BACKGROUND Computed tomography(CT)small bowel three-dimensional(3D)reconstruction is a powerful tool for the diagnosis of small bowel disease and can clearly show the intestinal lumen and wall as well as the outside s...BACKGROUND Computed tomography(CT)small bowel three-dimensional(3D)reconstruction is a powerful tool for the diagnosis of small bowel disease and can clearly show the intestinal lumen and wall as well as the outside structure of the wall.The horizontal axis position can show the best adjacent intestinal tube and the lesion between the intestinal tubes,while the coronal position can show the overall view of the small bowel.The ileal end of the localization of the display of excellent,and easy to quantitative measurement of the affected intestinal segments,the sagittal position for the rectum and the pre-sacral lesions show the best,for the discovery of fistulae is also helpful.Sagittal view can show rectal and presacral lesions and is useful for fistula detection.It is suitable for the assessment of inflammatory bowel disease,such as assessment of disease severity and diagnosis and differential diagnosis of the small bowel and mesenteric space-occupying lesions as well as the judgment of small bowel obstruction points.CASE SUMMARY Bleeding caused by small intestinal polyps is often difficult to diagnose in clinical practice.This study reports a 29-year-old male patient who was admitted to the hospital with black stool and abdominal pain for 3 months.Using the combination of CT-3D reconstruction and capsule endoscopy,the condition was diagnosed correctly,and the polyps were removed using single-balloon enteroscopyendoscopic retrograde cholangiopancreatography without postoperative complications.CONCLUSION The role of CT-3D in gastrointestinal diseases was confirmed.CT-3D can assist in the diagnosis and treatment of gastrointestinal diseases in combination with capsule endoscopy and small intestinal microscopy.展开更多
BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby provi...BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.展开更多
Research on neural radiance fields for novel view synthesis has experienced explosive growth with the development of new models and extensions.The NeRF(Neural Radiance Fields)algorithm,suitable for underwater scenes o...Research on neural radiance fields for novel view synthesis has experienced explosive growth with the development of new models and extensions.The NeRF(Neural Radiance Fields)algorithm,suitable for underwater scenes or scattering media,is also evolving.Existing underwater 3D reconstruction systems still face challenges such as long training times and low rendering efficiency.This paper proposes an improved underwater 3D reconstruction system to achieve rapid and high-quality 3D reconstruction.First,we enhance underwater videos captured by a monocular camera to correct the image quality degradation caused by the physical properties of the water medium and ensure consistency in enhancement across frames.Then,we perform keyframe selection to optimize resource usage and reduce the impact of dynamic objects on the reconstruction results.After pose estimation using COLMAP,the selected keyframes undergo 3D reconstruction using neural radiance fields(NeRF)based on multi-resolution hash encoding for model construction and rendering.In terms of image enhancement,our method has been optimized in certain scenarios,demonstrating effectiveness in image enhancement and better continuity between consecutive frames of the same data.In terms of 3D reconstruction,our method achieved a peak signal-to-noise ratio(PSNR)of 18.40 dB and a structural similarity(SSIM)of 0.6677,indicating a good balance between operational efficiency and reconstruction quality.展开更多
A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method wit...A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method with scattering angle correction(CSS-BP-SC) can quickly perform the back-projection process of the Compton cone and can be used to precompute the list-mode maximum likelihood expectation maximization(LM-MLEM). A dedicated parallel architecture was designed for the graphics processing unit acceleration of the back-projection and iteration stage of the CSS-BP-SC-based LM-MLEM. The imaging results of the two-point source Monte Carlo(MC) simulation demonstrate that by analyzing the full width at half maximum along the three coordinate axes, the CSS-BP-SC-based LM-MLEM can obtain imaging results comparable to those of the traditional reconstruction algorithm, that is, the simple back-projection-based LM-MLEM. The imaging results of the mouse phantom MC simulation and experiment demonstrate that the reconstruction results obtained by the proposed method sufficiently coincide with the set radioactivity distribution, and the speed increased by more than 664 times compared to the traditional reconstruction algorithm in the mouse phantom experiment. The proposed method will further advance the imaging applications of Compton cameras.展开更多
Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new p...Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new paradigm.However,development of fast and accurate 3D models from medical images or a set of medical scans remains a daunting task due to the number of pre-processing steps involved,most of which are dependent on human expertise.In this review,a survey of pre-processing steps was conducted,and reconstruction techniques for several organs in medical diagnosis were studied.Various methods and principles related to 3D reconstruction were highlighted.The usefulness of 3D reconstruction of organs in medical diagnosis was also highlighted.展开更多
BACKGROUND Few reports have described living foreign bodies in the human body.The current manuscript demonstrates that computed tomography(CT)is an effective tool for accurate preoperative evaluation of living foreign...BACKGROUND Few reports have described living foreign bodies in the human body.The current manuscript demonstrates that computed tomography(CT)is an effective tool for accurate preoperative evaluation of living foreign bodies in clinic.The threedimensional(3D)reconstruction technology could clearly display anatomical structures,lesions and adjacent organs,improving diagnostic accuracy and guiding the surgical decision-making process.CASE SUMMARY Herein we describe a 68-year-old man diagnosed with digestive tract perforation and acute peritonitis caused by a foreign body of Monopterus albus.The patient pre-sented to the emergency department with complaints of dull abdominal pain,profuse sweating and a pale complexion during work.A Monopterus albus had entered the patient’s body through the anus two hours ago.During hospitalization,the 3D reconstruction technology revealed a perforation of the middle rectum complicated with acute peritonitis and showed a clear and complete Monopterus albus bone morphology in the abdominal and pelvic cavities,with the Monopterus albus biting the mesentery.Laparoscopic examination detected a large(diameter of about 1.5 cm)perforation in the mid-rectum.It could be seen that a Monopterus albus had completely entered the abdominal cavity and had tightly bitten the mesentery of the small intestine.During the operation,the dead Monopterus albus was taken out.CONCLUSION The current manuscript demonstrates that CT is an effective tool for accurate preoperative evaluation of living foreign bodies in clinic.展开更多
