Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coa...Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coal production.It is showed by statistics that 60%of mine accidents are affected by groundwater,which not only result in the production losses,casualties and a variety of展开更多
Based on three-dimensional joint finite element, this paper discusses the theory and methodology about inversionof geodetic data. The FEM and inversion formula is given in detail; also a related code is developed. By ...Based on three-dimensional joint finite element, this paper discusses the theory and methodology about inversionof geodetic data. The FEM and inversion formula is given in detail; also a related code is developed. By use of theGreen's function about 3-D FEM, we invert geodetic measurementS of coseismic deformation of the 1989 Ms=7. 1Loma Prieta earthquake to datermine itS source mechanism. The result indicates that the slip on the fault plane isvery heterogeneous. The maximum slip and shear stress are located about 10 kin to northwest of the eathquakesource, the stress drop is about more than 1 MPa.展开更多
Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic...Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic FEM code has been developed. Isothermal forging process of a cylindrical housing has been simulated. The simulation results show that the given techniques and the FEM code are reasonable and feasible for three-dimensional bulk forming processes.展开更多
A versatile and effective method for incorporating functional groups on the pore wall of three-dimensionally ordered macroporous cross-linked polystyrene(3DOM CLPS) by hydrophilic spacer arm has been investigated.Th...A versatile and effective method for incorporating functional groups on the pore wall of three-dimensionally ordered macroporous cross-linked polystyrene(3DOM CLPS) by hydrophilic spacer arm has been investigated.The 3DOM CLPS with pore size 865 nm was prepared by sacrifice template method.The hydrophilic spacer arm(polyethylene glycol,molecular weight is 600) was grafted to the 3DOM CLPS via nucleophilic substitution reaction.The other side of active hydroxyl can be further converted into a lot of other functional groups.In this report,the chelating ligand 2-mercaptobenzothiazole(MBZ) group was introduced on the end of the PGE chain to evidence the versatile functionalization approach.The functionalized ordered macroporous materials were characterized by FT-IR,element analyzer,SEM.The results reveal that the pores were successfully bonded with 2-mercaptobenzothiazole groups via hydrophilic spacer arms and the original morphology of ordered macroporous materials were remained after functionalization.The MBZ group density is 0.052 mmol/m^2.The functionalized 3DOM CLPS are expected to application as heavy metal ions adsorbent.展开更多
We report an integral imaging method with continuous imaging space. This method simultaneously reconstructs real and virtual images in the virtual mode, with a minimum gap that separates the entire imaging space into ...We report an integral imaging method with continuous imaging space. This method simultaneously reconstructs real and virtual images in the virtual mode, with a minimum gap that separates the entire imaging space into real and virtual space. Experimental results show that the gap is reduced to 45% of that in a conventional integral imaging system with the same parameters.展开更多
Fenlong Technology has been applied to increase yield by 20%-50%,improve quality by 5%,and retain water by 100%in 40 kinds of crop cultivated land and saline-alkali land in 26 provinces of China.This paper clarified f...Fenlong Technology has been applied to increase yield by 20%-50%,improve quality by 5%,and retain water by 100%in 40 kinds of crop cultivated land and saline-alkali land in 26 provinces of China.This paper clarified for the first time the scientific theory system of Fenlong Technology using three-dimensional space resources"Fenlong Agricultural Nature Theory"and the development of the relative"limits"of agricultural growth,which provides a huge power support and natural force for expanding human living spaces.Through inventing and creating a scientific and technological system of farming tools,farming machinery,farming modes,and magic weapons for cultivation,Fenlong Technology can increase grain,promote ecological development,and greatly expand the living spaces of the Chinese nation and achieve sustainable development.Using Fenlong Technology,China has expanded from the current single"cultivated land agriculture"to the"big pattern agriculture"of Fenlong"cultivated land+saline land+degraded grassland+marginal land+desertified land+river water",flexibly used 147 million ha of"three-dimensional space resources"of land,and the newly increased food,meat,and fish can feed 300 million to 400 million people,increased the water storage by 100 billion m^(3),and reduced the collection of groundwater by 20 million to 60 billion m^(3).展开更多
This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By u...This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By using space sparse sampling, great memorial capacity can be saved and reproduced scenes can be controlled. To solve time consuming and complex computations in three-dimensional interpolation algorithm, we have studied a fast and practical algorithm of scattered space lattice and that of 'Warp' algorithm with proper depth. By several simple aspects of three dimensional space interpolation, we succeed in developing some simple and practical algorithms. Some results of simulated experiments with computers have shown that the new method is absolutely feasible.展开更多
Urban expansion is a phenomenon of urban space increase,and an important measuring index of the process of urbanization.Taking Shanghai as an example,the changes of urban average height and built-up area were studied ...Urban expansion is a phenomenon of urban space increase,and an important measuring index of the process of urbanization.Taking Shanghai as an example,the changes of urban average height and built-up area were studied to represent city's vertical and horizontal increases respectively,and statistical methods were used to analyze the driving forces of urban expansion.The research drew following conclusions:1) The urban expansion process of Shanghai from 1985 to 2006 had a clear periodic feature,and could be divided into three stages:vertical expansion in dominance,coordinated vertical and horizontal expansion,and horizontal expansion in dominance.2) The average height and quantity of buildings in core city were significantly bigger than those in suburbs,but the changing speed of the latter was faster.And 3) urbanization process was the major driving force for the city's horizontal expansion,while industrial structure improvement was the key driving factor for the vertical expansion.Those two driving forces were simultaneously affected by city's political factors.展开更多
