Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materia...Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.展开更多
This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by...This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by normal tensor voting theory,(2)co ntraction of trace feature points,(3)connection of trace feature points,(4)linearization of trace segments,and(5)connection of trace segments.A sensitivity analysis was then conducted to identify the optimal parameters of the proposed method.Three field cases,a natural rock mass outcrop and two excavated rock tunnel surfaces,were analyzed using the proposed method to evaluate its validity and efficiency.The results show that the proposed method is more efficient and accurate than the traditional trace mapping method,and the efficiency enhancement is more robust as the number of feature points increases.展开更多
Landslides are one of the most disastrous geological hazards in southwestern China.Once a landslide becomes unstable,it threatens the lives and safety of local residents.However,empirical studies on landslides have pr...Landslides are one of the most disastrous geological hazards in southwestern China.Once a landslide becomes unstable,it threatens the lives and safety of local residents.However,empirical studies on landslides have predominantly focused on landslides that occur on land.To this end,we aim to investigate ashore and underwater landslide data synchronously.This study proposes an optimized mosaicking method for ashore and underwater landslide data.This method fuses an airborne laser point cloud with multi-beam depth sounder images.Owing to their relatively high efficiency and large coverage area,airborne laser measurement systems are suitable for emergency investigations of landslides.Based on the airborne laser point cloud,the traversal of the point with the lowest elevation value in the point set can be used to perform rapid extraction of the crude channel boundaries.Further meticulous extraction of the channel boundaries is then implemented using the probability mean value optimization method.In addition,synthesis of the integrated ashore and underwater landslide data angle is realized using the spatial guide line between the channel boundaries and the underwater multibeam sonar images.A landslide located on the right bank of the middle reaches of the Yalong River is selected as a case study to demonstrate that the proposed method has higher precision thantraditional methods.The experimental results show that the mosaicking method in this study can meet the basic needs of landslide modeling and provide a basis for qualitative and quantitative analysis and stability prediction of landslides.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
In the last two decades,significant research has been conducted in the field of automated extraction of rock mass discontinuity characteristics from three-dimensional(3D)models.This provides several methodologies for ...In the last two decades,significant research has been conducted in the field of automated extraction of rock mass discontinuity characteristics from three-dimensional(3D)models.This provides several methodologies for acquiring discontinuity measurements from 3D models,such as point clouds generated using laser scanning or photogrammetry.However,even with numerous automated and semiautomated methods presented in the literature,there is not one single method that can automatically characterize discontinuities accurately in a minimum of time.In this paper,we critically review all the existing methods proposed in the literature for the extraction of discontinuity characteristics such as joint sets and orientations,persistence,joint spacing,roughness and block size using point clouds,digital elevation maps,or meshes.As a result of this review,we identify the strengths and drawbacks of each method used for extracting those characteristics.We found that the approaches based on voxels and region growing are superior in extracting joint planes from 3D point clouds.Normal tensor voting with trace growth algorithm is a robust method for measuring joint trace length from 3D meshes.Spacing is estimated by calculating the perpendicular distance between joint planes.Several independent roughness indices are presented to quantify roughness from 3D surface models,but there is a need to incorporate these indices into automated methodologies.There is a lack of efficient algorithms for direct computation of block size from 3D rock mass surface models.展开更多
Fusing three-dimensional(3D)and multispectral(MS)imaging data holds promise for high-throughput and comprehensive plant phenotyping to decipher genome-to-phenome knowledge.Acquiring high-quality 3D MS point clouds(3DM...Fusing three-dimensional(3D)and multispectral(MS)imaging data holds promise for high-throughput and comprehensive plant phenotyping to decipher genome-to-phenome knowledge.Acquiring high-quality 3D MS point clouds(3DMPCs)of plants remains challenging because of poor 3D data quality and limited radiometric calibration methods for plants with a complex canopy structure.Here,we present a novel 3D spatial–spectral data fusion approach to collect high-quality 3DMPCs of plants by integrating the next-best-view planning for adaptive data acquisition and neural reference field(NeREF)for radiometric calibration.This approach was used to acquire 3DMPCs of perilla,tomato,and rapeseed plants with diverse plant architecture and leaf morphological features evaluated by the accuracy of chlorophyll content and equivalent water thickness(EWT)estimation.The results showed that the completeness of plant point clouds collected by this approach was improved by an average of 23.6%compared with the fixed viewpoints alone.The NeREF-based radiometric calibration with the hemispherical reference outperformed the conventional calibration method by reducing the root mean square error(RMSE)of 58.93%for extracted reflectance spectra.The RMSE for chlorophyll content and EWT predictions decreased by 21.25%and 14.13%using partial least squares regression with the generated 3DMPCs.Collectively,our study provides an effective and efficient way to collect high-quality 3DMPCs of plants under natural light conditions,which improves the accuracy and comprehensiveness of phenotyping plant morphological and physiological traits,and thus will facilitate plant biology and genetic studies as well as crop breeding.展开更多
When obtaining three-dimensional(3D)face point cloud data based on structured light,factors related to the environment,occlusion,and illumination intensity lead to holes in the collected data,which affect subsequent r...When obtaining three-dimensional(3D)face point cloud data based on structured light,factors related to the environment,occlusion,and illumination intensity lead to holes in the collected data,which affect subsequent recognition.In this study,we propose a hole-filling method based on stereo-matching technology combined with a B-spline.The algorithm uses phase information acquired during raster projection to locate holes in the point cloud,simultaneously extracting boundary point cloud sets.By registering the face point cloud data using the stereo-matching algorithm and the data collected using the raster projection method,some supplementary information points can be obtained at the holes.The shape of the B-spline curve can then be roughly described by a few key points,and the control points are put into the hole area as key points for iterative calculation of surface reconstruction.Simulations using smooth ceramic cups and human face models showed that our model can accurately reproduce details and accurately restore complex shapes on the test surfaces.Simulation results indicated the robustness of the method,which is able to fill holes on complex areas such as the inner side of the nose without a prior model.This approach also effectively supplements the hole information,and the patched point cloud is closer to the original data.This method could be used across a wide range of applications requiring accurate facial recognition.展开更多
基金funded by the National Natural Science Foundation of China(42071014).