Abstract Objective: To evaluate the diagnostic value of two-phase multidetector-row spiral CT threedimensional reconstruction technique in TNM staging of gastric cancer. Methods: In 29 patients with gastric carcinom...Abstract Objective: To evaluate the diagnostic value of two-phase multidetector-row spiral CT threedimensional reconstruction technique in TNM staging of gastric cancer. Methods: In 29 patients with gastric carcinoma pathologically conformed, plan scans were done firstly. Two-phase spiral CT was performed within one breathhold each. Distension of the stomach was achieved by intravenous application of anisodamine and effervescent granules. After bolus injection of contrast medium, scanning was performed in the arterial and venous phase, and the source images were thin reconstructed. The stomach to three-dimension analysis was constructed by volume rendering (VR) multiplanaz volume reconstruction (MPVR), shaded surface display (SSD) and CT virtual gastroscopy (CTVG) technique. In combination with the sources images, gastric tumour invasion and lymph node metastasis was assessed, and TNM staging was performed. Results: In 29 cases of gastric carcinoma, the sensitivity and specificity of two-phase multidetector-row spiral CT three-dimensional reconstruction technique in T1, T2, T3 and Ta staging, the sensitivity and specificity was 50% and 50%, 87.5% and 77.8%, 83.3% and 76.9% and 100% and 80% respectively. For the N staging, the sensitivity and specificity in No, N1, and N2 N3 was 83.3% and 71.4%, 87.5% and 77.8% and 81.8% and 75% respectively. The sensitivity and the specificity for M1 staging was 100%. Conclusion: The reconstruction technique in combination with 16-slices spiral-CT can perform TNM staging well and effectively guide the choice of the surgical procedures for gastric cancer.展开更多
In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is prop...In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.展开更多
The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studie...The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.展开更多
Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, ...Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.展开更多
Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affe...Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affected, and the environment for Qiang Culture was difficult to recover. It highlighted that three-dimensional reconstruction of Qiang Culture should stress the core task and timely and effectively rescue endangered cultural heritages of Qiang Nationality from the perspectives of material and spiritual life. It had explained focuses of three-dimensional pattern construction in detail. In terms of spatial reconstruction, it should reconstruct native culture and history while material culture was constructed, and reconstruct Qiang culture highland by depending on aborigines; in terms of cluster reconstruction, it should give support to large tourism enterprises and perfect tourism chain; in terms of ecological reconstruction, it should enhance construction and demonstration of "ecological protection pilot area of Qiang culture"; in terms of development reconstruction, it should realize coordinated unity between protection and development according to classification protection, characteristic protection and key protection, so as to form the virtuous circle of post-disaster recovery protection and sustainable development.展开更多
Background:Completely endophytic renal tumors(CERT)pose significant challenges due to their anatomical complexity and loss of visual clues about tumor location.A facile scoring model based on three-dimensional(3D)reco...Background:Completely endophytic renal tumors(CERT)pose significant challenges due to their anatomical complexity and loss of visual clues about tumor location.A facile scoring model based on three-dimensional(3D)reconstructed images will assist in better assessing tumor location and vascular variations.Methods:In this retrospective study,80 patients diagnosed with CERT were included.Forty cases underwent preoperative assessment using 3D reconstructed imaging(3D-Cohort),while the remaining 40 cases were assessed using two-dimensional imaging(2D-Cohort).Vascular variations were evaluated by ascertaining the presence of renal arteries>1,prehilar branching arteries,and arteries anterior to veins.The proposed scoring system,termed RAL,encompassed three critical components:(R)adius(maximal tumor diameter in cm),(A)rtery(occurrence of arterial variations),and(L)ocation relative to the polar line.Comparison of the RAL scoring system was made with established nephrometry scoring systems.Results:A total of 48(60%)patients exhibited at least one vascular variation.In the 2D-Cohort,patients with vascular variations experienced significantly prolonged operation time,increased bleeding volume,and extended warm ischemia time compared with those without vascular variations.Conversely,the presence of vascular vari-ations did not significantly affect operative parameters in the 3D-Cohort.Furthermore,the 2D-Cohort demon-strated a notable decline in both short-and long-term estimated glomerular filtration rate(eGFR)changes com-pared with the 3D-Cohort,a trend consistent across patients with warm ischemia time≥25 min and those with vascular variations.Notably,the 2D-Cohort exhibited a larger margin of normal renal tissue compared with the 3D-Cohort.Elevated RAL scores correlated with larger tumor size,prolonged operation time,extended warm is-chemia time,and substantial postoperative eGFR decrease.The RAL scoring system displayed superior predictive capabilities in assessing postoperative eGFR changes compared with conventional nephrometry scoring systems.Conclusions:Our proposed 3D vascular variation-based nephrometry scoring system offers heightened proficiency in preoperative assessment,precise prediction of surgical complexity,and more accurate evaluation of postoper-ative renal function in CERT patients.展开更多
