期刊文献+
共找到148篇文章
< 1 2 8 >
每页显示 20 50 100
Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury 被引量:15
1
作者 Ji-Peng Jiang Xiao-Yin Liu +9 位作者 Fei Zhao Xiang Zhu Xiao-Yin Li Xue-Gang Niu Zi-Tong Yao Chen Dai Hui-You Xu Ke Ma Xu-Yi Chen Sai Zhang 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第5期959-968,共10页
Many studies have shown that bio-scaffolds have important value for promoting axonal regeneration of injured spinal cord.Indeed,cell transplantation and bio-scaffold implantation are considered to be effective methods... Many studies have shown that bio-scaffolds have important value for promoting axonal regeneration of injured spinal cord.Indeed,cell transplantation and bio-scaffold implantation are considered to be effective methods for neural regeneration.This study was designed to fabricate a type of three-dimensional collagen/silk fibroin scaffold (3D-CF) with cavities that simulate the anatomy of normal spinal cord.This scaffold allows cell growth in vitro and in vivo.To observe the effects of combined transplantation of neural stem cells (NSCs) and 3D-CF on the repair of spinal cord injury.Forty Sprague-Dawley rats were divided into four groups: sham (only laminectomy was performed),spinal cord injury (transection injury of T10 spinal cord without any transplantation),3D-CF (3D scaffold was transplanted into the local injured cavity),and 3D-CF + NSCs (3D scaffold co-cultured with NSCs was transplanted into the local injured cavity.Neuroelectrophysiology,imaging,hematoxylin-eosin staining,argentaffin staining,immunofluorescence staining,and western blot assay were performed.Apart from the sham group,neurological scores were significantly higher in the 3D-CF + NSCs group compared with other groups.Moreover,latency of the 3D-CF + NSCs group was significantly reduced,while the amplitude was significantly increased in motor evoked potential tests.The results of magnetic resonance imaging and diffusion tensor imaging showed that both spinal cord continuity and the filling of injury cavity were the best in the 3D-CF + NSCs group.Moreover,regenerative axons were abundant and glial scarring was reduced in the 3D-CF + NSCs group compared with other groups.These results confirm that implantation of 3D-CF combined with NSCs can promote the repair of injured spinal cord.This study was approved by the Institutional Animal Care and Use Committee of People’s Armed Police Force Medical Center in 2017 (approval No.2017-0007.2). 展开更多
关键词 3D BIOPRINTING COLLAGEN diffusion tensor IMAGING functional recovery magnetic resonance IMAGING nerve REGENERATION NEURAL REGENERATION NEURAL stem cell scaffold silk fibroin spinal cord injury
下载PDF
Research on the Development of Fibroin and Nano-Fiber from Silk Cocoons for Regenerated Tissue Engineering Applications by Electro-Spinning
2
作者 Md Kamrul Hasan Xinbo Ding 《Advances in Nanoparticles》 CAS 2024年第1期1-9,共9页
In this paper, the main goal is to prepare silk fibroin nano-fiber, which is used for regenerated tissue applications. Silk scaffold nano-fibers made by electro-spinning technology can be used in regenerated tissue ap... In this paper, the main goal is to prepare silk fibroin nano-fiber, which is used for regenerated tissue applications. Silk scaffold nano-fibers made by electro-spinning technology can be used in regenerated tissue applications. The purpose of the research is to prepare a silk-fibroin nano-fiber solution for potential applications in tissue engineering. Using a degumming process, pure silk fibroin protein is extracted from silk cocoons. The protein solution for fibroin is purified, and the protein content is determined. The precise chemical composition, exact temperature, time, voltage, distance, ratio, and humidity all have a huge impact on degumming, solubility, and electro-spinning nano-fibers. The SEM investigates the morphology of silk fibroin nano-fibres at different magnifications. It also reveals the surface condition, fiber orientation, and fiber thickness of the silk fibroin nano-fiber. The results show that regenerated silk fibroin and nano-fiber can be used in silk fibroin scaffolds for various tissue engineering applications. 展开更多
