With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to t...With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to today’s digital software design era.Early designers relied on hand-drawn paper design forms which was time-consuming and error-prone.Digital support for road and bridge design not only saves the design time but the design quality has also achieved a qualitative leap.This paper engages in the application of digital technology in road and bridge design,to provide technical reference for China’s road and bridge engineering design units,to promote the popularity of Civil3D and other advanced design software in the field of engineering design and development,ultimately contributing to the sustainable development of China’s road and bridge engineering.展开更多
BACKGROUND Recently,medical three-dimensional printing technology(3DPT)has demonstrated potential benefits for the treatment of cubitus varus deformity(CVD)by improving accuracy of the osteotomy through the use of an ...BACKGROUND Recently,medical three-dimensional printing technology(3DPT)has demonstrated potential benefits for the treatment of cubitus varus deformity(CVD)by improving accuracy of the osteotomy through the use of an osteotomy guide,with or without a patient-mated plate.Here,we present an interesting CVD case,involving a patient who was treated with corrective biplanar chevron osteotomy using an innovative customized osteotomy guide and a newly designed patient-matched monoblock crosslink plate created with 3DPT.CASE SUMMARY A 32-year-old female presented with a significant CVD from childhood injury.A computer simulation was processed using images from computerized tomography scans of both upper extremities.The biplanar chevron osteotomy was designed to create identical anatomy between the mirror image of the contralateral distal humerus and the osteotomized distal humerus.Next,the customized osteotomy guide and patient-matched monoblock crosslink plate were designed and printed.A simulation osteotomy was created for the real-sized bone model,and the operation was performed using the posterior paratricipital approach with k-wire positioning from the customized osteotomy guide as a predrilled hole for screw fixation to achieve immediate control of the reduction after osteotomy.Our method allowed for successful treatment of the CVD case,significantly improving the patient’s radiographic and clinical outcomes,with satisfactory result.CONCLUSION 3DPT-created patient-matched osteotomy guide and instrumentation provides accurate control during CVD correction.展开更多
With the continuous promotion of computer technology, the application system of virtual simulation technology has been further optimized and improved, and has been widely used in various fields of social development, ...With the continuous promotion of computer technology, the application system of virtual simulation technology has been further optimized and improved, and has been widely used in various fields of social development, such as urban construction, interior design, industrial simulation and tourism teaching. China's three-dimensional animation production started relatively late, but has achieved good results with the support of related advanced technology in the process of development. Computer virtual simulation technology is an important technical support in the production of three-dimensional animation. In this paper, firstly, the related content of computer virtual simulation technology was introduced. Then, the specific application of this technology in the production of three-dimensional animation was further elaborated, so as to provide some reference for the improvement of the production effect of three-dimensional animation in the future.展开更多
Three-dimensional(3D)printing technology belongs to a new manufacturing science and has been widely used in various fields of industry.This article will apply 3D printing technology as its main research topic,with emp...Three-dimensional(3D)printing technology belongs to a new manufacturing science and has been widely used in various fields of industry.This article will apply 3D printing technology as its main research topic,with emphasis on its application in the field of medical devices and prospects for contribution.展开更多
Based on the study of the application of three-dimensional laser scanning technology in ancient building surveying and mapping,this paper briefly describes the working principle and flow of three-dimensional laser sca...Based on the study of the application of three-dimensional laser scanning technology in ancient building surveying and mapping,this paper briefly describes the working principle and flow of three-dimensional laser scanning technology.Based on the practical application,this paper puts forward the discussion of related problems and matters needing attention.This has a certain reference significance for the study of new technology in surveying and mapping of ancient buildings.展开更多