An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable...An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable or similar features of binocular images. In order to reduce the probability of mismatching and improve the measure precision, a four-camera measurement system which can add extra matching constraints and offer multiple measurements is applied in this work. Moreover, a series of different checkerboard patterns are projected onto the object to obtain dense feature points and remove mismatched points. Finally, the 3D model is generated by performing Delaunay triangulation and texture mapping on the point cloud obtained by four-view matching. This method was tested on the 3D reconstruction of a terracotta soldier sculpture and the Buddhas in the Mogao Grottoes. Their point clouds without mismatched points were obtained and less processing time was consumed in most cases relative to binocular matching. These good reconstructed models show the effectiveness of the method.展开更多
Introduction: Middle ear volume(MEV) is a clinically relevant parameter across middle ear diseases. MEV values between these techniques have never before been tested for agreement in ears with perforated tympanic memb...Introduction: Middle ear volume(MEV) is a clinically relevant parameter across middle ear diseases. MEV values between these techniques have never before been tested for agreement in ears with perforated tympanic membranes(TMs).Methods: Middle ears were identified from 36 patients ranging 18-89 years of age with TM perforations who underwent tympanometry and temporal bone computed tomography(CT) between 2005 and 2015. MEVs calculated by both tympanometry and three-dimensional volume reconstruction(3DVR) were analyzed for agreement using Bland Altman plots. The differences between tympanometric and 3DVR MEV values for each given middle ear were characterized across MEV quartiles(1= smallest; 4= largest) and across increasing states of middle ear disease using Kruskale Wallis and Wilcoxon testing with Bonferroni correction.Results: Bland Altman plots demonstrated significant disagreement between MEV measurement techniques. Differences between tympanometric(T) and 3DVR MEV values were significantly greater with increasing average(i.e.(Tt3DVR)/2)) MEV per linear regression(p < 0.0001). Significance was demonstrated between fourth and first average MEV quartiles(p= 0.0024), fourth and second quartiles(p= 0.0024), third and first quartiles(p= 0.0048), and third and second quartiles(p= 0.048). Absolute MEV difference was not significantly different across varying states of middle ear disease(p= 0.44).Conclusion: Statistically and clinically significant disagreement was demonstrated between tympanometric and 3DVR MEV values. Studies that vary in MEV estimation techniques may be expected to demonstrate significantly different results. These preliminary results suggest that clinicians should endeavor to seek further confirmation when interpreting high tympanometric MEV values.展开更多
This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize t...This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.展开更多
A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of...A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.展开更多
BACKGROUND: It is not possible to reconstruct the inner structure of the spinal cord, such as gray matter and spinal tracts, from the Visual Human Project database or CT and MRI databases, due to low image resolution...BACKGROUND: It is not possible to reconstruct the inner structure of the spinal cord, such as gray matter and spinal tracts, from the Visual Human Project database or CT and MRI databases, due to low image resolution and contrast in macrosection images. OBJECTIVE: To explore a semi-automatic computerized three-dimensional (3D) reconstruction of human spinal cord based on histological serial sections, in order to solve issues such as low contrast. DESIGN, TIME AND SETTING: An experimental study combining serial section techniques and 3D reconstruction, performed in the laboratory of Human Anatomy and Histoembryology at the Medical School of Nantong University during January to April 2008. SETTING: Department of Anatomy, Institute of Neurobiology, Jiangsu Province Key Laboratory of Neural Regeneration, Laboratory of Image Engineering. MATERIALS: A human lumbar spinal cord segment from fresh autopsy material of an adult male. METHODS: After 4% paraformaldehyde fixation for three days, serial sections of the lumbar spinal cord were cut on a Leica cryostat and mounted on slides in sequence, with eight sections aligned separately on each slide. All sections were stained with Luxol Fast Blue to reveal myelin sheaths. After gradient dehydration and clearing, the stained slides were coverslipped. Sections were observed and images recorded under a light microscope using a digital camera. Six images were acquired at x25 magnification and automatically stitched into a complete section image. After all serial images were obtained, 96 complete serial images of the human lumbar cord segment were automatically processed with "Curves", "Autocontrast", "Gray scale 8 bit", "Invert", "Image resize to 50%" steps using Photoshop 7.0 software. All images were added in order into 3D-DOCTOR 4.0 software as a stack, where serial images were automatically realigned with neighboring images and semi-automatically segmented for white matter and gray matter. Finally, simple surface and volume reconstruction were completed on a personal computer. The reconstructed human lumbar spinal cord segment was interactively observed, cut, and measured. MAIN OUTCOME MEASURES: The reconstructed human lumbar spinal cord segment. RESULTS: Compared with serial images obtained from other image modalities, such as CT, MRI, and macrosections from The Visual Human Project database, the Luxol Fast Blue stained histological serial section images exhibited higher resolution and contrast between gray and white matter. Image processing and 3D reconstruction steps were semi-automatically performed with related software. The 3D reconstructed human lumbar cord segment were observed, cut, and measured on a PC. CONCLUSION: A semi-automatically computerized method, based on histological serial sections, is an effective way to 3D-reconstruct the human spinal cord.展开更多