文摘Gobi spans a large area of China,surpassing the combined expanse of mobile dunes and semi-fixed dunes.Its presence significantly influences the movement of sand and dust.However,the complex origins and diverse materials constituting the Gobi result in notable differences in saltation processes across various Gobi surfaces.It is challenging to describe these processes according to a uniform morphology.Therefore,it becomes imperative to articulate surface characteristics through parameters such as the three-dimensional(3D)size and shape of gravel.Collecting morphology information for Gobi gravels is essential for studying its genesis and sand saltation.To enhance the efficiency and information yield of gravel parameter measurements,this study conducted field experiments in the Gobi region across Dunhuang City,Guazhou County,and Yumen City(administrated by Jiuquan City),Gansu Province,China in March 2023.A research framework and methodology for measuring 3D parameters of gravel using point cloud were developed,alongside improved calculation formulas for 3D parameters including gravel grain size,volume,flatness,roundness,sphericity,and equivalent grain size.Leveraging multi-view geometry technology for 3D reconstruction allowed for establishing an optimal data acquisition scheme characterized by high point cloud reconstruction efficiency and clear quality.Additionally,the proposed methodology incorporated point cloud clustering,segmentation,and filtering techniques to isolate individual gravel point clouds.Advanced point cloud algorithms,including the Oriented Bounding Box(OBB),point cloud slicing method,and point cloud triangulation,were then deployed to calculate the 3D parameters of individual gravels.These systematic processes allow precise and detailed characterization of individual gravels.For gravel grain size and volume,the correlation coefficients between point cloud and manual measurements all exceeded 0.9000,confirming the feasibility of the proposed methodology for measuring 3D parameters of individual gravels.The proposed workflow yields accurate calculations of relevant parameters for Gobi gravels,providing essential data support for subsequent studies on Gobi environments.
基金supported by the Special Fund for Basic Research on Scientific Instruments of the National Natural Science Foundation of China(Grant No.4182780021)Emeishan-Hanyuan Highway ProgramTaihang Mountain Highway Program。
文摘This paper presents an automated method for discontinuity trace mapping using three-dimensional point clouds of rock mass surfaces.Specifically,the method consists of five steps:(1)detection of trace feature points by normal tensor voting theory,(2)co ntraction of trace feature points,(3)connection of trace feature points,(4)linearization of trace segments,and(5)connection of trace segments.A sensitivity analysis was then conducted to identify the optimal parameters of the proposed method.Three field cases,a natural rock mass outcrop and two excavated rock tunnel surfaces,were analyzed using the proposed method to evaluate its validity and efficiency.The results show that the proposed method is more efficient and accurate than the traditional trace mapping method,and the efficiency enhancement is more robust as the number of feature points increases.