Objective To discuss the measurement of bone tumor volume on the basis of three dimensional images segmentation technology. Methods Twenty patients with lacunar bone tumor from Tianjin Hospital and Tongji Hospital wer...Objective To discuss the measurement of bone tumor volume on the basis of three dimensional images segmentation technology. Methods Twenty patients with lacunar bone tumor from Tianjin Hospital and Tongji Hospital were included in the展开更多
Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing ...Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing offers excellent properties such as multi-dimensional seismic isolation,reasonable rotation capability,good ability to resist lifting load,uncoupled stiffness in horizontal and vertical directions,etc.In the 3DSIB,the horizontal dimension is designed by combining the Teflon sliding device and helical spring,while the vertical dimension is developed by introducing disk springs or helical springs.The mathematical model of the 3DSIB was established and its performance with the critical parameters was tested on a shaking table.Furthermore,the 3DSIB was applied in a 120 m span hangar structure and simulated using SAP2000 software to evaluate its performance in practical structures.The performance of the structures with and without 3DSIB was compared.It is shown that the hangar structure with 3D bearings achieves a better performance.The axial force and acceleration response of the structures with 3DSIB are effectively reduced,while the displacement response of the bearing is within the predetermined range.展开更多
The parameters that influence slope stability and their criteria of failure are fairly understood but over-conservative design approaches are often preferred,which can result in excessive overburden removal that may j...The parameters that influence slope stability and their criteria of failure are fairly understood but over-conservative design approaches are often preferred,which can result in excessive overburden removal that may jeopardize profitability in the context of open pit mining.Numerical methods such as finite element and discrete element modelling are instrumental to identify specific zones of stability,but they remain approximate and do not pinpoint the critical factors that influence stability without extensive parametric studies.A large number of degrees of freedom and input parameters may make the outcome of numerical modelling insufficient compared to analytical solutions.Existing analytical approaches have not tackled the stability of slopes using non-linear plasticity criteria and threedimensional failure mechanisms.This paper bridges this gap by using the yield design theory and the Hoek-Brown criterion.Moreover,the proposed model includes the effect of seismic forces,which are not always taken into account in slope stability analyses.The results are presented in the form of rigorous mathematical expressions and stability charts involving the loading conditions and the rock mass properties emanating from the plasticity criterion.展开更多
Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) sl...Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach.展开更多
This paper presents the study of a three-dimensional(3D) isolation system.Firstly,the authors investigated the effects of an innovative 3D isolator,which was composed of a connecting plate,a rubber pad for vibration i...This paper presents the study of a three-dimensional(3D) isolation system.Firstly,the authors investigated the effects of an innovative 3D isolator,which was composed of a connecting plate,a rubber pad for vibration isolation in the vertical direction and a horizontal rubber bearing for seismic isolation in both horizontal directions.Secondly,the authors designed such a vibration isolation system and installed it underneath two specific residential buildings which were built directly over an existing subway communication hub platform in Beijing.These buildings required good performance vibration and seismic isolation system to reduce the impact from the running of nearby subway trains.Finally,in situ tests were conducted for both the isolated and the non-isolated buildings for the purpose of comparison.The test results showed that the maximum acceleration response level of the isolated superstructure is reduced by 10% as compared to that of the platform.The maximum attenuation of vibration reaches up to 25 dB.The 3D system explored in this paper is very effective in control and suppression of building vibration induced by earthquakes or running of trains.展开更多