Assimilation systems absorb both satellite measurements and Argo observations.This assimilation is essential to diagnose and evaluate the contribution from each type of data to the reconstructed analysis,allowing for ...Assimilation systems absorb both satellite measurements and Argo observations.This assimilation is essential to diagnose and evaluate the contribution from each type of data to the reconstructed analysis,allowing for better configuration of assimilation parameters.To achieve this,two comparative reconstruction schemes were designed under the optimal interpolation framework.Using a static scheme,an in situ-only field of ocean temperature was derived by correcting climatology with only Argo profiles.Through a dynamic scheme,a synthetic field was first derived from only satellite sea surface height and sea surface temperature measurements through vertical projection,and then a combined field was reconstructed by correcting the synthetic field with in situ profiles.For both schemes,a diagnostic iterative method was performed to optimize the background and observation error covariance statics.The root mean square difference(RMSD)of the in situ-only field,synthetic field and combined field were analyzed toward assimilated observations and independent observations,respectively.The rationale behind the distribution of RMSD was discussed using the following diagnostics:(1)The synthetic field has a smaller RMSD within the global mixed layer and extratropical deep waters,as in the Northwest Pacific Ocean;this is controlled by the explained variance of the vertical surface-underwater regression that reflects the ocean upper mixing and interior baroclinicity.(2)The in situ-only field has a smaller RMSD in the tropical upper layer and at midlatitudes;this is determined by the actual noise-to-signal ratio of ocean temperature.(3)The satellite observations make a more significant contribution to the analysis toward independent observations in the extratropics;this is determined by both the geographical feature of the synthetic field RMSD(smaller at depth in the extratropics)and that of the covariance correlation scales(smaller in the extratropics).展开更多
The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based...The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.展开更多
文摘BACKGROUND Computed tomography(CT)small bowel three-dimensional(3D)reconstruction is a powerful tool for the diagnosis of small bowel disease and can clearly show the intestinal lumen and wall as well as the outside structure of the wall.The horizontal axis position can show the best adjacent intestinal tube and the lesion between the intestinal tubes,while the coronal position can show the overall view of the small bowel.The ileal end of the localization of the display of excellent,and easy to quantitative measurement of the affected intestinal segments,the sagittal position for the rectum and the pre-sacral lesions show the best,for the discovery of fistulae is also helpful.Sagittal view can show rectal and presacral lesions and is useful for fistula detection.It is suitable for the assessment of inflammatory bowel disease,such as assessment of disease severity and diagnosis and differential diagnosis of the small bowel and mesenteric space-occupying lesions as well as the judgment of small bowel obstruction points.CASE SUMMARY Bleeding caused by small intestinal polyps is often difficult to diagnose in clinical practice.This study reports a 29-year-old male patient who was admitted to the hospital with black stool and abdominal pain for 3 months.Using the combination of CT-3D reconstruction and capsule endoscopy,the condition was diagnosed correctly,and the polyps were removed using single-balloon enteroscopyendoscopic retrograde cholangiopancreatography without postoperative complications.CONCLUSION The role of CT-3D in gastrointestinal diseases was confirmed.CT-3D can assist in the diagnosis and treatment of gastrointestinal diseases in combination with capsule endoscopy and small intestinal microscopy.
文摘BACKGROUND Laparoscopic gastrectomy for esophagogastric junction(EGJ)carcinoma enables the removal of the carcinoma at the junction between the stomach and esophagus while preserving the gastric function,thereby providing patients with better treatment outcomes and quality of life.Nonetheless,this surgical technique also presents some challenges and limitations.Therefore,three-dimensional reconstruction visualization technology(3D RVT)has been introduced into the procedure,providing doctors with more comprehensive and intuitive anatomical information that helps with surgical planning,navigation,and outcome evaluation.AIM To discuss the application and advantages of 3D RVT in precise laparoscopic resection of EGJ carcinomas.METHODS Data were obtained from the electronic or paper-based medical records at The First Affiliated Hospital of Hebei North University from January 2020 to June 2022.A total of 120 patients diagnosed with EGJ carcinoma were included in the study.Of these,68 underwent laparoscopic resection after computed tomography(CT)-enhanced scanning and were categorized into the 2D group,whereas 52 underwent laparoscopic resection after CT-enhanced scanning and 3D RVT and were categorized into the 3D group.This study had two outcome measures:the deviation between tumor-related factors(such as maximum tumor diameter and infiltration length)in 3D RVT and clinical reality,and surgical outcome indicators(such as operative time,intraoperative blood loss,number of lymph node dissections,R0 resection rate,postoperative hospital stay,postoperative gas discharge time,drainage tube removal time,and related complications)between the 2D and 3D groups.RESULTS Among patients included in the 3D group,27 had a maximum tumor diameter of less than 3 cm,whereas 25 had a diameter of 3 cm or more.In actual surgical observations,24 had a diameter of less than 3 cm,whereas 28 had a diameter of 3 cm or more.The findings were consistent between the two methods(χ^(2)=0.346,P=0.556),with a kappa consistency coefficient of 0.808.With respect to infiltration length,in the 3D group,23 patients had a length of less than 5 cm,whereas 29 had a length of 5 cm or more.In actual surgical observations,20 cases had a length of less than 5 cm,whereas 32 had a length of 5 cm or more.The findings were consistent between the two methods(χ^(2)=0.357,P=0.550),with a kappa consistency coefficient of 0.486.Pearson correlation analysis showed that the maximum tumor diameter and infiltration length measured using 3D RVT were positively correlated with clinical observations during surgery(r=0.814 and 0.490,both P<0.05).The 3D group had a shorter operative time(157.02±8.38 vs 183.16±23.87),less intraoperative blood loss(83.65±14.22 vs 110.94±22.05),and higher number of lymph node dissections(28.98±2.82 vs 23.56±2.77)and R0 resection rate(80.77%vs 61.64%)than the 2D group.Furthermore,the 3D group had shorter hospital stay[8(8,9)vs 13(14,16)],time to gas passage[3(3,4)vs 4(5,5)],and drainage tube removal time[4(4,5)vs 6(6,7)]than the 2D group.The complication rate was lower in the 3D group(11.54%)than in the 2D group(26.47%)(χ^(2)=4.106,P<0.05).CONCLUSION Using 3D RVT,doctors can gain a more comprehensive and intuitive understanding of the anatomy and related lesions of EGJ carcinomas,thus enabling more accurate surgical planning.
