In order to solve the problem that the performance of traditional localization methods for mixed near-field sources(NFSs)and far-field sources(FFSs)degrades under impulsive noise,a robust and novel localization method...In order to solve the problem that the performance of traditional localization methods for mixed near-field sources(NFSs)and far-field sources(FFSs)degrades under impulsive noise,a robust and novel localization method is proposed.After eliminating the impacts of impulsive noise by the weighted out-lier filter,the direction of arrivals(DOAs)of FFSs can be estimated by multiple signal classification(MUSIC)spectral peaks search.Based on the DOAs information of FFSs,the separation of mixed sources can be performed.Finally,the estimation of localizing parameters of NFSs can avoid two-dimension spectral peaks search by decomposing steering vectors.The Cramer-Rao bounds(CRB)for the unbiased estimations of DOA and range under impulsive noise have been drawn.Simulation experiments verify that the proposed method has advantages in probability of successful estimation(PSE)and root mean square error(RMSE)compared with existing localization methods.It can be concluded that the proposed method is effective and reliable in the environment with low generalized signal to noise ratio(GSNR),few snapshots,and strong impulse.展开更多
While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization ...While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization in signed network models.Leveraging the topological characteristics of signed networks and transforming the propagation probability into effective distance,we propose an optimization method for observer selection.Additionally,by using the reverse propagation algorithm we present a method for information source localization in signed networks.Extensive experimental results demonstrate that a higher proportion of positive edges within signed networks contributes to more favorable source localization,and the higher the ratio of propagation rates between positive and negative edges,the more accurate the source localization becomes.Interestingly,this aligns with our observation that,in reality,the number of friends tends to be greater than the number of adversaries,and the likelihood of information propagation among friends is often higher than among adversaries.In addition,the source located at the periphery of the network is not easy to identify.Furthermore,our proposed observer selection method based on effective distance achieves higher operational efficiency and exhibits higher accuracy in information source localization,compared with three strategies for observer selection based on the classical full-order neighbor coverage.展开更多
Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE...Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE source using refraction path is proposed.Firstly,the control equation of the refraction path is established according to the sensor coordinates and arrival times.Secondly,considering the influence of time-difference-of-arrival(TDOA)errors,the residual of the governing equation is calculated to estimate the equation weight.Thirdly,the refraction points in different directions are solved using Snell’s law and orthogonal constraints.Finally,the source coordinates are iteratively solved by weighted correction terms.The feasibility and accuracy of the proposed method are verified by pencil-lead breaking experiments.The simulation results show that the new method is almost unaffected by the refraction ratio,and always holds more stable and accurate positioning performance than the traditional method under different ratios and scales of TDOA outliers.展开更多
The penetration of new energy sources such as wind power is increasing,which consequently increases the occurrence rate of subsynchronous oscillation events.However,existing subsynchronous oscillation source-identific...The penetration of new energy sources such as wind power is increasing,which consequently increases the occurrence rate of subsynchronous oscillation events.However,existing subsynchronous oscillation source-identification methods primarily analyze fixed-mode oscillations and rarely consider time-varying features,such as frequency drift,caused by the random volatility of wind farms when oscillations occur.This paper proposes a subsynchronous oscillation sourcelocalization method that involves an enhanced short-time Fourier transform and a convolutional neural network(CNN).First,an enhanced STFT is performed to secure high-resolution time-frequency distribution(TFD)images from the measured data of the generation unit ports.Next,these TFD images are amalgamated to form a subsynchronous oscillation feature map that serves as input to the CNN to train the localization model.Ultimately,the trained CNN model realizes the online localization of subsynchronous oscillation sources.The effectiveness and accuracy of the proposed method are validated via multimachine system models simulating forced and natural oscillation events using the Power Systems Computer Aided Design platform.Test results show that the proposed method can localize subsynchronous oscillation sources online while considering unpredictable fluctuations in wind farms,thus providing a foundation for oscillation suppression in practical engineering scenarios.展开更多
A dimension decomposition(DIDE)method for multiple incoherent source localization using uniform circular array(UCA)is proposed.Due to the fact that the far-field signal can be considered as the state where the range p...A dimension decomposition(DIDE)method for multiple incoherent source localization using uniform circular array(UCA)is proposed.Due to the fact that the far-field signal can be considered as the state where the range parameter of the nearfield signal is infinite,the algorithm for the near-field source localization is also suitable for estimating the direction of arrival(DOA)of far-field signals.By decomposing the first and second exponent term of the steering vector,the three-dimensional(3-D)parameter is transformed into two-dimensional(2-D)and onedimensional(1-D)parameter estimation.First,by partitioning the received data,we exploit propagator to acquire the noise subspace.Next,the objective function is established and partial derivative is applied to acquire the spatial spectrum of 2-D DOA.At last,the estimated 2-D DOA is utilized to calculate the phase of the decomposed vector,and the least squares(LS)is performed to acquire the range parameters.In comparison to the existing algorithms,the proposed DIDE algorithm requires neither the eigendecomposition of covariance matrix nor the search process of range spatial spectrum,which can achieve satisfactory localization and reduce computational complexity.Simulations are implemented to illustrate the advantages of the proposed DIDE method.Moreover,simulations demonstrate that the proposed DIDE method can also classify the mixed far-field and near-field signals.展开更多