In order to effectively detect potential geology anomalous bodies in coal bearing formation,such as coal seam thickness variation,small faults,goafs and collapse columns,and provide scientific guidance for safe and ef...In order to effectively detect potential geology anomalous bodies in coal bearing formation,such as coal seam thickness variation,small faults,goafs and collapse columns,and provide scientific guidance for safe and efficient mining,the SUMMIT-II EX explosion-proof seismic slot wave instrument,produced by German DMT Company,was used to detect the underground channel wave with the help of transmission method,reflection method and transflective method.Region area detection experiment in mining face had been carried out thanks to the advantage of channel wave,such as its great dispersion,abundant geology information,strong anti-interference ability and long-distance detecting.The experimental results showed that:(1)Coal seam thickness variation in extremely unstable coal seam has been quantitatively interpreted with an accuracy of more than 80%generally;(2)The faults,goafs and collapse columns could be detected and predicted accurately;(3)Experimental detection of gas enrichment areas,stress concentration regions and water inrush risk zone has been collated;(4)A research system of disaster-causing geology anomalous body detection by in-seam seismic survey has been built,valuable and innovative achievements have been got.Series of innovation obtained for the first time in this study indicated that it was more effective to detect disaster-causing potential geology anomalies by in-seam seismic survey than by ground seismic survey.It had significant scientific value and application prospect under complex coal seam conditions.展开更多
The range of coal-mine underground goaf has continuously expanded over time.Caving,fracture,and deformation zones have also changed,thereby inducing coal-mine water inrush and other environmental disasters.In this stu...The range of coal-mine underground goaf has continuously expanded over time.Caving,fracture,and deformation zones have also changed,thereby inducing coal-mine water inrush and other environmental disasters.In this study,4 D seismic monitoring technology that is effective in reservoir development was used to monitor abnormal changes in coal-mine underground goaf to explore the feasibility of the method.Taking a coal mine in Hancheng,Shaanxi as an example,we used the aforementioned technology to dynamically monitor the abnormal changes in the goaf.Based on the 4 D seismic data obtained in the experiment and the abnormal change characteristics of the coal-mine goaf,the method of 4 D seismic data processing in reservoir was improved.A set of 4 D data processing flow for the goaf was established,and the anomalies in the surface elevation and overlying strata velocity caused by collapse were corrected.We have made the following improvements to the method of 4 D seismic data processing in the reservoir:(1)the static correction problem caused by the changes of surface elevation and destruction of the low-velocity layer has been solved through fusion static correction to comb the low-frequency components of elevation statics with the high-frequency components of refraction statics;(2)the problem of overlying strata velocity changes in the goaf caused by collapse has been solved through the velocity consistency method;(3)the problem of reflection event pull-down in the disturbance area has been solved through space-varying moveout correction based on cross-correlation;and(4)amplitude anomalies in the coal seam caused by the goaf have been addressed using the correction method of space-varying amplitude.Results show that the 4 D seismic data processing and interpretation method established in this study is reasonable and effective.展开更多
Based on data collected by deep seismic sounding carried out in 1999, a three-dimensional P wave velocity structure is determined with tomographic inversion. The tomographic result shows that there is a P wave low vel...Based on data collected by deep seismic sounding carried out in 1999, a three-dimensional P wave velocity structure is determined with tomographic inversion. The tomographic result shows that there is a P wave low velocity zone (LVZ) in the upper crust beneath the Tengchong volcanic area. The LVZ is in the depth of 7~8 km and may be a smgma chamber or a partial melting body. The result also shows that the LVZ is in the northeastern side of the Rehai hydrothermal field, which is located in another LVZ near the surface. The shallow LVZ may represent a well-developed fracture zone. The strong hydrothermal activity in Rehai area can attribute to the existence of fractures between two LVZs. These fractures are the channels for going upwards of the deep hot fluid.展开更多
The recent advances of 3D seismic technique applied in geological study of sedimentary basin analysis were reviewed.The achievements in the study of the sedimentology,structural analysis, fluid-rock interaction and ig...The recent advances of 3D seismic technique applied in geological study of sedimentary basin analysis were reviewed.The achievements in the study of the sedimentology,structural analysis, fluid-rock interaction and igneous geology were summarized.Because 3D seismic resolution and interpretation technology are enhanced surprisingly。展开更多