关键词 silk fibroin scaffold electro-spinning nano-fiber Tissue Engineering
下载PDF
A Review on Silk Fibroin as a Biomaterial in Tissue Engineering
3
作者 Tkhu Chang Le Qian Zhang +3 位作者 Qingdi Qu Wentong Ding Sergej Anatolyevich Lazarev Shuang Pan 《Journal of Biosciences and Medicines》 2024年第3期275-290,共16页
Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replace... Regenerative medicine progress is based on the development of cell and tissue bioengineering. One of the aims of tissue engineering is the development of scaffolds, which should substitute the functions of the replaced organ after their implantation into the body. The tissue engineering material must meet a range of requirements, including biocompatibility, mechanical strength, and elasticity. Furthermore, the materials have to be attractive for cell growth: stimulate cell adhesion, migration, proliferation and differentiation. One of the natural biomaterials is silk and its component (silk fibroin). An increasing number of scientists in the world are studying silk and silk fibroin. The purpose of this review article is to provide information about the properties of natural silk (silk fibroin), as well as its manufacture and clinical application of each configuration of silk fibroin in medicine. Materials and research methods. Actual publications of foreign authors on resources PubMed, Medline, E-library have been analyzed. The selection criteria were materials containing information about the structure and components of silk, methods of its production in nature. This article placed strong emphasis on silk fibroin, the ways of artificial modification of it for use in various sphere of medicine. 展开更多
关键词 Tissue Engineering Biomaterial scaffold silk fibroin
下载PDF
Silk Fibroin Scaffolds Direct Neural and Glial Differentiation from Embryonic Stem Cells
4
作者 Yawen Liao Peng Tang +5 位作者 Yao Zhang Zhanao Hu Yongning Zhang Shangbang Gao Qiang Zhang Ning Wang 《医用生物力学》 EI CAS CSCD 北大核心 2019年第A01期163-163,共1页
Spinal cord injury repair is one of the major challenges in medicine,as it can lead to permanent loss of function of central nervous system and damage to other function of the body.Stem cell transplantation together w... Spinal cord injury repair is one of the major challenges in medicine,as it can lead to permanent loss of function of central nervous system and damage to other function of the body.Stem cell transplantation together with tissue engineering is increasingly becoming a potential choice of treatment.However,direct transplantation of stem cells without scaffolds has yielded poor clinical outcome.Here we show a strategy of using mouse embryonic stem cells(ESCs)cultured within a silk fibroin(SF)based,three-dimensional scaffold with oriented channels by a directional temperature field freezing technique and lysophilization.We find that the ESCs maintained proliferation and migrated in the scaffolds and the cells migrated fastest along the SF channels.SF scaffolds contributed to ESC differentiation into neural and glial cell like cells and expressions of the neural and glial cell markers MAP2 and GFAP were greatly elevated when retinoic acid was used as an inducing factor.Our results suggest that this approach may offer some hope in the future for spinal cord injury repair using SF scaffolds and ESCs. 展开更多
关键词 silk fibroin scaffolds DIRECT NEURAL GLIAL DIFFERENTIATION EMBRYONIC Stem Cells
下载PDF
Tussah Silk Fibroin Porous Scaffolds Prepared with a Mild Self-assembly Process for Controlled Drug Release
5
作者 陈金静 樊建彬 +2 位作者 李想 游锦璋 贺建新 《Journal of Donghua University(English Edition)》 EI CAS 2014年第3期272-277,共6页