A new method in digital hearing aids to adaptively localize the speech source in noise and reverberant environment is proposed. Based on the room reverberant model and the multichannel adaptive eigenvalue decompositi...A new method in digital hearing aids to adaptively localize the speech source in noise and reverberant environment is proposed. Based on the room reverberant model and the multichannel adaptive eigenvalue decomposition (MCAED) algorithm, the proposed method can iteratively estimate impulse response coefficients between the speech source and microphones by the adaptive subgradient projection method. Then, it acquires the time delays of microphone pairs, and calculates the source position by the geometric method. Compared with the traditional normal least mean square (NLMS) algorithm, the adaptive subgradient projection method achieves faster and more accurate convergence in a low signal-to-noise ratio (SNR) environment. Simulations for glasses digital hearing aids with four-component square array demonstrate the robust performance of the proposed method.展开更多
The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace~ fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties...The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace~ fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties of the RAP environment. The RAP is an important acoustic duct in the deep ocean, which occurs when the receiver is placed near the bottom where the sound velocity exceeds the maximum sound velocity in the vicinity of the surface. It is found that in the RAP environment the transmission loss is rather low and no blind zone of surveillance exists in a medium range. The ray theory is used to explain these phenomena. Furthermore, the analysis of the arrival structures shows that the source localization method based on arrival angle is feasible in this environment. However, the conventional methods suffer from the complicated and inaccurate estimation of the arrival angle. In this paper, a straightforward WSF-MF method is derived to exploit the information about the arrival angles indirectly. The method is to minimize the distance between the signal subspace and the spanned space by the array manifold in a finite range-depth space rather than the arrival-angle space. Simulations are performed to demonstrate the features of the method, and the results are explained by the arrival structures in the RAP environment.展开更多
Microseismic/acoustic emission(MS/AE)source localization method is crucial for predicting and controlling of potentially dangerous sources of complex structures.However,the locating errors induced by both the irregula...Microseismic/acoustic emission(MS/AE)source localization method is crucial for predicting and controlling of potentially dangerous sources of complex structures.However,the locating errors induced by both the irregular structure and pre-measured velocity are poorly understood in existing methods.To meet the high-accuracy locating requirements in complex three-dimensional hole-containing structures,a velocity-free MS/AE source location method is developed in this paper.It avoids manual repetitive training by using equidistant grid points to search the path,which introduces A*search algorithm and uses grid points to accommodate complex structures with irregular holes.It also takes advantage of the velocity-free source location method.To verify the validity of the proposed method,lead-breaking tests were performed on a cubic concrete test specimen with a size of 10 cm10 cm10 cm.It was cut out into a cylindrical empty space with a size of/6cm10 cm.Based on the arrivals,the classical Geiger method and the proposed method are used to locate lead-breaking sources.Results show that the locating error of the proposed method is 1.20 cm,which is less than 2.02 cm of the Geiger method.Hence,the proposed method can effectively locate sources in the complex three-dimensional structure with holes and achieve higher precision requirements.展开更多
Source localization of focal electrical activity from scalp electroencephalogram (sEEG) signal is generally modeled as an inverse problem that is highly ill-posed. In this paper, a novel source localization method is ...Source localization of focal electrical activity from scalp electroencephalogram (sEEG) signal is generally modeled as an inverse problem that is highly ill-posed. In this paper, a novel source localization method is proposed to model the EEG inverse problem using spatio-temporal long-short term memory recurrent neural networks (LSTM). The network model consists of two parts, sEEG encoding and source decoding, to model the sEEG signal and receive the regression of source location. As there does not exist enough annotated sEEG signals correspond to specific source locations, simulated data is generated with forward model using finite element method (FEM) to act as a part of training signals. A framework for source localization is proposed to estimate the source position based on simulated training data. Experiments are done on simulated testing data. The results on simulated data exhibit good robustness on noise signal, and the proposed network solves the EEG inverse problem with spatio-temporal deep network. The result show that the proposed method overcomes the highly ill-posed linear inverse problem with data driven learning.展开更多
This paper presents a three-dimensional particle-in-cell (PIC) simulation of a Ka-band relativistic Cherenkov source with a slow wave structure (SWS) consisting of metal photonic band gap (PBG) structures. In th...This paper presents a three-dimensional particle-in-cell (PIC) simulation of a Ka-band relativistic Cherenkov source with a slow wave structure (SWS) consisting of metal photonic band gap (PBG) structures. In the simulation, a perfect match layer boundary is employed to absorb passing band modes supported by the PBG lattice with an artificial metal boundary. The simulated axial field distributions in the cross section and surface of the SWS demonstrate that the device operates in the vicinity of the π point of a TM01-1ike mode. The Fourier transformation spectra of the axial fields as functions of time and space show that only a single frequency appears at 36.27 GHz, which is in good agreement with that of the intersection of the dispersion curve with the slow space charge wave generated on the beam. The simulation results demonstrate that the SWS has good mode selectivity.展开更多