High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negativel...High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negatively impact bridge structures.This article delves into the seismic reduction and isolation design strategies for bridges in high-intensity earthquake areas.It analyzes various seismic reduction and isolation technologies and provides case studies to help relevant units understand the design strategies of these technologies.The results of this article can be used as a guideline to effectively enhance the seismic performance of bridges in high-intensity earthquake areas.展开更多
The traditional computed tomography(CT)reconstruction methods are noisy,low resolution,poor contrast,and generally not suitable to detect the smaller flaws.Besides,the filter design is also difficult.The CT characteri...The traditional computed tomography(CT)reconstruction methods are noisy,low resolution,poor contrast,and generally not suitable to detect the smaller flaws.Besides,the filter design is also difficult.The CT characteristics reconstruction technology was brought forward to improve in these aspects,which is defined to directly reconstruct the characteristics of the projection for the best requirements not the overall image quality.The two-dimension(2D)and three-dimension(3D)CT characteristics reconstruction algorithm were firstly introduced,then by detailed analysis,experimental results and comparsion of parameters calculated,its advantages in keeping better high-frequency feature,better noise immunity,short time-consuming and easier design are verified.展开更多
Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research,the applicability of stem cells for preclinical screening in the drug discov...Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research,the applicability of stem cells for preclinical screening in the drug discovery process is still challenging due to difficulties in controlling the stem cell microenvironment and the limited availability of high-throughput systems.Recently,researchers have been actively developing and evaluating three-dimensional(3D)cell culture-based platforms using microfluidic technologies,such as organ-on-a-chip and organoid-on-a-chip platforms,and they have achieved promising breakthroughs in stem cell engineering.In this review,we start with a comprehensive discussion on the importance of microfluidic 3D cell culture techniques in stem cell research and their technical strategies in the field of drug discovery.In a subsequent section,we discuss microfluidic 3D cell culture techniques for high-throughput analysis for use in stem cell research.In addition,some potential and practical applications of organ-on-a-chip or organoid-on-a-chip platforms using stem cells as drug screening and disease models are highlighted.展开更多
BACKGROUND Giant cell tumors(GCT)are most commonly seen in the distal femur.These tumors are uncommon in the small bones of the hand and feet,and a very few cases have been reported.A giant cell tumor of the talus is ...BACKGROUND Giant cell tumors(GCT)are most commonly seen in the distal femur.These tumors are uncommon in the small bones of the hand and feet,and a very few cases have been reported.A giant cell tumor of the talus is rarely seen clinically and could be a challenge to physicians.CASE SUMMARY We report a rare case of GCT of the talus in one patient who underwent a new reconstructive surgery technique using a three-dimensional(3D)printing talar prosthesis.The prosthesis shape was designed by tomographic image processing and segmentation using technology to match the intact side by mirror symmetry with 3D post-processing technologies.The patient recovered nearly full range of motion of the ankle after 6 mo.The visual analogue scale and American Orthopaedic Foot and Ankle Society scores were 1 and 89 points,respectively.CONCLUSION We demonstrated that 3D printing of a talar prosthesis is a beneficial option for GCT of the talus.展开更多
In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor...In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure(EWP). By means of a threedimensional(3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system(TDS) widely used in China and its optimized drainage system(ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice,including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 k Pa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.展开更多
文摘With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to today’s digital software design era.Early designers relied on hand-drawn paper design forms which was time-consuming and error-prone.Digital support for road and bridge design not only saves the design time but the design quality has also achieved a qualitative leap.This paper engages in the application of digital technology in road and bridge design,to provide technical reference for China’s road and bridge engineering design units,to promote the popularity of Civil3D and other advanced design software in the field of engineering design and development,ultimately contributing to the sustainable development of China’s road and bridge engineering.