Besides excellent biodegradability and biocompatibility,a useful tissue engineering scaffold should provide favorable surface properties,outstanding mechanical strength and controlled drug release property. In this pa... Besides excellent biodegradability and biocompatibility,a useful tissue engineering scaffold should provide favorable surface properties,outstanding mechanical strength and controlled drug release property. In this paper,a mild process to prepare porous tussah silk fibroin( TSF) scaffolds from aqueous solution was described. The n-butanol was used to control the self-assembly of tussah silk. The scaffolds with different TSF concentrations and the same volume showed differences in pore size and distribution. The maximum porosity of the poprepared porous scaffolds was 80% in this paper. And the pore size of the prepared porous scaffolds with different concentrations was between 10μm and 230 μm. X-ray diffraction( XRD) analysis revealed that amorphous TSF was crystallized to β-sheet secondary structure upon gelatin. The TSF scaffolds for controlled drug release was studied and the result showed that the time of drug release was significantly longer. The produced TSF scaffolds with sustained drug release have potential application in tissue engineering. 展开更多
关键词 tussah silk fibroin(TSF) porous scaffolds drug release SELF-ASSEMBLY
下载PDF
VE TPGS-Loaded Silk Fibroin / Hydroxybutyl Chitosan Nanofibrous Scaffolds for Skin Care Application
6
作者 周远南 梁文浩 +4 位作者 阮标鹏 姜芳 王维汉 张葵花 莫秀梅 《Journal of Donghua University(English Edition)》 EI CAS 2014年第4期533-537,共5页
Vitamin E( VE) is an ideal antioxidant and a stabilizing agent in biological membranes. In this study,silk fibroin( SF) /hydroxybutyl chitosan( HBC) nanofibrous scaffolds are loaded with VE tocopherol polyethylene gly... Vitamin E( VE) is an ideal antioxidant and a stabilizing agent in biological membranes. In this study,silk fibroin( SF) /hydroxybutyl chitosan( HBC) nanofibrous scaffolds are loaded with VE tocopherol polyethylene glycol 1000 succinate( VE TPGS) via electrospinning. SEM images show that the average nanofibrous diameter has no significant difference when the content of VE TPGS increases to 4. 0%( SF / HBC). However,the average nanofibrous diameter decreases largely to 200 nm when the VE TPGS content reaches 6. 0%. Furthermore,VE TPGS presents a sustained release behavior from the nanofibrous scaffolds. Cell viability studies of mouse skin fibroblasts( L929) demonstrate that VE TPGS loaded SF / HBC nanofibrous scaffolds present good cellular compatibility.Moreover,the incorporation of VE TPGS could strengthen the ability of SF / HBC nanofibrous scaffolds on protecting the cells against oxidation stress using the Tertbutyl hydroperoxide( t-BHP)-induced oxidative injury model. Therefore,VE TPGS-loaded SF /HBC nanofibrous scaffolds might be potential candidates for personal skin care,wound dressing and skin tissue engineering scaffolds. 展开更多
关键词 vitamin Etocopherol polyethylene glycol 1000 succinate(VE TPGS) silk fibroin(SF) /hydroxybutyl chitosan(HBC) nanofibrous scaffolds resistance to oxidation biocompatibility
下载PDF
Human amniotic epithelial cells combined with silk fibroin scaffold in the repair of spinal cord injury 被引量:7
7
作者 Ting-gang Wang Jie Xu +5 位作者 Ai-hua Zhu Hua Lu Zong-ning Miao Peng Zhao Guo-zhen Hui Wei-jiang Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第10期1670-1677,共8页
Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial... Treatment and functional reconstruction after central nervous system injury is a major medical and social challenge. An increasing number of researchers are attempting to use neural stem cells combined with artificial scaffold materials, such as fibroin, for nerve repair. However, such approaches are challenged by ethical and practical issues. Amniotic tissue, a clinical waste product, is abundant, and amniotic epithe- lial cells are pluripotent, have low immunogenicity, and are not the subject of ethical debate. We hypothesized that amniotic epithelial cells combined with silk fibroin scaffolds would be conducive to the repair of spinal cord