengths are 512.7a0 for the singlet state and 33.4a0 for the triplet state. In addition, the spin-change and elastic cross sections are also calculated, and the g-wave shape resonance is found in the total elastic cross sections.
文摘In this paper,an analytic method is developed to address steady SH-wave scattering and perform dynamic analysis of multiple circular cavities in half space.The scattered wave function used for scattering of SH-waves by multiple circular cavities,which automatically satisfies the stress-free condition at the horizontal surface,is constructed by applying the symmetry of the SH-wave scattering and the method of multi-polar coordinates system.Applying this scattered wave function and method of moving coordinates,the original problem can be transformed to the problem of SH-wave scattering by multiple circular cavities in the full space.Finally,the solution of the problem can be reduced to a series of algebraic equations and solved numerically by truncating the infinite algebraic equations to the finite ones.Numerical examples are provided for case with two cavities to show the effect of wave number,and the distances between the centers of the cavities and from the centers to the ground surface on the dynamic stress concentration around the cavity impacted by incident steady SH-wave.
文摘The method of complex function and the method of Green's function are used to investigate the problem of SH-wave scattering by radial cracks of any limited length along the radius originating at the boundary of an elliptical hole, and the solution of dynamic stress intensity factor at the crack tip was given. A Green's function was constructed for the problem, which is a basic solution of displacement field for an elastic half space containing a half elliptical gap impacted by anti-plane harmonic linear source force at any point of its horizontal boundary. With division of a crack technique, a series of integral equations can be established on the conditions of continuity and the solution of dynamic stress intensity factor can be obtained. The influence of an elliptical hole on the dynamic stress intensity factor at the crack tip was discussed.
基金Foundation of Ph.D Program of the State Education Commission of China
文摘The multi-parameter inverse scattering problem of elastic waveequation with single fre- quency is investigated within Bornapproximation. By use of a wideband measuring scheme in which bothtransmitters and receivers scan over the half-space surface, theformula of the scattering field of elastic wave is derived. Fourtypes of mode conversion of elastic wave(P→P, P→S, S→P, S→S)areseparated from the scattering field. These components containsufficient information for usto recon- struct the configuration ofthe density and Lame parameters of the medium.
基金Moscow Institute of Physics and Technology and supported by the Russian Science Foundation(Grant 19-11-00023).
文摘The emergence of new types of composite materials,the depletion of existing hydrocarbon deposits,and the increase in the speed of trains require the development of new research methods based on wave scattering.Therefore,it is necessary to determine the laws of wave scattering in inhomogeneous media.We propose a method that combines the advantages of a numerical simulation with an analytical study of the boundary value problem of elastic and acoustic wave equations.In this letter we present the results of the study using the proposed method:the formation of a response from a shear wave in an acoustic medium and the formation of shear waves when a vertically incident longitudinal wave is scattered by a vertical gas-filled fracture.We have obtained a number of analytical expressions characterising the scattering of these wave types.