文摘BACKGROUND Recently,medical three-dimensional printing technology(3DPT)has demonstrated potential benefits for the treatment of cubitus varus deformity(CVD)by improving accuracy of the osteotomy through the use of an osteotomy guide,with or without a patient-mated plate.Here,we present an interesting CVD case,involving a patient who was treated with corrective biplanar chevron osteotomy using an innovative customized osteotomy guide and a newly designed patient-matched monoblock crosslink plate created with 3DPT.CASE SUMMARY A 32-year-old female presented with a significant CVD from childhood injury.A computer simulation was processed using images from computerized tomography scans of both upper extremities.The biplanar chevron osteotomy was designed to create identical anatomy between the mirror image of the contralateral distal humerus and the osteotomized distal humerus.Next,the customized osteotomy guide and patient-matched monoblock crosslink plate were designed and printed.A simulation osteotomy was created for the real-sized bone model,and the operation was performed using the posterior paratricipital approach with k-wire positioning from the customized osteotomy guide as a predrilled hole for screw fixation to achieve immediate control of the reduction after osteotomy.Our method allowed for successful treatment of the CVD case,significantly improving the patient’s radiographic and clinical outcomes,with satisfactory result.CONCLUSION 3DPT-created patient-matched osteotomy guide and instrumentation provides accurate control during CVD correction.
文摘With the continuous promotion of computer technology, the application system of virtual simulation technology has been further optimized and improved, and has been widely used in various fields of social development, such as urban construction, interior design, industrial simulation and tourism teaching. China's three-dimensional animation production started relatively late, but has achieved good results with the support of related advanced technology in the process of development. Computer virtual simulation technology is an important technical support in the production of three-dimensional animation. In this paper, firstly, the related content of computer virtual simulation technology was introduced. Then, the specific application of this technology in the production of three-dimensional animation was further elaborated, so as to provide some reference for the improvement of the production effect of three-dimensional animation in the future.
文摘Three-dimensional(3D)printing technology belongs to a new manufacturing science and has been widely used in various fields of industry.This article will apply 3D printing technology as its main research topic,with emphasis on its application in the field of medical devices and prospects for contribution.
基金Jiangxi Social Science Planning Project:Research on the Activation of Traditional Villages in Jiangxi Province from the Perspective of Cultural Conservation:A Case Study of Fuhe River Basin(Grant No.17BJ16).
文摘Based on the study of the application of three-dimensional laser scanning technology in ancient building surveying and mapping,this paper briefly describes the working principle and flow of three-dimensional laser scanning technology.Based on the practical application,this paper puts forward the discussion of related problems and matters needing attention.This has a certain reference significance for the study of new technology in surveying and mapping of ancient buildings.
文摘Objective To discuss the measurement of bone tumor volume on the basis of three dimensional images segmentation technology. Methods Twenty patients with lacunar bone tumor from Tianjin Hospital and Tongji Hospital were included in the
基金National Natural Science Foundation of China under Grant No. 50778006,51278008Doctoral Fund of Ministry of Education of China under Grant No.20121103110021+1 种基金Beijing Natural Science Foundation under Grant No.8112005the Funding of the Jurisdiction of Beijing Municipality 2011
文摘Based on the seismic response characteristics of space frame structures,a new type of seismic isolation bearing defined as a three-dimensional seismic isolation bearing(3DSIB) is developed in this paper.The bearing offers excellent properties such as multi-dimensional seismic isolation,reasonable rotation capability,good ability to resist lifting load,uncoupled stiffness in horizontal and vertical directions,etc.In the 3DSIB,the horizontal dimension is designed by combining the Teflon sliding device and helical spring,while the vertical dimension is developed by introducing disk springs or helical springs.The mathematical model of the 3DSIB was established and its performance with the critical parameters was tested on a shaking table.Furthermore,the 3DSIB was applied in a 120 m span hangar structure and simulated using SAP2000 software to evaluate its performance in practical structures.The performance of the structures with and without 3DSIB was compared.It is shown that the hangar structure with 3D bearings achieves a better performance.The axial force and acceleration response of the structures with 3DSIB are effectively reduced,while the displacement response of the bearing is within the predetermined range.