injury. To test this, we isolated and cultured amniotic epithelial cells, and constructed complexes of these cells and silk fibroin scaffolds. Implantation of the cell-scaffold complex into a rat model of spinal cord injury resulted in a smaller glial scar in the damaged cord tissue than in model rats that received a blank scaffold, or amniotic epithelial cells alone. In addition to a milder local immunological reaction, the rats showed less inflammatory cell infiltration at the trans- plant site, milder host-versus-graft reaction, and a marked improvement in motor function. These findings confirm that the transplantation of amniotic epithelial ceils combined with silk fibroin scaffold can promote the repair of spinal cord injury. Silk fibroin scaffold can provide a good nerve regeneration microenvironment for amniotic epithelial cells. 展开更多
关键词 nerve regeneration spinal cord injury amniotic epithelial cells silk fibroin scaffold TRANSPLANTATION glial scar MICROENVIRONMENT immunological reaction REJECTION neural regeneration
下载PDF
Novel conductive polypyrrole/silk fibroin scaffold for neural tissue repair 被引量:7
8
作者 Ya-Hong Zhao Chang-Mei Niu +3 位作者 Jia-Qi Shi Ying-Yu Wang Yu-Min Yang Hong-Bo Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第8期1455-1464,共10页
Three dimensional(3D) bioprinting, which involves depositing bioinks(mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However,... Three dimensional(3D) bioprinting, which involves depositing bioinks(mixed biomaterials) layer by layer to form computer-aided designs, is an ideal method for fabricating complex 3D biological structures. However, it remains challenging to prepare biomaterials with micro-nanostructures that accurately mimic the nanostructural features of natural tissues. A novel nanotechnological tool, electrospinning, permits the processing and modification of proper nanoscale biomaterials to enhance neural cell adhesion, migration, proliferation, differentiation, and subsequent nerve regeneration. The composite scaffold was prepared by combining 3D bioprinting with subsequent electrochemical deposition of polypyrrole and electrospinning of silk fibroin to form a composite polypyrrole/silk fibroin scaffold. Fourier transform infrared spectroscopy was used to analyze scaffold composition. The surface morphology of the scaffold was observed by light microscopy and scanning electron microscopy. A digital multimeter was used to measure the resistivity of prepared scaffolds. Light microscopy was applied to observe the surface morphology of scaffolds immersed in water or Dulbecco's Modified Eagle's Medium at 37℃ for 30 days to assess stability. Results showed characteristic peaks of polypyrrole and silk fibroin in the synthesized conductive polypyrrole/silk fibroin scaffold, as well as the structure of the electrospun nanofiber layer on the surface. The electrical conductivity was 1 × 10^-5–1 × 10^-3 S/cm, while stability was 66.67%. A 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was employed to measure scaffold cytotoxicity in vitro. Fluorescence microscopy was used to observe Ed U-labeled Schwann cells to quantify cell proliferation. Immunohistochemistry was utilized to detect S100β immunoreactivity, while scanning electron microscopy was applied to observe the morphology of adherent Schwann cells. Results demonstrated that the polypyrrole/silk fibroin scaffold was not cytotoxic and did not affect Schwann cell proliferation. Moreover, filopodia formed on the scaffold and Schwann cells were regularly arranged. Our findings verified that the composite polypyrrole/silk fibroin scaffold has good biocompatibility and may be a suitable material for neural tissue engineering. 展开更多
关键词 nerve regeneration composite nanofiber scaffold three dimensional bioprinting ELECTROSPINNING silk fibroin POLYPYRROLE L929 cells conductivity Schwann cells BIOCOMPATIBILITY nerve repair neural regeneration
下载PDF
The degradation behavior of silk fibroin derived from different ionic liquid solvents 被引量:6