基金This work was supported by the Key Research and Development Program of Hainan Province(Grant Nos.ZDYF2023GXJS163,ZDYF2024GXJS014)National Natural Science Foundation of China(NSFC)(Grant Nos.62162022,62162024)+2 种基金the Major Science and Technology Project of Hainan Province(Grant No.ZDKJ2020012)Hainan Provincial Natural Science Foundation of China(Grant No.620MS021)Youth Foundation Project of Hainan Natural Science Foundation(621QN211).
文摘Research on neural radiance fields for novel view synthesis has experienced explosive growth with the development of new models and extensions.The NeRF(Neural Radiance Fields)algorithm,suitable for underwater scenes or scattering media,is also evolving.Existing underwater 3D reconstruction systems still face challenges such as long training times and low rendering efficiency.This paper proposes an improved underwater 3D reconstruction system to achieve rapid and high-quality 3D reconstruction.First,we enhance underwater videos captured by a monocular camera to correct the image quality degradation caused by the physical properties of the water medium and ensure consistency in enhancement across frames.Then,we perform keyframe selection to optimize resource usage and reduce the impact of dynamic objects on the reconstruction results.After pose estimation using COLMAP,the selected keyframes undergo 3D reconstruction using neural radiance fields(NeRF)based on multi-resolution hash encoding for model construction and rendering.In terms of image enhancement,our method has been optimized in certain scenarios,demonstrating effectiveness in image enhancement and better continuity between consecutive frames of the same data.In terms of 3D reconstruction,our method achieved a peak signal-to-noise ratio(PSNR)of 18.40 dB and a structural similarity(SSIM)of 0.6677,indicating a good balance between operational efficiency and reconstruction quality.
基金supported by the National Natural Science Foundation of China (No. 12220101005)Natural Science Foundation of Jiangsu Province (No. BK20220132)+2 种基金Primary Research and Development Plan of Jiangsu Province (No. BE2019002-3)Fundamental Research Funds for Central Universities (No. NG2022004)the Foundation of the Graduate Innovation Center in NUAA (No. xcxjh20210613)。
文摘A novel and fast three-dimensional reconstruction method for a Compton camera and its performance in radionuclide imaging is proposed and analyzed in this study. The conical surface sampling back-projection method with scattering angle correction(CSS-BP-SC) can quickly perform the back-projection process of the Compton cone and can be used to precompute the list-mode maximum likelihood expectation maximization(LM-MLEM). A dedicated parallel architecture was designed for the graphics processing unit acceleration of the back-projection and iteration stage of the CSS-BP-SC-based LM-MLEM. The imaging results of the two-point source Monte Carlo(MC) simulation demonstrate that by analyzing the full width at half maximum along the three coordinate axes, the CSS-BP-SC-based LM-MLEM can obtain imaging results comparable to those of the traditional reconstruction algorithm, that is, the simple back-projection-based LM-MLEM. The imaging results of the mouse phantom MC simulation and experiment demonstrate that the reconstruction results obtained by the proposed method sufficiently coincide with the set radioactivity distribution, and the speed increased by more than 664 times compared to the traditional reconstruction algorithm in the mouse phantom experiment. The proposed method will further advance the imaging applications of Compton cameras.
文摘Three-dimensional(3D)reconstruction of human organs has gained attention in recent years due to advances in the Internet and graphics processing units.In the coming years,most patient care will shift toward this new paradigm.However,development of fast and accurate 3D models from medical images or a set of medical scans remains a daunting task due to the number of pre-processing steps involved,most of which are dependent on human expertise.In this review,a survey of pre-processing steps was conducted,and reconstruction techniques for several organs in medical diagnosis were studied.Various methods and principles related to 3D reconstruction were highlighted.The usefulness of 3D reconstruction of organs in medical diagnosis was also highlighted.
文摘BACKGROUND Few reports have described living foreign bodies in the human body.The current manuscript demonstrates that computed tomography(CT)is an effective tool for accurate preoperative evaluation of living foreign bodies in clinic.The threedimensional(3D)reconstruction technology could clearly display anatomical structures,lesions and adjacent organs,improving diagnostic accuracy and guiding the surgical decision-making process.CASE SUMMARY Herein we describe a 68-year-old man diagnosed with digestive tract perforation and acute peritonitis caused by a foreign body of Monopterus albus.The patient pre-sented to the emergency department with complaints of dull abdominal pain,profuse sweating and a pale complexion during work.A Monopterus albus had entered the patient’s body through the anus two hours ago.During hospitalization,the 3D reconstruction technology revealed a perforation of the middle rectum complicated with acute peritonitis and showed a clear and complete Monopterus albus bone morphology in the abdominal and pelvic cavities,with the Monopterus albus biting the mesentery.Laparoscopic examination detected a large(diameter of about 1.5 cm)perforation in the mid-rectum.It could be seen that a Monopterus albus had completely entered the abdominal cavity and had tightly bitten the mesentery of the small intestine.During the operation,the dead Monopterus albus was taken out.CONCLUSION The current manuscript demonstrates that CT is an effective tool for accurate preoperative evaluation of living foreign bodies in clinic.