文摘The parameters that influence slope stability and their criteria of failure are fairly understood but over-conservative design approaches are often preferred,which can result in excessive overburden removal that may jeopardize profitability in the context of open pit mining.Numerical methods such as finite element and discrete element modelling are instrumental to identify specific zones of stability,but they remain approximate and do not pinpoint the critical factors that influence stability without extensive parametric studies.A large number of degrees of freedom and input parameters may make the outcome of numerical modelling insufficient compared to analytical solutions.Existing analytical approaches have not tackled the stability of slopes using non-linear plasticity criteria and threedimensional failure mechanisms.This paper bridges this gap by using the yield design theory and the Hoek-Brown criterion.Moreover,the proposed model includes the effect of seismic forces,which are not always taken into account in slope stability analyses.The results are presented in the form of rigorous mathematical expressions and stability charts involving the loading conditions and the rock mass properties emanating from the plasticity criterion.
文摘Probabilistic analysis is a rational approach for engineering design because it provides more insight than traditional deterministic analysis. Probabilistic evaluation on seismic stability of three dimensional (3D) slopes is studied in this paper. The slope safety factor is computed by combining the kinematic approach of limit analysis using a three-dimensional rotational failure mechanism with the pseudo-dynamic approach. The variability of input parameters, including six pseudo-dynamic parameters and two soil shear strength parameters, are taken into account by means of Monte-Carlo Simulations (MCS) method. The influences of pseudo-dynamic input variables on the computed failure probabilities are investigated and discussed. It is shown that the obtained failure probabilities increase with the pseudo-dynamic input variables and the pseudo-dynamic approach gives more conservative failure probability estimates compared with the pseudo-static approach.
基金Supported by the National Natural Science Foundation of China (Grant No. 51078098,90915007,90815027 and 50878124)the Key Laboratory of Seismic Control & Structure Safety Open FundInnovation Group Fund of Guangdong Province
文摘This paper presents the study of a three-dimensional(3D) isolation system.Firstly,the authors investigated the effects of an innovative 3D isolator,which was composed of a connecting plate,a rubber pad for vibration isolation in the vertical direction and a horizontal rubber bearing for seismic isolation in both horizontal directions.Secondly,the authors designed such a vibration isolation system and installed it underneath two specific residential buildings which were built directly over an existing subway communication hub platform in Beijing.These buildings required good performance vibration and seismic isolation system to reduce the impact from the running of nearby subway trains.Finally,in situ tests were conducted for both the isolated and the non-isolated buildings for the purpose of comparison.The test results showed that the maximum acceleration response level of the isolated superstructure is reduced by 10% as compared to that of the platform.The maximum attenuation of vibration reaches up to 25 dB.The 3D system explored in this paper is very effective in control and suppression of building vibration induced by earthquakes or running of trains.
基金supported by the Key Project of the National Natural Science Foundation of China(Grant No.41130419).
文摘In order to effectively detect potential geology anomalous bodies in coal bearing formation,such as coal seam thickness variation,small faults,goafs and collapse columns,and provide scientific guidance for safe and efficient mining,the SUMMIT-II EX explosion-proof seismic slot wave instrument,produced by German DMT Company,was used to detect the underground channel wave with the help of transmission method,reflection method and transflective method.Region area detection experiment in mining face had been carried out thanks to the advantage of channel wave,such as its great dispersion,abundant geology information,strong anti-interference ability and long-distance detecting.The experimental results showed that:(1)Coal seam thickness variation in extremely unstable coal seam has been quantitatively interpreted with an accuracy of more than 80%generally;(2)The faults,goafs and collapse columns could be detected and predicted accurately;(3)Experimental detection of gas enrichment areas,stress concentration regions and water inrush risk zone has been collated;(4)A research system of disaster-causing geology anomalous body detection by in-seam seismic survey has been built,valuable and innovative achievements have been got.Series of innovation obtained for the first time in this study indicated that it was more effective to detect disaster-causing potential geology anomalies by in-seam seismic survey than by ground seismic survey.It had significant scientific value and application prospect under complex coal seam conditions.