9
作者 Renchuan You Ying Zhang +2 位作者 Yu Liu Guiyang Liu Mingzhong Li 《Natural Science》 2013年第6期10-19,共10页
Establishing an appropriate degradation rate is critical for tissue engineering scaffolds. In this study, the degradation rate of silk fibroin three-dimensional scaffolds was regulated by changing the molecular weight... Establishing an appropriate degradation rate is critical for tissue engineering scaffolds. In this study, the degradation rate of silk fibroin three-dimensional scaffolds was regulated by changing the molecular weight (MW) of the silk fibroin. The solubility of silk fibroin depends primarily on the ionic ability of the slovent to dissolve silk fibroin, therefore, we regulated the MW of the silk fibroin using LiBr, Ca(NO3)2 and CaCl2 to dissolve the silk fibers. SDS-PAGE analysis showed that the MW of the CaCl2-derived silk fibroin was lower than the MW produced using LiBr and Ca(NO3)2. In vitro and in vivo degradation results showed that the scaffolds prepared by low-MW silk fibroin were more rapidly degraded. Furthermore, FTIR and amino acid analysis suggested that the amorphous regions were preferentially degraded by Collagenase IA, while the SDS-PAGE and amino acid analysis indicated that the scaffolds were degraded into polypeptides (mainly at 10-30 kDa) and amino acids. Because the CaCl2-derived scaffolds contained abundant low MW polypeptides, inter-intramolecular entanglement and traversing of molecular chains in the crystallites reduced, which resulted in rapid degradation. The in vivo degradation results suggested that the degradation rate of the CaCl2-derived scaffolds was better matched to dermis regeneration, indicating that the degradation rate of silk fibroin can be effectively regulated by changing the MW to achieve a suitable dermal tissue regeneration rate. 展开更多
关键词 silk fibroin MOLECULAR WEIGHT scaffolds Degradation SKIN TISSUE Engineering
下载PDF
Fabrication of glycidyl methacrylate-modified silk fibroin/poly(L-lactic acid-co-ε-caprolactone)-polyethylene glycol diacrylate hybrid 3D nanofibrous scaffolds for tissue engineering
10
作者 Yongyong Fan Anlin Yin +5 位作者 Yunhuan Li Qi Gu Yan Zhou Junlong Zhou Ruibo Zhao Kuihua Zhang 《Frontiers of Materials Science》 SCIE CSCD 2023年第2期79-91,共13页
In order to provide a biomimetic natural extracellular matrix microenvironment with excellent mechanical capacity for tissue regeneration,a novel porous hybrid glycidyl methacrylate-modified silk fibroin/poly(L-lactic... In order to provide a biomimetic natural extracellular matrix microenvironment with excellent mechanical capacity for tissue regeneration,a novel porous hybrid glycidyl methacrylate-modified silk fibroin/poly(L-lactic acid-co-ε-caprolactone)–polyethylene glycol diacrylate(SFMA/P(LLA-CL)–PEGDA)hybrid three-dimensional(3D)nanofibrous scaffolds was successfully fabricated through the combination of 3D nanofibrous platforms and divinyl PEGDA based photocrosslinking,and then further improved water resistance by ethanol vapor post-treatment.Scanning electron microscopy and micro-computed tomography results demonstrated significant PEGDA hydrogel-like matrices bonded nanofibers,which formed a 3D structure similar to that of“steel bar(nanofibers)‒cement(PEGDA)”,with proper pore size,high porosity,and high pore connectivity density.Meanwhile,the hybrid 3D nanofibrous scaffolds showed outstanding swelling properties as well as improved compressive and tensile properties.Furthermore,these hybrid 3D nanofibrous scaffolds could provide a biocompatible microenvironment,capable of inducing the material‒cell hybrid and regulating human umbilical vein endothelial cells proliferation.They thus present significant potential in tissue regeneration. 展开更多
关键词 hybrid 3D nanofibrous scaffold silk fibroin tissue engineering human umbilical vein endothelial cell
原文传递
细菌纤维素-明胶/丝素蛋白双层支架的制备及其性能
11
作者 孙卫华 陈驰昊 +2 位作者 李喆 吕向国 王秀华 《浙江理工大学学报(自然科学版)》 2024年第1期30-38,共9页