基金supported in part by the National Key R&D Program of China(Grant no.2016YFC0401908)。
文摘Landslides are one of the most disastrous geological hazards in southwestern China.Once a landslide becomes unstable,it threatens the lives and safety of local residents.However,empirical studies on landslides have predominantly focused on landslides that occur on land.To this end,we aim to investigate ashore and underwater landslide data synchronously.This study proposes an optimized mosaicking method for ashore and underwater landslide data.This method fuses an airborne laser point cloud with multi-beam depth sounder images.Owing to their relatively high efficiency and large coverage area,airborne laser measurement systems are suitable for emergency investigations of landslides.Based on the airborne laser point cloud,the traversal of the point with the lowest elevation value in the point set can be used to perform rapid extraction of the crude channel boundaries.Further meticulous extraction of the channel boundaries is then implemented using the probability mean value optimization method.In addition,synthesis of the integrated ashore and underwater landslide data angle is realized using the spatial guide line between the channel boundaries and the underwater multibeam sonar images.A landslide located on the right bank of the middle reaches of the Yalong River is selected as a case study to demonstrate that the proposed method has higher precision thantraditional methods.The experimental results show that the mosaicking method in this study can meet the basic needs of landslide modeling and provide a basis for qualitative and quantitative analysis and stability prediction of landslides.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
基金funded by the U.S.National Institute for Occupational Safety and Health(NIOSH)under the Contract No.75D30119C06044。
文摘In the last two decades,significant research has been conducted in the field of automated extraction of rock mass discontinuity characteristics from three-dimensional(3D)models.This provides several methodologies for acquiring discontinuity measurements from 3D models,such as point clouds generated using laser scanning or photogrammetry.However,even with numerous automated and semiautomated methods presented in the literature,there is not one single method that can automatically characterize discontinuities accurately in a minimum of time.In this paper,we critically review all the existing methods proposed in the literature for the extraction of discontinuity characteristics such as joint sets and orientations,persistence,joint spacing,roughness and block size using point clouds,digital elevation maps,or meshes.As a result of this review,we identify the strengths and drawbacks of each method used for extracting those characteristics.We found that the approaches based on voxels and region growing are superior in extracting joint planes from 3D point clouds.Normal tensor voting with trace growth algorithm is a robust method for measuring joint trace length from 3D meshes.Spacing is estimated by calculating the perpendicular distance between joint planes.Several independent roughness indices are presented to quantify roughness from 3D surface models,but there is a need to incorporate these indices into automated methodologies.There is a lack of efficient algorithms for direct computation of block size from 3D rock mass surface models.
基金funded by the National Natural Science Foundation of China(32371985)the Fundamental Research Funds for the Central Universities,China(226-2022-00217).
文摘Fusing three-dimensional(3D)and multispectral(MS)imaging data holds promise for high-throughput and comprehensive plant phenotyping to decipher genome-to-phenome knowledge.Acquiring high-quality 3D MS point clouds(3DMPCs)of plants remains challenging because of poor 3D data quality and limited radiometric calibration methods for plants with a complex canopy structure.Here,we present a novel 3D spatial–spectral data fusion approach to collect high-quality 3DMPCs of plants by integrating the next-best-view planning for adaptive data acquisition and neural reference field(NeREF)for radiometric calibration.This approach was used to acquire 3DMPCs of perilla,tomato,and rapeseed plants with diverse plant architecture and leaf morphological features evaluated by the accuracy of chlorophyll content and equivalent water thickness(EWT)estimation.The results showed that the completeness of plant point clouds collected by this approach was improved by an average of 23.6%compared with the fixed viewpoints alone.The NeREF-based radiometric calibration with the hemispherical reference outperformed the conventional calibration method by reducing the root mean square error(RMSE)of 58.93%for extracted reflectance spectra.The RMSE for chlorophyll content and EWT predictions decreased by 21.25%and 14.13%using partial least squares regression with the generated 3DMPCs.Collectively,our study provides an effective and efficient way to collect high-quality 3DMPCs of plants under natural light conditions,which improves the accuracy and comprehensiveness of phenotyping plant morphological and physiological traits,and thus will facilitate plant biology and genetic studies as well as crop breeding.
基金supported by the National Natural Science Foundation of China(No.61405034)the Special Project on Basic Research of Frontier Leading Technology of Jiangsu Province,China(No.BK20192004C)+1 种基金the Shenzhen Science and Technology Innovation Committee(No.JCYJ20180306174455080)the Natural Science Foundation of Jiangsu Province,China(No.BK20181269)。
文摘When obtaining three-dimensional(3D)face point cloud data based on structured light,factors related to the environment,occlusion,and illumination intensity lead to holes in the collected data,which affect subsequent recognition.In this study,we propose a hole-filling method based on stereo-matching technology combined with a B-spline.The algorithm uses phase information acquired during raster projection to locate holes in the point cloud,simultaneously extracting boundary point cloud sets.By registering the face point cloud data using the stereo-matching algorithm and the data collected using the raster projection method,some supplementary information points can be obtained at the holes.The shape of the B-spline curve can then be roughly described by a few key points,and the control points are put into the hole area as key points for iterative calculation of surface reconstruction.Simulations using smooth ceramic cups and human face models showed that our model can accurately reproduce details and accurately restore complex shapes on the test surfaces.Simulation results indicated the robustness of the method,which is able to fill holes on complex areas such as the inner side of the nose without a prior model.This approach also effectively supplements the hole information,and the patched point cloud is closer to the original data.This method could be used across a wide range of applications requiring accurate facial recognition.