This paper is concerned with the problem of odor source localization using multi-robot system. A learning particle swarm optimization algorithm, which can coordinate a multi-robot system to locate the odor source, is ...This paper is concerned with the problem of odor source localization using multi-robot system. A learning particle swarm optimization algorithm, which can coordinate a multi-robot system to locate the odor source, is proposed. First, in order to develop the proposed algorithm, a source probability map for a robot is built and updated by using concentration magnitude information, wind information, and swarm information. Based on the source probability map, the new position of the robot can be generated. Second, a distributed coordination architecture, by which the proposed algorithm can run on the multi-robot system, is designed. Specifically, the proposed algorithm is used on the group level to generate a new position for the robot. A consensus algorithm is then adopted on the robot level in order to control the robot to move from the current position to the new position. Finally, the effectiveness of the proposed algorithm is illustrated for the odor source localization problem.展开更多
Due to the significant effect of abnormal arrivals on localization accuracy,a novel acoustic emission(AE)source localization method using clustering detection to eliminate abnormal arrivals is proposed in the paper.Fi...Due to the significant effect of abnormal arrivals on localization accuracy,a novel acoustic emission(AE)source localization method using clustering detection to eliminate abnormal arrivals is proposed in the paper.Firstly,iterative weight estimation is utilized to obtain accurate equation residuals.Secondly,according to the distribution of equation residuals,clustering detection is used to identify and exclude abnormal arrivals.Thirdly,the AE source coordinate is recalculated with remaining normal arrivals.Experimental results of pencil-lead breaks indicate that the proposed method can achieve a better localization result with and without abnormal arrivals.The results of simulation tests further demonstrate that the proposed method possesses higher localization accuracy and robustness under different anomaly ratios and scales;even with abnormal arrivals as high as 30%,the proposed localization method still holds a correct detection rate of 91.85%.展开更多
This paper links parallel factor(PARAFAC) analysis to the problem of nominal direction-of-arrival(DOA) estimation for coherently distributed(CD) sources and proposes a fast PARAFACbased algorithm by establishing...This paper links parallel factor(PARAFAC) analysis to the problem of nominal direction-of-arrival(DOA) estimation for coherently distributed(CD) sources and proposes a fast PARAFACbased algorithm by establishing the trilinear PARAFAC model.Relying on the uniqueness of the low-rank three-way array decomposition and the trilinear alternating least squares regression, the proposed algorithm achieves nominal DOA estimation and outperforms the conventional estimation of signal parameter via rotational technique CD(ESPRIT-CD) and propagator method CD(PM-CD)methods in terms of estimation accuracy. Furthermore, by means of the initialization via the propagator method, this paper accelerates the convergence procedure of the proposed algorithm with no estimation performance degradation. In addition, the proposed algorithm can be directly applied to the multiple-source scenario,where sources have different angular distribution shapes. Numerical simulation results corroborate the effectiveness and superiority of the proposed fast PARAFAC-based algorithm.展开更多
Effective information fusion is very important in hybrid source localization. In this paper, the performance analysis of conventional joint direction of arrival(DOA) and time difference of arrival(TDOA) system is deri...Effective information fusion is very important in hybrid source localization. In this paper, the performance analysis of conventional joint direction of arrival(DOA) and time difference of arrival(TDOA) system is derived and it is shown that this hybrid system may inferior to the single system when the ratio of angular measurements error to distance measurements error exceeds a threshold. To avoid this problem, an effective DOA/TDOA adaptive cascaded(DTAC) technique is presented. The rotation feature of UAVs and spatial filtering technique are applied to gain the signal-to-noise ratio(SNR), which leads to more accurate estimation of time delay by using DOAs. Nevertheless, the time delay estimation precision is still limited by the sampling frequency, which is constrained by the finite load of UAV. To break through the limitation, an enhanced self-delay-compensation(SDC) method is proposed, which aims at detecting the overlooked time delay within the sampling interval by adding a tiny time delay. Finally, the position of the source is estimated by the Chan algorithm. Compared to DOA-only algorithm, TDOA-only algorithm and joint DOA/TDOA(JDT) algorithm, the proposed method shows better localization accuracy regardless of different SNRs and sampling frequencies. Numerical simulations are presented to validate the effectiveness and robustness of the proposed algorithm.展开更多
Environmental uncertainty represents the limiting factor in matched-field localization. Within a Bayesian framework, both the environmental parameters, and the source parameters are considered to be unknown variables....Environmental uncertainty represents the limiting factor in matched-field localization. Within a Bayesian framework, both the environmental parameters, and the source parameters are considered to be unknown variables. However, including environmental parameters in multiple-source localization greatly increases the complexity and computational demands of the inverse problem. In the paper, the closed-form maximumlikelihood expressions for source strengths and noise variance at each frequency allow these parameters to be sampled implicitly, substantially reducing the dimensionality and difficulty of the inversion. This paper compares two Bayesian-point-estimation methods: the maximum a posteriori(MAP) approach and the marginal posterior probability density(PPD) approach to source localization. The MAP approach determines the sources locations by maximizing the PPD over all source and environmental parameters. The marginal PPD approach integrates the PPD over the unknowns to obtain a sequence of marginal probability distribution over source range or depth.Monte Carlo analysis of the two approaches for a test case involving both geoacoustic and water-column uncertainties indicates that:(1) For sensitive parameters such as source range, water depth and water sound speed, the MAP solution is better than the marginal PPD solution.(2) For the less sensitive parameters, such as,bottom sound speed, bottom density, bottom attenuation and water sound speed, when the SNR is low, the marginal PPD solution can better smooth the noise, which leads to better performance than the MAP solution.Since the source range and depth are sensitive parameters, the research shows that the MAP approach provides a slightly more reliable method to locate multiple sources in an unknown environment.展开更多