为了获得能够模拟尿道组织多尺度结构的细菌纤维素复合明胶/丝素蛋白双层支架,以明胶(Gelatin,Gel)/丝素蛋白(Silk fibroin,SF)为原料,通过冷冻干燥法制备Gel/SF管状多孔支架,并以Gel/SF为模板,采用原位发酵法将细菌纤维素(Bacterial ce... 为了获得能够模拟尿道组织多尺度结构的细菌纤维素复合明胶/丝素蛋白双层支架,以明胶(Gelatin,Gel)/丝素蛋白(Silk fibroin,SF)为原料,通过冷冻干燥法制备Gel/SF管状多孔支架,并以Gel/SF为模板,采用原位发酵法将细菌纤维素(Bacterial cellulose,BC)与Gel/SF支架复合,获得细菌纤维素-明胶/丝素蛋白(Gel/SF/BC)双层支架,并对Gel/SF/BC双层支架的结构及性能进行测试表征。结果表明:Gel/SF/BC双层支架具有尿道组织的宏观形貌,形成了内致密外疏松的多孔双层结构,外层以Gel/SF多孔支架为骨架,内层由单纯BC膜构成,BC纳米纤维分布在多孔孔壁表面;Gel/SF/BC双层支架具有良好的力学性能、吸水性能及生物相容性。通过该方法制备的双层支架能够高度模拟尿道组织的多尺度结构,有望应用于尿道组织的再生修复。 展开更多
关键词 双层支架 明胶 丝素蛋白 原位发酵法 细菌纤维素
下载PDF
Elastic Fiber‑Reinforced Silk Fibroin Scaffold with A Double‑Crosslinking Network for Human Ear‑Shaped Cartilage Regeneration 被引量:1
12
作者 Qianyi Wang Xinyue Ran +7 位作者 Jian Wang Sinan Wang Peiling Zhang Erji Gao Baoshuai Bai Junfeng Zhang Guangdong Zhou Dong Lei 《Advanced Fiber Materials》 SCIE EI 2023年第3期1008-1024,共17页
Tissue engineering provides a promising approach for regenerative medicine.The ideal engineered tissue should have the desired structure and functional properties suitable for uniform cell distribution and stable shap... Tissue engineering provides a promising approach for regenerative medicine.The ideal engineered tissue should have the desired structure and functional properties suitable for uniform cell distribution and stable shape fidelity in the full period of in vitro culture and in vivo implantation.However,due to insufficient cell infiltration and inadequate mechanical properties,engineered tissue made from porous scaffolds may have an inconsistent cellular composition and a poor shape retainability,which seriously hinders their further clinical application.In this study,silk fibroin was integrated with silk short fibers with a physical and chemical double-crosslinking network to fabricate fiber-reinforced silk fibroin super elastic absorbent sponges(Fr-SF-SEAs).The Fr-SF-SEAs exhibited the desirable synergistic properties of a honeycomb structure,hygroscopicity and elasticity,which allowed them to undergo an unconventional cyclic compression inoculation method to significantly promote cell diffusion and achieve a uniform cell distribution at a high-density.Furthermore,the regenerated cartilage of the Fr-SF-SEAs scaffold withstood a dynamic pressure environment after subcutaneous implantation and maintained its precise original structure,ultimately achieving human-scale ear-shaped cartilage regeneration.Importantly,the SF-SEAs prepara-tion showed valuable universality in combining chemicals with other bioactive materials or drugs with reactive groups to construct microenvironment bionic scaffolds.The established novel cell inoculation method is highly versatile and can be readily applied to various cells.Based on the design concept of dual-network Fr-SF-SEAs scaffolds,homogenous and mature cartilage was successfully regenerated with precise and complicated shapes,which hopefully provides a platform strategy for tissue engineering for various cartilage defect repairs. 展开更多
关键词 silk fibroin Fiber-reinforced Elastic scaffold Cellular distribution Cartilage regeneration
原文传递
Novel magnetic silk fibroin scaffolds with delayed degradation for potential long-distance vascular repair 被引量:4
13
作者 Xin Liu Yuxiang Sun +7 位作者 Bo Chen Yan Li Peng Zhu Peng Wang Sen Yan Yao Li Fang Yang Ning Gu 《Bioactive Materials》 SCIE 2022年第1期126-143,共18页
Although with the good biological properties,silk fibroin(SF)is immensely restrained in long-distance vascular defect repair due to its relatively fast degradation and inferior mechanical properties.It is necessary to... Although with the good biological properties,silk fibroin(SF)is immensely restrained in long-distance vascular defect repair due to its relatively fast degradation and inferior mechanical properties.It is necessary to construct a multifunctional composite scaffold based on SF.In this study,a novel magnetic SF scaffold(MSFCs)was prepared by an improved infiltration method.Compared with SF