基金funded by the National Key Research and Development Program Subject(No.2018YFC0807804)。
文摘The range of coal-mine underground goaf has continuously expanded over time.Caving,fracture,and deformation zones have also changed,thereby inducing coal-mine water inrush and other environmental disasters.In this study,4 D seismic monitoring technology that is effective in reservoir development was used to monitor abnormal changes in coal-mine underground goaf to explore the feasibility of the method.Taking a coal mine in Hancheng,Shaanxi as an example,we used the aforementioned technology to dynamically monitor the abnormal changes in the goaf.Based on the 4 D seismic data obtained in the experiment and the abnormal change characteristics of the coal-mine goaf,the method of 4 D seismic data processing in reservoir was improved.A set of 4 D data processing flow for the goaf was established,and the anomalies in the surface elevation and overlying strata velocity caused by collapse were corrected.We have made the following improvements to the method of 4 D seismic data processing in the reservoir:(1)the static correction problem caused by the changes of surface elevation and destruction of the low-velocity layer has been solved through fusion static correction to comb the low-frequency components of elevation statics with the high-frequency components of refraction statics;(2)the problem of overlying strata velocity changes in the goaf caused by collapse has been solved through the velocity consistency method;(3)the problem of reflection event pull-down in the disturbance area has been solved through space-varying moveout correction based on cross-correlation;and(4)amplitude anomalies in the coal seam caused by the goaf have been addressed using the correction method of space-varying amplitude.Results show that the 4 D seismic data processing and interpretation method established in this study is reasonable and effective.
基金State Natural Science Foundation of China (D49974020), Joint Seismological Science Foundation of China (199110) and Project (95-11-01-06) during Ninth Five-Year Plan from China Seismological Bureau.
文摘Based on data collected by deep seismic sounding carried out in 1999, a three-dimensional P wave velocity structure is determined with tomographic inversion. The tomographic result shows that there is a P wave low velocity zone (LVZ) in the upper crust beneath the Tengchong volcanic area. The LVZ is in the depth of 7~8 km and may be a smgma chamber or a partial melting body. The result also shows that the LVZ is in the northeastern side of the Rehai hydrothermal field, which is located in another LVZ near the surface. The shallow LVZ may represent a well-developed fracture zone. The strong hydrothermal activity in Rehai area can attribute to the existence of fractures between two LVZs. These fractures are the channels for going upwards of the deep hot fluid.
文摘The recent advances of 3D seismic technique applied in geological study of sedimentary basin analysis were reviewed.The achievements in the study of the sedimentology,structural analysis, fluid-rock interaction and igneous geology were summarized.Because 3D seismic resolution and interpretation technology are enhanced surprisingly。
文摘High-intensity earthquakes can cause severe damage to bridges,buildings,and ground surfaces,as well as disrupt human activities.Such earthquakes can create long-distance,high-intensity surface movements that negatively impact bridge structures.This article delves into the seismic reduction and isolation design strategies for bridges in high-intensity earthquake areas.It analyzes various seismic reduction and isolation technologies and provides case studies to help relevant units understand the design strategies of these technologies.The results of this article can be used as a guideline to effectively enhance the seismic performance of bridges in high-intensity earthquake areas.
基金National Natural Science Foundation of China(No.61471325)
文摘The traditional computed tomography(CT)reconstruction methods are noisy,low resolution,poor contrast,and generally not suitable to detect the smaller flaws.Besides,the filter design is also difficult.The CT characteristics reconstruction technology was brought forward to improve in these aspects,which is defined to directly reconstruct the characteristics of the projection for the best requirements not the overall image quality.The two-dimension(2D)and three-dimension(3D)CT characteristics reconstruction algorithm were firstly introduced,then by detailed analysis,experimental results and comparsion of parameters calculated,its advantages in keeping better high-frequency feature,better noise immunity,short time-consuming and easier design are verified.