基金This project was supported by a grant from the Natural Science Foundation of Hubei Province (No. 2002AB130)
文摘Abstract Objective: To evaluate the diagnostic value of two-phase multidetector-row spiral CT threedimensional reconstruction technique in TNM staging of gastric cancer. Methods: In 29 patients with gastric carcinoma pathologically conformed, plan scans were done firstly. Two-phase spiral CT was performed within one breathhold each. Distension of the stomach was achieved by intravenous application of anisodamine and effervescent granules. After bolus injection of contrast medium, scanning was performed in the arterial and venous phase, and the source images were thin reconstructed. The stomach to three-dimension analysis was constructed by volume rendering (VR) multiplanaz volume reconstruction (MPVR), shaded surface display (SSD) and CT virtual gastroscopy (CTVG) technique. In combination with the sources images, gastric tumour invasion and lymph node metastasis was assessed, and TNM staging was performed. Results: In 29 cases of gastric carcinoma, the sensitivity and specificity of two-phase multidetector-row spiral CT three-dimensional reconstruction technique in T1, T2, T3 and Ta staging, the sensitivity and specificity was 50% and 50%, 87.5% and 77.8%, 83.3% and 76.9% and 100% and 80% respectively. For the N staging, the sensitivity and specificity in No, N1, and N2 N3 was 83.3% and 71.4%, 87.5% and 77.8% and 81.8% and 75% respectively. The sensitivity and the specificity for M1 staging was 100%. Conclusion: The reconstruction technique in combination with 16-slices spiral-CT can perform TNM staging well and effectively guide the choice of the surgical procedures for gastric cancer.
基金The National Natural Science Foundation of China(No.60972130)
文摘In order to obtain a better sandstone three-dimensional (3D) reconstruction result which is more similar to the original sample, an algorithm based on stationarity for a two-dimensional (2D) training image is proposed. The second-order statistics based on texture features are analyzed to evaluate the scale stationarity of the training image. The multiple-point statistics of the training image are applied to obtain the multiple-point statistics stationarity estimation by the multi-point density function. The results show that the reconstructed 3D structures are closer to reality when the training image has better scale stationarity and multiple-point statistics stationarity by the indications of local percolation probability and two-point probability. Moreover, training images with higher multiple-point statistics stationarity and lower scale stationarity are likely to obtain closer results to the real 3D structure, and vice versa. Thus, stationarity analysis of the training image has far-reaching significance in choosing a better 2D thin section image for the 3D reconstruction of porous media. Especially, high-order statistics perform better than low-order statistics.
基金supported by the Key R&D Program of Shandong Province, China (No. 2023ZLYS01)the National Natural Science Foundation of China (Nos. 91730304 and 41575026)+3 种基金the National Key Research and Development Plan Project (No. 2022 YFC3104200)the Major Innovation Special Project of Qilu University of Technology (Shandong Academy of Sciences) Science Education Industry Integration Pilot Project (No. 2023HYZX01)the ‘Taishan Scholars’ Construction Projectthe Special funds of Laoshan Laboratory
文摘The sea surface wind field is an important physical parameter in oceanography and meteorology.With the continuous refinement of numerical weather prediction,air-sea interface materials,energy exchange,and other studies,three-dimensional(3D)wind field distribution at local locations on the sea surface must be measured accurately.The current in-situ observation of sea surface wind parameters is mainly achieved through the installation of wind sensors on ocean data buoys.However,the results obtained from this single-point measurement method cannot reflect wind field distribution in a vertical direction above the sea surface.Thus,the present paper proposes a theoretical framework for the optimal inversion of the 3D wind field structure variation in the area where the buoy is located.The variation analysis method is first used to reconstruct the wind field distribution at different heights of the buoy,after which theoretical analysis verification and numerical simulation experiments are conducted.The results indicate that the use of variational methods to reconstruct 3D wind fields is significantly effective in eliminating disturbance errors in observations,which also verifies the correctness of the theoretical analysis of this method.The findings of this article can provide a reference for the layout optimization design of wind measuring instruments in buoy observation systems and also provide theoretical guidance for the design of new observation buoys in the future.
基金supported by the National Natural Science Foundation of China (62001436)the Natural Science Foundation of Jiangsu Province under (BK 20190143,JSGG20190823094603691)。
文摘Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
文摘Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affected, and the environment for Qiang Culture was difficult to recover. It highlighted that three-dimensional reconstruction of Qiang Culture should stress the core task and timely and effectively rescue endangered cultural heritages of Qiang Nationality from the perspectives of material and spiritual life. It had explained focuses of three-dimensional pattern construction in detail. In terms of spatial reconstruction, it should reconstruct native culture and history while material culture was constructed, and reconstruct Qiang culture highland by depending on aborigines; in terms of cluster reconstruction, it should give support to large tourism enterprises and perfect tourism chain; in terms of ecological reconstruction, it should enhance construction and demonstration of "ecological protection pilot area of Qiang culture"; in terms of development reconstruction, it should realize coordinated unity between protection and development according to classification protection, characteristic protection and key protection, so as to form the virtuous circle of post-disaster recovery protection and sustainable development.