scaffold(SFC),MSFCs were found to have better crystallinity,magnetocaloric properties,and mechanical strength,which was ascribed to the rational introduction of iron-based magnetic nanoparticles(MNPs).Moreover,in vivo and in vitro experiments demonstrated that the degradation of MSFCs was significantly extended.The mechanism of delayed degradation was correlated with the dual effect that was the newly formed hydrogen bonds between SFC and MNPs and the complexing to tyrosine(Try)to inhibit hydrolase by internal iron atoms.Besides,theβ-crystallization of protein in MSFCs was increased with the rise of iron concentration,proving the beneficial effect after MNPS doped.Furthermore,although macrophages could phagocytose the released MNPs,it did not affect their function,and even a reasonable level might cause some cytokines to be upregulated.Finally,in vitro and in vivo studies demonstrated that MSFCs showed excellent biocompatibility and the growth promotion effect on CD34-labeled vascular endothelial cells(VECs).In conclusion,we confirm that the doping of MNPs can significantly reduce the degradation of SFC and thus provide an innovative perspective of multifunctional biocomposites for tissue engineering. 展开更多
关键词 silk fibroin scaffold Iron based magnetic nanoparticles Composite scaffold Extended degradation Vascular tissue engineering
原文传递
Silk fibroin-based scaffolds for tissue engineering
14
作者 Zi-Heng LI Shi-Chen JI +2 位作者 Ya-Zhen WANG Xing-Can SHEN Hong LIANG 《Frontiers of Materials Science》 SCIE CSCD 2013年第3期237-247,共11页
Silk fibroin (SF) from the Bombyx mori silkworm exhibits attractive potential applications as biomechanical materials, due to its unique mechanical and biological properties. This review outlines the structure and p... Silk fibroin (SF) from the Bombyx mori silkworm exhibits attractive potential applications as biomechanical materials, due to its unique mechanical and biological properties. This review outlines the structure and properties of SF, including of its biocompatibility and biodegradability. It highlights recent researches on the fabrication of various SF-based composites scaffolds that are promising for tissue engineering applications, and discusses synthetic methods of various SF-based composites scaffolds and valuable approaches for controlling cell behaviors to promote the tissue repair. The function of extracellular matrices and their interaction with cells are also reviewed here. 展开更多
关键词 silk fibroin (SF) scaffold tissue engineering biomaterial tissue repair
原文传递
Random lasing detection of structural transformation and compositions in silk fibroin scaffolds
15
作者 SungYeun Yang Soocheol Kim +4 位作者 Hyeln Shin Seung Ho Choi Young L. Kim Chulmin Joo WonHyoung Ryu 《Nano Research》 SCIE EI CAS CSCD 2019年第2期289-297,共9页
In tissue engineering, microstructure and material composition of tissue scaffolds have major influences on the proliferation and differentiation of cells in the scaffolds. However, once tissue scaffolds implanted, it... In tissue engineering, microstructure and material composition of tissue scaffolds have major influences on the proliferation and differentiation of cells in the scaffolds. However, once tissue scaffolds implanted, it is extremely difficult to monitor the change of their microstructure and compositions during tissue regeneration. Here, we report how random lasing can be utilized to non-invasively monitor the structure and composition of scaffolds. We hypothesize that morphological and compositional change of silk fibroin (SF) scaffolds can be conveniently detected based on random lasing responses. Engineered SF scaffolds with hydroxyapatite (HAP) nanoparticles and controlled pore alignment were fabricated, and their random lasing responses were analyzed depending on the concentration of HAP nanoparticles and the degree of,:internal pore alignment. We also examined the real-time random lasing responses of porous SF scaffolds by applying a compressive force to' the scaffolds. Introduction of HAP nanoparticles lowered the lasing thresholds and narrowed the random lasing (RL) width dramatically, which :is likely due to the increase in heterogeneity in both refractive index and physical arrangement within the SF and HAP composites. The strong dependency of RL response on pore alignment was also measured and validated by numerical calculation with the finite element method (FEM).Finally, real-time monitoring of RL on compressed scaffolds demonstrated the possibility of using RL as a monitoring tool for structural change of SF scaffolds in vivo. 