Most of the near-field source localization methods are developed with the approximated signal model,because the phases of the received near-field signal are highly non-linear.Nevertheless,the approximated signal model...Most of the near-field source localization methods are developed with the approximated signal model,because the phases of the received near-field signal are highly non-linear.Nevertheless,the approximated signal model based methods suffer from model mismatch and performance degradation while the exact signal model based estimation methods usually involve parameter searching or multiple decomposition procedures.In this paper,a search-free near-field source localization method is proposed with the exact signal model.Firstly,the approximative estimates of the direction of arrival(DOA)and range are obtained by using the approximated signal model based method through parameter separation and polynomial rooting operations.Then,the approximative estimates are corrected with the exact signal model according to the exact expressions of phase difference in near-field observations.The proposed method avoids spectral searching and parameter pairing and has enhanced estimation performance.Numerical simulations are provided to demonstrate the effectiveness of the proposed method.展开更多
In spectrum sharing systems,locating mul-tiple radiation sources can efficiently find out the in-truders,which protects the shared spectrum from ma-licious jamming or other unauthorized usage.Com-pared to single-sourc...In spectrum sharing systems,locating mul-tiple radiation sources can efficiently find out the in-truders,which protects the shared spectrum from ma-licious jamming or other unauthorized usage.Com-pared to single-source localization,simultaneously lo-cating multiple sources is more challenging in prac-tice since the association between measurement pa-rameters and source nodes are not known.More-over,the number of possible measurements-source as-sociations increases exponentially with the number of sensor nodes.It is crucial to discriminate which measurements correspond to the same source before localization.In this work,we propose a central-ized localization scheme to estimate the positions of multiple sources.Firstly,we develop two computa-tionally light methods to handle the unknown RSS-AOA measurements-source association problem.One method utilizes linear coordinate conversion to com-pute the minimum spatial Euclidean distance sum-mation of measurements.Another method exploits the long-short-term memory(LSTM)network to clas-sify the measurement sequences.Then,we propose a weighted least squares(WLS)approach to obtain the closed-form estimation of the positions by linearizing the non-convex localization problem.Numerical re-sults demonstrate that the proposed scheme could gain sufficient localization accuracy under adversarial sce-narios where the sources are in close proximity and the measurement noise is strong.展开更多
Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the ...Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.展开更多
To improve localization accuracy, the spherical microphone arrays are used to capture high-order wavefield in- formation. For the far field sound sources, the array signal model is constructed based on plane wave deco...To improve localization accuracy, the spherical microphone arrays are used to capture high-order wavefield in- formation. For the far field sound sources, the array signal model is constructed based on plane wave decomposition. The spatial spectrum function is calculated by minimum variance distortionless response (MVDR) to scan the three-dimensional space. The peak values of the spectrum function correspond to the directions of multiple sound sources. A diagonal loading method is adopted to solve the ill-conditioned cross spectrum matrix of the received signals. The loading level depends on the alleviation of the ill-condition of the matrix and the accuracy of the inverse calculation. Compared with plane wave decomposition method, our proposed localization algorithm can acquire high spatial resolution and better estimation for multiple sound source directions, especially in low signal to noise ratio (SNR).展开更多
The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivi...The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.展开更多
基金supported by the National Natural Science Foundation of China(62073093)the initiation fund for postdoctoral research in Heilongjiang Province(LBH-Q19098)the Natural Science Foundation of Heilongjiang Province(LH2020F017).
文摘In order to solve the problem that the performance of traditional localization methods for mixed near-field sources(NFSs)and far-field sources(FFSs)degrades under impulsive noise,a robust and novel localization method is proposed.After eliminating the impacts of impulsive noise by the weighted out-lier filter,the direction of arrivals(DOAs)of FFSs can be estimated by multiple signal classification(MUSIC)spectral peaks search.Based on the DOAs information of FFSs,the separation of mixed sources can be performed.Finally,the estimation of localizing parameters of NFSs can avoid two-dimension spectral peaks search by decomposing steering vectors.The Cramer-Rao bounds(CRB)for the unbiased estimations of DOA and range under impulsive noise have been drawn.Simulation experiments verify that the proposed method has advantages in probability of successful estimation(PSE)and root mean square error(RMSE)compared with existing localization methods.It can be concluded that the proposed method is effective and reliable in the environment with low generalized signal to noise ratio(GSNR),few snapshots,and strong impulse.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.62103375 and 62006106)the Zhejiang Provincial Philosophy and Social Science Planning Project(Grant No.22NDJC009Z)+1 种基金the Education Ministry Humanities and Social Science Foundation of China(Grant Nos.19YJCZH056 and 21YJC630120)the Natural Science Foundation of Zhejiang Province of China(Grant Nos.LY23F030003 and LQ21F020005).