基金supported by the National Research Foundation of Korea (NRF) (NRF2017R1C1B2002377, NRF-2016R1A5A1010148, and NRF2019R1A2C1003111)funded by the Ministry of Science and ICT (MSIT)partly supported by the Technology Innovation Program (No.10067787)funded by the Ministry of Trade, Industry & Energy (MOTE, Korea)
文摘Although the recent advances in stem cell engineering have gained a great deal of attention due to their high potential in clinical research,the applicability of stem cells for preclinical screening in the drug discovery process is still challenging due to difficulties in controlling the stem cell microenvironment and the limited availability of high-throughput systems.Recently,researchers have been actively developing and evaluating three-dimensional(3D)cell culture-based platforms using microfluidic technologies,such as organ-on-a-chip and organoid-on-a-chip platforms,and they have achieved promising breakthroughs in stem cell engineering.In this review,we start with a comprehensive discussion on the importance of microfluidic 3D cell culture techniques in stem cell research and their technical strategies in the field of drug discovery.In a subsequent section,we discuss microfluidic 3D cell culture techniques for high-throughput analysis for use in stem cell research.In addition,some potential and practical applications of organ-on-a-chip or organoid-on-a-chip platforms using stem cells as drug screening and disease models are highlighted.
文摘BACKGROUND Giant cell tumors(GCT)are most commonly seen in the distal femur.These tumors are uncommon in the small bones of the hand and feet,and a very few cases have been reported.A giant cell tumor of the talus is rarely seen clinically and could be a challenge to physicians.CASE SUMMARY We report a rare case of GCT of the talus in one patient who underwent a new reconstructive surgery technique using a three-dimensional(3D)printing talar prosthesis.The prosthesis shape was designed by tomographic image processing and segmentation using technology to match the intact side by mirror symmetry with 3D post-processing technologies.The patient recovered nearly full range of motion of the ankle after 6 mo.The visual analogue scale and American Orthopaedic Foot and Ankle Society scores were 1 and 89 points,respectively.CONCLUSION We demonstrated that 3D printing of a talar prosthesis is a beneficial option for GCT of the talus.
基金supported by the National Natural Science Foundation of China (Grant No. U1934211)the Open Foundation of National Engineering Research Center of High-speed Railway Construction Technology (Grant No. HSR202005)Scientific Research Project of Hunan Education Department (Grant No.20B596)。
文摘In recent years, the invert anomalies of operating railway tunnels in water-rich areas occur frequently,which greatly affect the transportation capacity of the railway lines. Tunnel drainage system is a crucial factor to ensure the invert stability by regulating the external water pressure(EWP). By means of a threedimensional(3D) printing model, this paper experimentally investigates the deformation behavior of the invert for the tunnels with the traditional drainage system(TDS) widely used in China and its optimized drainage system(ODS) with bottom drainage function. Six test groups with a total of 110 test conditions were designed to consider the design factors and environmental factors in engineering practice,including layout of the drainage system, blockage of the drainage system and groundwater level fluctuation. It was found that there are significant differences in the water discharge, EWP and invert stability for the tunnels with the two drainage systems. Even with a dense arrangement of the external blind tubes, TDS was still difficult to eliminate the excessive EWP below the invert, which is the main cause for the invert instability. Blockage of drainage system further increased the invert uplift and aggravated the track irregularity, especially when the blockage degree is more than 50%. However, ODS can prevent these invert anomalies by reasonably controlling the EWP at tunnel bottom. Even when the groundwater level reached 60 m and the blind tubes were fully blocked, the invert stability can still be maintained and the railway track experienced a settlement of only 1.8 mm. Meanwhile, the on-site monitoring under several rainstorms further showed that the average EWP of the invert was controlled within 84 k Pa, while the maximum settlement of the track slab was only 0.92 mm, which also was in good agreement with the results of model test.