Optical microscopy is an essential tool for exploring the structures and activities of cells and tissues.To break the limit of resolution caused by diffraction,researchers have made continuous advances and innovations...Optical microscopy is an essential tool for exploring the structures and activities of cells and tissues.To break the limit of resolution caused by diffraction,researchers have made continuous advances and innovations to improve the resolution of optical microscopy since the 1990s.These contributions,however,still make sub-10nm imaging an obstacle.Here,we name a series of technologies as modulated illumination localization microscopy(MILM),which makes ultra-high-resolution imaging practical.Besides,we review the recent progress since 2017 when MINFLUX was proposed and became the inspiration and foundation for the follow-up devel-opment of MILM.This review divides MILM into two types:point-scanning and wide-field.The schematics,principles and future research directions of MILM are discussed elaborately.展开更多
The resolution of conventional light microscopy is insufficient for subcelluar studies.The invention of various super-resolution imaging techniques breaks the diffraction barrier and pushes the resolution limit toward...The resolution of conventional light microscopy is insufficient for subcelluar studies.The invention of various super-resolution imaging techniques breaks the diffraction barrier and pushes the resolution limit towards the nanometer scale.Here,we focus on a category of super-resolution microscopy that relies on the stochastic activation and precise localization of single molecules.A diversity of fluorescent probes with different characteristics has been developed to achieve super-resolution imaging.In addition,with the implementation of robust localization algorithms,this family of approaches has been expanded to multi-color,three-dimensional and live cell imaging,which provides a promising prospect in biological research.展开更多
This talk will discuss single-molecule detection that shows on dual-color optical imaging data, image processing and statistical analysis can reliably differentiate random
Studying the activity of individual nanocata- lysts, especially with high spatiotemporal resolution of single-molecule and single-turnover scale, is essential for the understanding of catalytic mechanism and the desig...Studying the activity of individual nanocata- lysts, especially with high spatiotemporal resolution of single-molecule and single-turnover scale, is essential for the understanding of catalytic mechanism and the designing of effective catalysts. Several approaches have been developed to monitor the catalytic reaction on single catalysts. In this review, we summarized the updated progresses of several new spectroscopic and microscopic approaches, including single-molecule fluorescence microscopy, surface-enhanced Raman spectroscopy, surface plasmon resonance microscopy and X-ray microscopy, for the study of single-molecule and single-particle catalysis.展开更多
Hematologic malignancies are one of the most common malignant tumors caused by the clonal proliferation and differentiation of hematopoietic and lymphoid stem cells.The examination of bone marrow cells combined with i...Hematologic malignancies are one of the most common malignant tumors caused by the clonal proliferation and differentiation of hematopoietic and lymphoid stem cells.The examination of bone marrow cells combined with immunodeficiency typing is of great significance to the diagnostic type,treatment and prognosis of hematologic malignancies.Super-resolution fluorescence microscopy(SRM)is a special kind of optical microscopy technology,which breaks the resolution limit and was awarded the Nobel Prize in Chemistry in 2014.With the development of SRM,many related technologies have been applied to the diagnosis and treatment of clinical diseases.It was reported that a major type of SRM technique,single molecule localization microscopy(SMLM),is more sensitive than flow cytometry(FC)in detecting cell membrane antigens'expression,thus enabling better chances in detecting antigens on hematopoietic cells than traditional analytic tools.Furthermore,SRM may be applied to clinical pathology and may guide precision medicine and personalized medicine for clone hematopoietic cell diseases.In this paper,we mainly discuss the application of SRM in clone hematological malignancies.展开更多
Recent progress in the observation of surface-enhanced Raman scattering (SERS) is reviewed to examine the possibility of finding a novel route for the effective photoexcitation of materials. The importance of well-c...Recent progress in the observation of surface-enhanced Raman scattering (SERS) is reviewed to examine the possibility of finding a novel route for the effective photoexcitation of materials. The importance of well-controlled SERS experiments on a single molecule at a single site is discussed based on the difference in the information obtained from ensemble SERS measurements using mul- tiple active sites with an uncontrolled number of molecules. A single-molecule SERS observation performed at a mechanically controllable breaking junction with a simultaneous conductivity mea- surement provides clear evidence of the drastic changes both in the intensity and in the Raman mode selectivity of the electromagnetic field generated by localized surface plasmon resonance. Careful con- trol of the field at a few-nanometer-wide gap of a metal nanodimer results in the modification of the selection rule of electronic excitation of an isolated single-walled carbon nanotube. The examples shown in this review suggest that a single-site SERS observation could be used as a novel tool to find, develop, and implement applications of plasmon-induced photoexcitation of materials.展开更多
基金This work was financially sponsored by National Natural Science Foundation of China(61735017,61827825)Major Program of the Natural Science Foundation of Zhejiang Province(LD21F050002)+1 种基金Key Research and Development Program of Zhejiang Province(2020C01116)Fundamental Research Funds for the Central Universities(K20200132),Zhejiang Lab(2020MC0AE01)and Zhejiang Provincial Ten Thousand Plan for Young Top Talents(2020R52001).Y.S.and L.Y.contributed equally to this work.