基金We thank researchers for patients enrolled from the FUSCC cohort.This work was supported by grants from the National Natural Science Foundation of China(grant numbers:81802525 and no.82172817)the Natural Science Foundation of Shanghai(grant number:20ZR1413100)+3 种基金Beijing Xisike Clinical Oncology Research Foundation(grant number:Y-HR2020MS-0948)the Shanghai“Science and Technology Innova-tion Action Plan”medical innovation research Project(grant num-ber:22Y11905100)the Shanghai Anti-Cancer Association Eyas Project(grant number:SACA-CY21A06 and no.SACA-CY21B01)Fudan University Fuqing scholars Project(grant number:FQXZ202304A).
文摘Background:Completely endophytic renal tumors(CERT)pose significant challenges due to their anatomical complexity and loss of visual clues about tumor location.A facile scoring model based on three-dimensional(3D)reconstructed images will assist in better assessing tumor location and vascular variations.Methods:In this retrospective study,80 patients diagnosed with CERT were included.Forty cases underwent preoperative assessment using 3D reconstructed imaging(3D-Cohort),while the remaining 40 cases were assessed using two-dimensional imaging(2D-Cohort).Vascular variations were evaluated by ascertaining the presence of renal arteries>1,prehilar branching arteries,and arteries anterior to veins.The proposed scoring system,termed RAL,encompassed three critical components:(R)adius(maximal tumor diameter in cm),(A)rtery(occurrence of arterial variations),and(L)ocation relative to the polar line.Comparison of the RAL scoring system was made with established nephrometry scoring systems.Results:A total of 48(60%)patients exhibited at least one vascular variation.In the 2D-Cohort,patients with vascular variations experienced significantly prolonged operation time,increased bleeding volume,and extended warm ischemia time compared with those without vascular variations.Conversely,the presence of vascular vari-ations did not significantly affect operative parameters in the 3D-Cohort.Furthermore,the 2D-Cohort demon-strated a notable decline in both short-and long-term estimated glomerular filtration rate(eGFR)changes com-pared with the 3D-Cohort,a trend consistent across patients with warm ischemia time≥25 min and those with vascular variations.Notably,the 2D-Cohort exhibited a larger margin of normal renal tissue compared with the 3D-Cohort.Elevated RAL scores correlated with larger tumor size,prolonged operation time,extended warm is-chemia time,and substantial postoperative eGFR decrease.The RAL scoring system displayed superior predictive capabilities in assessing postoperative eGFR changes compared with conventional nephrometry scoring systems.Conclusions:Our proposed 3D vascular variation-based nephrometry scoring system offers heightened proficiency in preoperative assessment,precise prediction of surgical complexity,and more accurate evaluation of postoper-ative renal function in CERT patients.
基金Project(2012CB725301)supported by the National Basic Research Program of ChinaProject(201412015)supported by the National Special Fund for Surveying and Mapping Geographic Information Scientific Research in the Public Welfare of ChinaProject(212000168)supported by the Basic Survey-Mapping Program of National Administration of Surveying,Mapping and Geoinformation of China
文摘An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable or similar features of binocular images. In order to reduce the probability of mismatching and improve the measure precision, a four-camera measurement system which can add extra matching constraints and offer multiple measurements is applied in this work. Moreover, a series of different checkerboard patterns are projected onto the object to obtain dense feature points and remove mismatched points. Finally, the 3D model is generated by performing Delaunay triangulation and texture mapping on the point cloud obtained by four-view matching. This method was tested on the 3D reconstruction of a terracotta soldier sculpture and the Buddhas in the Mogao Grottoes. Their point clouds without mismatched points were obtained and less processing time was consumed in most cases relative to binocular matching. These good reconstructed models show the effectiveness of the method.
文摘Introduction: Middle ear volume(MEV) is a clinically relevant parameter across middle ear diseases. MEV values between these techniques have never before been tested for agreement in ears with perforated tympanic membranes(TMs).Methods: Middle ears were identified from 36 patients ranging 18-89 years of age with TM perforations who underwent tympanometry and temporal bone computed tomography(CT) between 2005 and 2015. MEVs calculated by both tympanometry and three-dimensional volume reconstruction(3DVR) were analyzed for agreement using Bland Altman plots. The differences between tympanometric and 3DVR MEV values for each given middle ear were characterized across MEV quartiles(1= smallest; 4= largest) and across increasing states of middle ear disease using Kruskale Wallis and Wilcoxon testing with Bonferroni correction.Results: Bland Altman plots demonstrated significant disagreement between MEV measurement techniques. Differences between tympanometric(T) and 3DVR MEV values were significantly greater with increasing average(i.e.(Tt3DVR)/2)) MEV per linear regression(p < 0.0001). Significance was demonstrated between fourth and first average MEV quartiles(p= 0.0024), fourth and second quartiles(p= 0.0024), third and first quartiles(p= 0.0048), and third and second quartiles(p= 0.048). Absolute MEV difference was not significantly different across varying states of middle ear disease(p= 0.44).Conclusion: Statistically and clinically significant disagreement was demonstrated between tympanometric and 3DVR MEV values. Studies that vary in MEV estimation techniques may be expected to demonstrate significantly different results. These preliminary results suggest that clinicians should endeavor to seek further confirmation when interpreting high tympanometric MEV values.