文摘While progress has been made in information source localization,it has overlooked the prevalent friend and adversarial relationships in social networks.This paper addresses this gap by focusing on source localization in signed network models.Leveraging the topological characteristics of signed networks and transforming the propagation probability into effective distance,we propose an optimization method for observer selection.Additionally,by using the reverse propagation algorithm we present a method for information source localization in signed networks.Extensive experimental results demonstrate that a higher proportion of positive edges within signed networks contributes to more favorable source localization,and the higher the ratio of propagation rates between positive and negative edges,the more accurate the source localization becomes.Interestingly,this aligns with our observation that,in reality,the number of friends tends to be greater than the number of adversaries,and the likelihood of information propagation among friends is often higher than among adversaries.In addition,the source located at the periphery of the network is not easy to identify.Furthermore,our proposed observer selection method based on effective distance achieves higher operational efficiency and exhibits higher accuracy in information source localization,compared with three strategies for observer selection based on the classical full-order neighbor coverage.
基金the National Natural Science Foundation of China (Nos.52304123 and 52104077)the Postdoctoral Fellowship Program of CPSF (No.GZB20230914)+1 种基金the China Postdoctoral Science Foundation (No.2023M730412)the National Key Research and Development Program for Young Scientists (No.2021YFC2900400)。
文摘Acoustic emission(AE)localization algorithms based on homogeneous media or single-velocity are less accurate when applied to the triaxial localization experiments.To the end,a robust triaxial localization method of AE source using refraction path is proposed.Firstly,the control equation of the refraction path is established according to the sensor coordinates and arrival times.Secondly,considering the influence of time-difference-of-arrival(TDOA)errors,the residual of the governing equation is calculated to estimate the equation weight.Thirdly,the refraction points in different directions are solved using Snell’s law and orthogonal constraints.Finally,the source coordinates are iteratively solved by weighted correction terms.The feasibility and accuracy of the proposed method are verified by pencil-lead breaking experiments.The simulation results show that the new method is almost unaffected by the refraction ratio,and always holds more stable and accurate positioning performance than the traditional method under different ratios and scales of TDOA outliers.
基金supported by the Science and Technology Project of State Grid Corporation of China(5100202199536A-0-5-ZN)。
文摘The penetration of new energy sources such as wind power is increasing,which consequently increases the occurrence rate of subsynchronous oscillation events.However,existing subsynchronous oscillation source-identification methods primarily analyze fixed-mode oscillations and rarely consider time-varying features,such as frequency drift,caused by the random volatility of wind farms when oscillations occur.This paper proposes a subsynchronous oscillation sourcelocalization method that involves an enhanced short-time Fourier transform and a convolutional neural network(CNN).First,an enhanced STFT is performed to secure high-resolution time-frequency distribution(TFD)images from the measured data of the generation unit ports.Next,these TFD images are amalgamated to form a subsynchronous oscillation feature map that serves as input to the CNN to train the localization model.Ultimately,the trained CNN model realizes the online localization of subsynchronous oscillation sources.The effectiveness and accuracy of the proposed method are validated via multimachine system models simulating forced and natural oscillation events using the Power Systems Computer Aided Design platform.Test results show that the proposed method can localize subsynchronous oscillation sources online while considering unpredictable fluctuations in wind farms,thus providing a foundation for oscillation suppression in practical engineering scenarios.
基金supported by the National Natural Science Foundation of China(62022091,61921001).
文摘A dimension decomposition(DIDE)method for multiple incoherent source localization using uniform circular array(UCA)is proposed.Due to the fact that the far-field signal can be considered as the state where the range parameter of the nearfield signal is infinite,the algorithm for the near-field source localization is also suitable for estimating the direction of arrival(DOA)of far-field signals.By decomposing the first and second exponent term of the steering vector,the three-dimensional(3-D)parameter is transformed into two-dimensional(2-D)and onedimensional(1-D)parameter estimation.First,by partitioning the received data,we exploit propagator to acquire the noise subspace.Next,the objective function is established and partial derivative is applied to acquire the spatial spectrum of 2-D DOA.At last,the estimated 2-D DOA is utilized to calculate the phase of the decomposed vector,and the least squares(LS)is performed to acquire the range parameters.In comparison to the existing algorithms,the proposed DIDE algorithm requires neither the eigendecomposition of covariance matrix nor the search process of range spatial spectrum,which can achieve satisfactory localization and reduce computational complexity.Simulations are implemented to illustrate the advantages of the proposed DIDE method.Moreover,simulations demonstrate that the proposed DIDE method can also classify the mixed far-field and near-field signals.