文摘Optical microscopy is an essential tool for exploring the structures and activities of cells and tissues.To break the limit of resolution caused by diffraction,researchers have made continuous advances and innovations to improve the resolution of optical microscopy since the 1990s.These contributions,however,still make sub-10nm imaging an obstacle.Here,we name a series of technologies as modulated illumination localization microscopy(MILM),which makes ultra-high-resolution imaging practical.Besides,we review the recent progress since 2017 when MINFLUX was proposed and became the inspiration and foundation for the follow-up devel-opment of MILM.This review divides MILM into two types:point-scanning and wide-field.The schematics,principles and future research directions of MILM are discussed elaborately.
基金supported by the National Natural Science Foundation of China(31130065,31127002,31100615 and 31100596)the Chinese Academy of Sciences Project(yg2012029)
文摘The resolution of conventional light microscopy is insufficient for subcelluar studies.The invention of various super-resolution imaging techniques breaks the diffraction barrier and pushes the resolution limit towards the nanometer scale.Here,we focus on a category of super-resolution microscopy that relies on the stochastic activation and precise localization of single molecules.A diversity of fluorescent probes with different characteristics has been developed to achieve super-resolution imaging.In addition,with the implementation of robust localization algorithms,this family of approaches has been expanded to multi-color,three-dimensional and live cell imaging,which provides a promising prospect in biological research.
文摘This talk will discuss single-molecule detection that shows on dual-color optical imaging data, image processing and statistical analysis can reliably differentiate random
文摘Studying the activity of individual nanocata- lysts, especially with high spatiotemporal resolution of single-molecule and single-turnover scale, is essential for the understanding of catalytic mechanism and the designing of effective catalysts. Several approaches have been developed to monitor the catalytic reaction on single catalysts. In this review, we summarized the updated progresses of several new spectroscopic and microscopic approaches, including single-molecule fluorescence microscopy, surface-enhanced Raman spectroscopy, surface plasmon resonance microscopy and X-ray microscopy, for the study of single-molecule and single-particle catalysis.
基金This work was supported by the Innovation Fund of WNLO(2018WNLOKF023)the Start-up Fund of Hainan University(KYQD(ZR)-20077).
文摘Hematologic malignancies are one of the most common malignant tumors caused by the clonal proliferation and differentiation of hematopoietic and lymphoid stem cells.The examination of bone marrow cells combined with immunodeficiency typing is of great significance to the diagnostic type,treatment and prognosis of hematologic malignancies.Super-resolution fluorescence microscopy(SRM)is a special kind of optical microscopy technology,which breaks the resolution limit and was awarded the Nobel Prize in Chemistry in 2014.With the development of SRM,many related technologies have been applied to the diagnosis and treatment of clinical diseases.It was reported that a major type of SRM technique,single molecule localization microscopy(SMLM),is more sensitive than flow cytometry(FC)in detecting cell membrane antigens'expression,thus enabling better chances in detecting antigens on hematopoietic cells than traditional analytic tools.Furthermore,SRM may be applied to clinical pathology and may guide precision medicine and personalized medicine for clone hematopoietic cell diseases.In this paper,we mainly discuss the application of SRM in clone hematological malignancies.
文摘Recent progress in the observation of surface-enhanced Raman scattering (SERS) is reviewed to examine the possibility of finding a novel route for the effective photoexcitation of materials. The importance of well-controlled SERS experiments on a single molecule at a single site is discussed based on the difference in the information obtained from ensemble SERS measurements using mul- tiple active sites with an uncontrolled number of molecules. A single-molecule SERS observation performed at a mechanically controllable breaking junction with a simultaneous conductivity mea- surement provides clear evidence of the drastic changes both in the intensity and in the Raman mode selectivity of the electromagnetic field generated by localized surface plasmon resonance. Careful con- trol of the field at a few-nanometer-wide gap of a metal nanodimer results in the modification of the selection rule of electronic excitation of an isolated single-walled carbon nanotube. The examples shown in this review suggest that a single-site SERS observation could be used as a novel tool to find, develop, and implement applications of plasmon-induced photoexcitation of materials.