基金Postdoctoral Fund of China (No. 2003034518), Fund of Health Bureau of Zhejiang Province (No. 2004B042), China
文摘This research studies the process of 3D reconstruction and dynamic concision based on 2D medical digital images using virtual reality modelling language (VRML) and JavaScript language, with a focus on how to realize the dynamic concision of 3D medical model with script node and sensor node in VRML. The 3D reconstruction and concision of body internal organs can be built with such high quality that they are better than those obtained from the traditional methods. With the function of dynamic concision, the VRML browser can offer better windows for man-computer interaction in real-time environment than ever before. 3D reconstruction and dynamic concision with VRML can be used to meet the requirement for the medical observation of 3D reconstruction and have a promising prospect in the fields of medical imaging.
文摘A method and procedure is presented to reconstruct three-dimensional(3D) positions of scattering centers from multiple synthetic aperture radar(SAR) images. Firstly, two-dimensional(2D) attribute scattering centers of targets are extracted from 2D SAR images. Secondly, similarity measure is developed based on 2D attributed scatter centers' location, type, and radargrammetry principle between multiple SAR images. By this similarity, we can associate 2D scatter centers and then obtain candidate 3D scattering centers. Thirdly, these candidate scattering centers are clustered in 3D space to reconstruct final 3D positions. Compared with presented methods, the proposed method has a capability of describing distributed scattering center, reduces false and missing 3D scattering centers, and has fewer restrictionson modeling data. Finally, results of experiments have demonstrated the effectiveness of the proposed method.
基金Natural Science Research Plan forJiangsu Colleges, No.05KJB180105 Postgraduate Innovation Cultivating Projectin Jiangsu Province, No.CX07s_035z
文摘BACKGROUND: It is not possible to reconstruct the inner structure of the spinal cord, such as gray matter and spinal tracts, from the Visual Human Project database or CT and MRI databases, due to low image resolution and contrast in macrosection images. OBJECTIVE: To explore a semi-automatic computerized three-dimensional (3D) reconstruction of human spinal cord based on histological serial sections, in order to solve issues such as low contrast. DESIGN, TIME AND SETTING: An experimental study combining serial section techniques and 3D reconstruction, performed in the laboratory of Human Anatomy and Histoembryology at the Medical School of Nantong University during January to April 2008. SETTING: Department of Anatomy, Institute of Neurobiology, Jiangsu Province Key Laboratory of Neural Regeneration, Laboratory of Image Engineering. MATERIALS: A human lumbar spinal cord segment from fresh autopsy material of an adult male. METHODS: After 4% paraformaldehyde fixation for three days, serial sections of the lumbar spinal cord were cut on a Leica cryostat and mounted on slides in sequence, with eight sections aligned separately on each slide. All sections were stained with Luxol Fast Blue to reveal myelin sheaths. After gradient dehydration and clearing, the stained slides were coverslipped. Sections were observed and images recorded under a light microscope using a digital camera. Six images were acquired at x25 magnification and automatically stitched into a complete section image. After all serial images were obtained, 96 complete serial images of the human lumbar cord segment were automatically processed with "Curves", "Autocontrast", "Gray scale 8 bit", "Invert", "Image resize to 50%" steps using Photoshop 7.0 software. All images were added in order into 3D-DOCTOR 4.0 software as a stack, where serial images were automatically realigned with neighboring images and semi-automatically segmented for white matter and gray matter. Finally, simple surface and volume reconstruction were completed on a personal computer. The reconstructed human lumbar spinal cord segment was interactively observed, cut, and measured. MAIN OUTCOME MEASURES: The reconstructed human lumbar spinal cord segment. RESULTS: Compared with serial images obtained from other image modalities, such as CT, MRI, and macrosections from The Visual Human Project database, the Luxol Fast Blue stained histological serial section images exhibited higher resolution and contrast between gray and white matter. Image processing and 3D reconstruction steps were semi-automatically performed with related software. The 3D reconstructed human lumbar cord segment were observed, cut, and measured on a PC. CONCLUSION: A semi-automatically computerized method, based on histological serial sections, is an effective way to 3D-reconstruct the human spinal cord.
基金The National Natural Science Foundation of China under contract Nos 41706021 and 41976188。
文摘Assimilation systems absorb both satellite measurements and Argo observations.This assimilation is essential to diagnose and evaluate the contribution from each type of data to the reconstructed analysis,allowing for better configuration of assimilation parameters.To achieve this,two comparative reconstruction schemes were designed under the optimal interpolation framework.Using a static scheme,an in situ-only field of ocean temperature was derived by correcting climatology with only Argo profiles.Through a dynamic scheme,a synthetic field was first derived from only satellite sea surface height and sea surface temperature measurements through vertical projection,and then a combined field was reconstructed by correcting the synthetic field with in situ profiles.For both schemes,a diagnostic iterative method was performed to optimize the background and observation error covariance statics.The root mean square difference(RMSD)of the in situ-only field,synthetic field and combined field were analyzed toward assimilated observations and independent observations,respectively.The rationale behind the distribution of RMSD was discussed using the following diagnostics:(1)The synthetic field has a smaller RMSD within the global mixed layer and extratropical deep waters,as in the Northwest Pacific Ocean;this is controlled by the explained variance of the vertical surface-underwater regression that reflects the ocean upper mixing and interior baroclinicity.(2)The in situ-only field has a smaller RMSD in the tropical upper layer and at midlatitudes;this is determined by the actual noise-to-signal ratio of ocean temperature.(3)The satellite observations make a more significant contribution to the analysis toward independent observations in the extratropics;this is determined by both the geographical feature of the synthetic field RMSD(smaller at depth in the extratropics)and that of the covariance correlation scales(smaller in the extratropics).
基金National Natural Science Foundation of China(No.61771123)。
文摘The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.