基金Supported by the National Natural Science Foundation of China (60872073)~~
文摘A new method in digital hearing aids to adaptively localize the speech source in noise and reverberant environment is proposed. Based on the room reverberant model and the multichannel adaptive eigenvalue decomposition (MCAED) algorithm, the proposed method can iteratively estimate impulse response coefficients between the speech source and microphones by the adaptive subgradient projection method. Then, it acquires the time delays of microphone pairs, and calculates the source position by the geometric method. Compared with the traditional normal least mean square (NLMS) algorithm, the adaptive subgradient projection method achieves faster and more accurate convergence in a low signal-to-noise ratio (SNR) environment. Simulations for glasses digital hearing aids with four-component square array demonstrate the robust performance of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11174235 and 61101192)the Science and Technology Development Project of Shaanxi Province,China(Grant No.2010KJXX-02)+2 种基金the Program for New Century Excellent Talents in University,China(Grant No.NCET-08-0455)the Foundation of State Key Lab of Acoustics,China(Grant No.SKLOA201101)the Doctorate Foundation of Northwestern Polytechnical University,China(Grant No.CX201226)
文摘The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace~ fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties of the RAP environment. The RAP is an important acoustic duct in the deep ocean, which occurs when the receiver is placed near the bottom where the sound velocity exceeds the maximum sound velocity in the vicinity of the surface. It is found that in the RAP environment the transmission loss is rather low and no blind zone of surveillance exists in a medium range. The ray theory is used to explain these phenomena. Furthermore, the analysis of the arrival structures shows that the source localization method based on arrival angle is feasible in this environment. However, the conventional methods suffer from the complicated and inaccurate estimation of the arrival angle. In this paper, a straightforward WSF-MF method is derived to exploit the information about the arrival angles indirectly. The method is to minimize the distance between the signal subspace and the spanned space by the array manifold in a finite range-depth space rather than the arrival-angle space. Simulations are performed to demonstrate the features of the method, and the results are explained by the arrival structures in the RAP environment.
基金The authors wish to acknowledge financial support from the National Natural Science Foundation of China(51822407 and 51774327)Natural Science Foundation of Hunan Province in China(2018JJ1037)Innovation Driven project of Central South University(2020CX014).
文摘Microseismic/acoustic emission(MS/AE)source localization method is crucial for predicting and controlling of potentially dangerous sources of complex structures.However,the locating errors induced by both the irregular structure and pre-measured velocity are poorly understood in existing methods.To meet the high-accuracy locating requirements in complex three-dimensional hole-containing structures,a velocity-free MS/AE source location method is developed in this paper.It avoids manual repetitive training by using equidistant grid points to search the path,which introduces A*search algorithm and uses grid points to accommodate complex structures with irregular holes.It also takes advantage of the velocity-free source location method.To verify the validity of the proposed method,lead-breaking tests were performed on a cubic concrete test specimen with a size of 10 cm10 cm10 cm.It was cut out into a cylindrical empty space with a size of/6cm10 cm.Based on the arrivals,the classical Geiger method and the proposed method are used to locate lead-breaking sources.Results show that the locating error of the proposed method is 1.20 cm,which is less than 2.02 cm of the Geiger method.Hence,the proposed method can effectively locate sources in the complex three-dimensional structure with holes and achieve higher precision requirements.
基金supported by the National Natural Science Foundation of China (No. 61672070, 61501007, 11675199, 61572004 and 81501155)the Key Project of Beijing Municipal Education Commission (No. KZ201910005008)+3 种基金general project of science and technology project of Beijing Municipal Education Commission (No. KM201610005023)the Beijing Municipal Natural Science Foundation (No. 4182005)Clinical Technology Innovation Program of Beijing Municipal Administration of Hospitals (No. XMLX201805)Beijing Municipal Science & Tech Commission (No. Z171100000117004)
文摘Source localization of focal electrical activity from scalp electroencephalogram (sEEG) signal is generally modeled as an inverse problem that is highly ill-posed. In this paper, a novel source localization method is proposed to model the EEG inverse problem using spatio-temporal long-short term memory recurrent neural networks (LSTM). The network model consists of two parts, sEEG encoding and source decoding, to model the sEEG signal and receive the regression of source location. As there does not exist enough annotated sEEG signals correspond to specific source locations, simulated data is generated with forward model using finite element method (FEM) to act as a part of training signals. A framework for source localization is proposed to estimate the source position based on simulated training data. Experiments are done on simulated testing data. The results on simulated data exhibit good robustness on noise signal, and the proposed network solves the EEG inverse problem with spatio-temporal deep network. The result show that the proposed method overcomes the highly ill-posed linear inverse problem with data driven learning.
基金Project supported by the National Key Basic Research Program of China (Grant No 2007CB31040)the National Natural Science Foundation of China (Grant No 60571020)
文摘This paper presents a three-dimensional particle-in-cell (PIC) simulation of a Ka-band relativistic Cherenkov source with a slow wave structure (SWS) consisting of metal photonic band gap (PBG) structures. In the simulation, a perfect match layer boundary is employed to absorb passing band modes supported by the PBG lattice with an artificial metal boundary. The simulated axial field distributions in the cross section and surface of the SWS demonstrate that the device operates in the vicinity of the π point of a TM01-1ike mode. The Fourier transformation spectra of the axial fields as functions of time and space show that only a single frequency appears at 36.27 GHz, which is in good agreement with that of the intersection of the dispersion curve with the slow space charge wave generated on the beam. The simulation results demonstrate that the SWS has good mode selectivity.