展开更多
关键词 random LASING silk fibroin porous scaffolds ALIGNED PORE structure ELECTROSPINNING hydroxyapatite
原文传递
丝素胶原蛋白复合支架联合富血小板血浆修复皮肤损伤 被引量:6
16
作者 刘继超 赵金龙 于洋 《中国组织工程研究》 CAS 北大核心 2023年第25期3971-3976,共6页
背景:胶原与丝素蛋白复合构建的组织工程支架,在皮肤、神经、血管、骨、软骨等组织工程领域应用广泛。富血小板血浆是血液经过2次离心获得的血小板浓缩物,含有多种组织修复需要的生长因子,可促进组织再生与创面愈合。目的:观察丝素胶原... 背景:胶原与丝素蛋白复合构建的组织工程支架,在皮肤、神经、血管、骨、软骨等组织工程领域应用广泛。富血小板血浆是血液经过2次离心获得的血小板浓缩物,含有多种组织修复需要的生长因子,可促进组织再生与创面愈合。目的:观察丝素胶原蛋白支架复合富血小板血浆在皮肤创面愈合中的作用。方法:分别制备丝素胶原蛋白支架、SD大鼠富血小板血浆。取8周龄SD大鼠48只,每只背部制作2个直径2 cm的全层皮肤缺损创面,分4组处理:空白组缺损处注射生理盐水,单纯支架组缺损处植入丝素胶原蛋白复合支架,富血小板血浆组创缘注射同种异体富血小板血浆,联合组缺损处植入丝素胶原蛋白复合支架+创缘注射同种异体富血小板血浆,每组12只。造模后检测创面愈合率、创面炎症因子水平、创面组织学观察及相关蛋白表达。结果与结论:①联合组造模后第7,14天的创面愈合率大于空白组、单纯支架组、富血小板血浆组(P<0.05)。②联合组造模后第7,14天的肿瘤坏死因子α、白细胞介素6水平均低于空白组、单纯支架组、富血小板血浆组(P<0.05)。③造模后第14天的苏木精-伊红及Masson染色显示,空白组缺损处仅见少量的新生毛细血管与混乱排列的胶原纤维组织;其他3组可见大量的新生毛细血管与腺体样组织,胶原纤维排列较规律,其中以联合组新生血管最多、腺体样组织层次更清晰、胶原纤维排列更规则。免疫组化染色显示,空白组、单纯支架组、富血小板血浆组CD31+细胞密度少于联合组(P<0.05)。④Western blot检测显示,相较于空白组、单纯支架组、富血小板血浆组,联合组创面Ⅰ型胶原、Ⅲ型胶原、基质金属蛋白酶抑制剂1的蛋白表达升高(P<0.05),基质金属蛋白酶3、基质金属蛋白酶9蛋白表达降低(P<0.05)。⑤结果表明,丝素胶原蛋白支架复合富血小板血浆可通过抑制炎症反应、增加微血管密度、调节细胞外基质的代谢平衡来促进皮肤创面愈合。 展开更多
关键词 丝素胶原蛋白复合支架 富血小板血浆 全层皮肤缺损 皮肤损伤 创面 创面愈合
下载PDF
蚕丝蛋白管状支架材料的制备及应用进展
17
作者 王曙东 丁晨 +1 位作者 王可 马倩 《材料导报》 CSCD 北大核心 2023年第S01期483-497,共15页
管状组织是人体氧气、固液体、排泄物输运的通道,一旦发生病变会引发各种并发症。蚕丝蛋白(SF)具有好的生物相容性、可设计的降解速率和机械性能,成为管状组织工程支架材料广泛选择的材料之一。为了进一步推动SF管状组织工程支架的研究... 管状组织是人体氧气、固液体、排泄物输运的通道,一旦发生病变会引发各种并发症。蚕丝蛋白(SF)具有好的生物相容性、可设计的降解速率和机械性能,成为管状组织工程支架材料广泛选择的材料之一。为了进一步推动SF管状组织工程支架的研究和开发以及为管状组织或器官疾病的科学研究和临床应用提供参考,本文详细介绍了SF管状支架的三种制备方法,即静电纺丝法、热致相分离法以及三维打印法,并详细综述了SF管状支架在血管、神经导管、气管、食管、尿道中的应用现状,为管状组织支架的临床应用奠定基础。 展开更多
关键词 蚕丝蛋白 管状支架 组织工程
下载PDF
强韧支架用丝素蛋白基生物墨水及其3D打印支架模拟软件的开发 被引量:1
18
作者 耿亚楠 赵梦露 +1 位作者 姚响 张耀鹏 《功能高分子学报》 CAS CSCD 北大核心 2023年第2期107-116,共10页
基于丝素蛋白(SF)和有限元分析方法,开发了一种强韧支架用丝素蛋白基生物墨水及其3D打印支架压缩性能模拟软件。表征了墨水的可打印性及对应水凝胶和3D打印支架的力学性能,评估了相关打印支架的细胞相容性。基于所述丝素蛋白基生物墨水... 基于丝素蛋白(SF)和有限元分析方法,开发了一种强韧支架用丝素蛋白基生物墨水及其3D打印支架压缩性能模拟软件。表征了墨水的可打印性及对应水凝胶和3D打印支架的力学性能,评估了相关打印支架的细胞相容性。基于所述丝素蛋白基生物墨水,设计并制备了不同高度和孔隙率的3D打印支架,利用所开发软件和电子万能材料试验机对打印支架的压缩性能进行了模拟预测和实测对比。结果表明:该墨水可打印性佳,对应支架强度高韧性好、细胞相容性好。所开发软件操作简便,具有3D打印支架建模、模型压缩力学性能预测以及指导3D打印支架快速制备等功能。 展开更多
关键词 丝素蛋白 3D打印 软件开发 力学性能模拟 支架
下载PDF
慢性炎症伤口的蚕丝基敷料研究进展 被引量:1
19
作者 李萌萌 王自立 +1 位作者 高玉洁 吴金丹 《丝绸》 CAS CSCD 北大核心 2023年第1期40-48,共9页
慢性难愈合伤口通常伴随持续的炎症反应,使用具有抗炎功能的伤口敷料是治疗慢性炎症伤口的有效途径之一。在众多的抗炎症伤口敷料中,蚕丝基敷料因具有天然的抗炎特性而受到广泛的关注。此外,通过添加其他的抗炎物质,可进一步提升蚕丝基... 慢性难愈合伤口通常伴随持续的炎症反应,使用具有抗炎功能的伤口敷料是治疗慢性炎症伤口的有效途径之一。在众多的抗炎症伤口敷料中,蚕丝基敷料因具有天然的抗炎特性而受到广泛的关注。此外,通过添加其他的抗炎物质,可进一步提升蚕丝基敷料的抗炎功能及促伤口愈合功能。本文首先介绍了蚕丝蛋白的抗炎机制;其次综述了不同形式(如纳米纤维、水凝胶、膜、泡沫、软膏)的蚕丝基敷料和皮肤组织工程支架的研究现状;最后讨论了蚕丝基敷料在伤口修复领域面临的挑战及其发展方向。 展开更多
关键词 丝素 丝胶 伤口敷料 慢性伤口 炎症 抗炎 组织工程支架
下载PDF
丝素蛋白-明胶-壳聚糖-羟基磷灰石多孔支架的制备及性能评估
20
作者 谷明西 王常成 +3 位作者 田丰德 郝瑞胡 安宁 郭林 《丝绸》 CAS CSCD 北大核心 2023年第11期1-9,共9页
文章以丝素蛋白(SF)、明胶(Gel)、壳聚糖(CS)和羟基磷灰石(Hap)为基础材料,通过真空冷冻干燥和化学交联制备了5组SF-CS-Gel-n Hap多孔支架(Hap-1%、Hap-2%、Hap-3%、Hap-4%、Hap-5%)。通过扫描电子显微镜、X射线衍射仪(XRD)、孔隙率、... 文章以丝素蛋白(SF)、明胶(Gel)、壳聚糖(CS)和羟基磷灰石(Hap)为基础材料,通过真空冷冻干燥和化学交联制备了5组SF-CS-Gel-n Hap多孔支架(Hap-1%、Hap-2%、Hap-3%、Hap-4%、Hap-5%)。通过扫描电子显微镜、X射线衍射仪(XRD)、孔隙率、吸水膨胀率、生物降解率及力学性能研究,筛选出理化性能优越适合全层软骨缺损再生重建的复合支架。随后将其与骨关节炎患者分离提取的软骨细胞共培养,通过细胞黏附率测定、细胞活死染色和CCK-8细胞活性增殖实验等方法评估多孔支架的生物性能,探索其用于修复全层软骨缺损的可行性。结果显示,基于明胶、壳聚糖、丝素蛋白和纳米羟基磷灰石制备的SF-CS-Gel-2%Hap多孔复合支架不仅可以模拟天然骨软骨的细胞外基质(ECM),而且具有良好的生物相容性,能够为营养物质的转运和细胞黏附、增殖和立体生长提供良好的网状骨架,为全层软骨缺损的治疗提供新的选择。 展开更多
关键词 组织工程 支架 全层软骨缺损 丝素蛋白 壳聚糖 明胶 羟基磷灰石
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部