基金supported by National Natural Science Foundation of China (No. 60675043)Natural Science Foundation of Zhejiang Province of China (No. Y1090426, No. Y1090956)Technical Project of Zhejiang Province of China (No. 2009C33045)
文摘This paper is concerned with the problem of odor source localization using multi-robot system. A learning particle swarm optimization algorithm, which can coordinate a multi-robot system to locate the odor source, is proposed. First, in order to develop the proposed algorithm, a source probability map for a robot is built and updated by using concentration magnitude information, wind information, and swarm information. Based on the source probability map, the new position of the robot can be generated. Second, a distributed coordination architecture, by which the proposed algorithm can run on the multi-robot system, is designed. Specifically, the proposed algorithm is used on the group level to generate a new position for the robot. A consensus algorithm is then adopted on the robot level in order to control the robot to move from the current position to the new position. Finally, the effectiveness of the proposed algorithm is illustrated for the odor source localization problem.
基金financial support provided by the National Natural Science Foundation of China(Grant No.41772313)Hunan Science and Technology Planning Project(Grant No.2019RS3001).
文摘Due to the significant effect of abnormal arrivals on localization accuracy,a novel acoustic emission(AE)source localization method using clustering detection to eliminate abnormal arrivals is proposed in the paper.Firstly,iterative weight estimation is utilized to obtain accurate equation residuals.Secondly,according to the distribution of equation residuals,clustering detection is used to identify and exclude abnormal arrivals.Thirdly,the AE source coordinate is recalculated with remaining normal arrivals.Experimental results of pencil-lead breaks indicate that the proposed method can achieve a better localization result with and without abnormal arrivals.The results of simulation tests further demonstrate that the proposed method possesses higher localization accuracy and robustness under different anomaly ratios and scales;even with abnormal arrivals as high as 30%,the proposed localization method still holds a correct detection rate of 91.85%.
基金supported by the National Natural Science Foundation of China(6137116961601167)+2 种基金the Jiangsu Natural Science Foundation(BK20161489)the open research fund of State Key Laboratory of Millimeter Waves,Southeast University(K201826)the Fundamental Research Funds for the Central Universities(NE2017103)
文摘This paper links parallel factor(PARAFAC) analysis to the problem of nominal direction-of-arrival(DOA) estimation for coherently distributed(CD) sources and proposes a fast PARAFACbased algorithm by establishing the trilinear PARAFAC model.Relying on the uniqueness of the low-rank three-way array decomposition and the trilinear alternating least squares regression, the proposed algorithm achieves nominal DOA estimation and outperforms the conventional estimation of signal parameter via rotational technique CD(ESPRIT-CD) and propagator method CD(PM-CD)methods in terms of estimation accuracy. Furthermore, by means of the initialization via the propagator method, this paper accelerates the convergence procedure of the proposed algorithm with no estimation performance degradation. In addition, the proposed algorithm can be directly applied to the multiple-source scenario,where sources have different angular distribution shapes. Numerical simulation results corroborate the effectiveness and superiority of the proposed fast PARAFAC-based algorithm.
基金co-supported by China Scholarship Council(201806830081)National science foundation of China(61827801,61371169,61601167,61601504)+3 种基金Jiangsu NSF(BK20161489)the open research fund of State Key Laboratory of Millimeter Waves,Southeast University(No.K201826)the Fundamental Research Funds for the Central Universities(NO.NE2017103and NT2019013)the postgraduate Research and Practice Innovation Program of Jiangsu Province(KYCX18_0293).
文摘Effective information fusion is very important in hybrid source localization. In this paper, the performance analysis of conventional joint direction of arrival(DOA) and time difference of arrival(TDOA) system is derived and it is shown that this hybrid system may inferior to the single system when the ratio of angular measurements error to distance measurements error exceeds a threshold. To avoid this problem, an effective DOA/TDOA adaptive cascaded(DTAC) technique is presented. The rotation feature of UAVs and spatial filtering technique are applied to gain the signal-to-noise ratio(SNR), which leads to more accurate estimation of time delay by using DOAs. Nevertheless, the time delay estimation precision is still limited by the sampling frequency, which is constrained by the finite load of UAV. To break through the limitation, an enhanced self-delay-compensation(SDC) method is proposed, which aims at detecting the overlooked time delay within the sampling interval by adding a tiny time delay. Finally, the position of the source is estimated by the Chan algorithm. Compared to DOA-only algorithm, TDOA-only algorithm and joint DOA/TDOA(JDT) algorithm, the proposed method shows better localization accuracy regardless of different SNRs and sampling frequencies. Numerical simulations are presented to validate the effectiveness and robustness of the proposed algorithm.
基金The National Natural Science Foundation of China under contract No.11704225the Shandong Provincial Natural Science Foundation under contract No.ZR2016AQ23+1 种基金the State Key Laboratory of Acoustics of Chinese Academy of Sciences under contract No.SKLA201704the National Programe on Global Change and Air-Sea Interaction
文摘Environmental uncertainty represents the limiting factor in matched-field localization. Within a Bayesian framework, both the environmental parameters, and the source parameters are considered to be unknown variables. However, including environmental parameters in multiple-source localization greatly increases the complexity and computational demands of the inverse problem. In the paper, the closed-form maximumlikelihood expressions for source strengths and noise variance at each frequency allow these parameters to be sampled implicitly, substantially reducing the dimensionality and difficulty of the inversion. This paper compares two Bayesian-point-estimation methods: the maximum a posteriori(MAP) approach and the marginal posterior probability density(PPD) approach to source localization. The MAP approach determines the sources locations by maximizing the PPD over all source and environmental parameters. The marginal PPD approach integrates the PPD over the unknowns to obtain a sequence of marginal probability distribution over source range or depth.Monte Carlo analysis of the two approaches for a test case involving both geoacoustic and water-column uncertainties indicates that:(1) For sensitive parameters such as source range, water depth and water sound speed, the MAP solution is better than the marginal PPD solution.(2) For the less sensitive parameters, such as,bottom sound speed, bottom density, bottom attenuation and water sound speed, when the SNR is low, the marginal PPD solution can better smooth the noise, which leads to better performance than the MAP solution.Since the source range and depth are sensitive parameters, the research shows that the MAP approach provides a slightly more reliable method to locate multiple sources in an unknown environment.
基金supported by the Key Laboratory of Dynamic Cognitive System of Electromagnetic Spectrum Space(KF20202109)the National Natural Science Foundation of China(82004259)the Young Talent Training Project of Guangzhou University of Chinese Medicine(QNYC20190110).
文摘Most of the near-field source localization methods are developed with the approximated signal model,because the phases of the received near-field signal are highly non-linear.Nevertheless,the approximated signal model based methods suffer from model mismatch and performance degradation while the exact signal model based estimation methods usually involve parameter searching or multiple decomposition procedures.In this paper,a search-free near-field source localization method is proposed with the exact signal model.Firstly,the approximative estimates of the direction of arrival(DOA)and range are obtained by using the approximated signal model based method through parameter separation and polynomial rooting operations.Then,the approximative estimates are corrected with the exact signal model according to the exact expressions of phase difference in near-field observations.The proposed method avoids spectral searching and parameter pairing and has enhanced estimation performance.Numerical simulations are provided to demonstrate the effectiveness of the proposed method.
基金This work was supported by the National Natu-ral Science Foundation of China(No.U20B2038,No.61901520,No.61871398 and No.61931011),the Natural Science Foundation for Distinguished Young Scholars of Jiangsu Province(No.BK20190030),and the National Key R&D Program of China under Grant 2018YFB1801103.
文摘In spectrum sharing systems,locating mul-tiple radiation sources can efficiently find out the in-truders,which protects the shared spectrum from ma-licious jamming or other unauthorized usage.Com-pared to single-source localization,simultaneously lo-cating multiple sources is more challenging in prac-tice since the association between measurement pa-rameters and source nodes are not known.More-over,the number of possible measurements-source as-sociations increases exponentially with the number of sensor nodes.It is crucial to discriminate which measurements correspond to the same source before localization.In this work,we propose a central-ized localization scheme to estimate the positions of multiple sources.Firstly,we develop two computa-tionally light methods to handle the unknown RSS-AOA measurements-source association problem.One method utilizes linear coordinate conversion to com-pute the minimum spatial Euclidean distance sum-mation of measurements.Another method exploits the long-short-term memory(LSTM)network to clas-sify the measurement sequences.Then,we propose a weighted least squares(WLS)approach to obtain the closed-form estimation of the positions by linearizing the non-convex localization problem.Numerical re-sults demonstrate that the proposed scheme could gain sufficient localization accuracy under adversarial sce-narios where the sources are in close proximity and the measurement noise is strong.
基金Supported by the Hundred Talents Program of Chinese Academy of Sciencesthe National Basic Research Program of China under Grant No 2014CB339803+2 种基金the Major National Development Project of Scientific Instrument and Equipment under Grant No2011YQ150021the National Natural Science Foundation of China under Grant Nos 61575214,61574155,61404149 and 61404150the Shanghai Municipal Commission of Science and Technology under Grant Nos 14530711300,15560722000 and 15ZR1447500
文摘Computed tomography has been proven to be useful for non-destructive inspection of structures and materials. We build a three-dimensional imaging system with the photonically generated incoherent noise source and the Schottky barrier diode detector in the terahertz frequency band (90–140GHz). Based on the computed tomography technique, the three-dimensional image of a ceramic sample is reconstructed successfully by stacking the slices at different heights. The imaging results not only indicate the ability of terahertz wave in the non-invasive sensing and non-destructive inspection applications, but also prove the effectiveness and superiority of the uni-traveling-carrier photodiode as a terahertz source in the imaging applications.
基金Project supported by the National Natural Science Foundation of China (Grant No.61001160)the Doctoral Foundation of Ministry of Education (Grant No.20093108120018)the Shanghai Leading Academic Discipline Project (Grant No.S30108)
文摘To improve localization accuracy, the spherical microphone arrays are used to capture high-order wavefield in- formation. For the far field sound sources, the array signal model is constructed based on plane wave decomposition. The spatial spectrum function is calculated by minimum variance distortionless response (MVDR) to scan the three-dimensional space. The peak values of the spectrum function correspond to the directions of multiple sound sources. A diagonal loading method is adopted to solve the ill-conditioned cross spectrum matrix of the received signals. The loading level depends on the alleviation of the ill-condition of the matrix and the accuracy of the inverse calculation. Compared with plane wave decomposition method, our proposed localization algorithm can acquire high spatial resolution and better estimation for multiple sound source directions, especially in low signal to noise ratio (SNR).
文摘The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.