The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional na...The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.展开更多
Focusing on obstacle avoidance in three-dimensional space for unmanned aerial vehicle(UAV), the direct obstacle avoidance method in dynamic space based on three-dimensional velocity obstacle spherical cap is proposed,...Focusing on obstacle avoidance in three-dimensional space for unmanned aerial vehicle(UAV), the direct obstacle avoidance method in dynamic space based on three-dimensional velocity obstacle spherical cap is proposed, which quantifies the influence of threatening obstacles through velocity obstacle spherical cap parameters. In addition, the obstacle avoidance schemes of any point on the critical curve during the multi-obstacles avoidance are given. Through prediction, the insertion point for the obstacle avoidance can be obtained and the flight path can be replanned. Taking the Pythagorean Hodograph(PH) curve trajectory re-planning as an example, the three-dimensional direct obstacle avoidance method in dynamic space is tested. Simulation results show that the proposed method can realize the online obstacle avoidance trajectory re-planning, which increases the flexibility of obstacle avoidance greatly.展开更多
An electromagnetic shielding metacomposite based on the absorbing mechanism was prepared by weaving ferromagnetic microwires into the three-dimensional(3D)fabric.The influence of the ferromagnetic microwire spacing on...An electromagnetic shielding metacomposite based on the absorbing mechanism was prepared by weaving ferromagnetic microwires into the three-dimensional(3D)fabric.The influence of the ferromagnetic microwire spacing on electromagnetic shielding performance and the electromagnetic shielding mechanism of 3D metacomposites were studied.The total electromagnetic shielding performance increases with the increase of electromagnetic wave frequency.3D metacomposites based on the absorbing mechanism can avoid the secondary pollution of electromagnetic waves,and have great potential in military,civil,aerospace and other fields.展开更多
Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional sp...Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional space graph for constructing applied algorithms and an improved GridOf algorithm were proposed in terms of analyzing the existing outlier detection algorithms from criterion and theory. Key words outlier - detection - three-dimensional space graph - data mining CLC number TP 311. 13 - TP 391 Foundation item: Supported by the National Natural Science Foundation of China (70371015)Biography: ZHANG Jing (1975-), female, Ph. D, lecturer, research direction: data mining and knowledge discovery.展开更多
A three-dimensional state space method has been developed for the calculation of dynamic response of plates with two free edges and two simply supported edges.A complex damping model was introduced, then the exact sol...A three-dimensional state space method has been developed for the calculation of dynamic response of plates with two free edges and two simply supported edges.A complex damping model was introduced, then the exact solutions which satisfy all the governing equations and boundary conditions were obtained.In order to overcome the difficulty of satisfying all the stress conditions at free edges, the displacement functions of free edges were assumed.The boundary conditions were strictly satisfied when the convergence rate was good.The computing time was evidently less than that of finite element method.The comparison of the solution with those of finite element method show that there is an excellent agreement for displacements.When the imaginary parts of normal stress deviated, the finite element results showed existence of shear stresses at top and bottom surfaces, and the boundary conditions of FEM model were not strictly satisfied.展开更多
With the development of computer graphics, the three-dimensional (3D) visualization brings new technological revolution to the traditional cartography. Therefore, the topographic 3D-map emerges to adapt to this techno...With the development of computer graphics, the three-dimensional (3D) visualization brings new technological revolution to the traditional cartography. Therefore, the topographic 3D-map emerges to adapt to this technological revolution, and the applications of topographic 3D-map are spread rapidly to other relevant fields due to its incomparable advantage. The researches on digital map and the construction of map database offer strong technical support and abundant data source for this new technology, so the research and development of topographic 3D-map will receive greater concern. The basic data of the topographic 3D-map are rooted mainly in digital map and its basic model is derived from digital elevation model (DEM) and 3D-models of other DEM-based geographic features. In view of the potential enormous data and the complexity of geographic features, the dynamic representation of geographic information becomes the focus of the research of topographic 3D-map and also the prerequisite condition of 3D query and analysis. In addition to the equipment of hardware that are restraining, to a certain extent, the 3D representation, the data organization structure of geographic information will be the core problem of research on 3D-map. Level of detail (LOD), space partitioning, dynamic object loading (DOL) and object culling are core technologies of the dynamic 3D representation. The object- selection, attribute-query and model-editing are important functions and interaction tools for users with 3D-maps provided by topographic 3D-map system, all of which are based on the data structure of the 3D-model. This paper discusses the basic theories, concepts and cardinal principles of topographic 3D-map, expounds the basic way to organize the scene hierarchy of topographic 3D-map based on the node mechanism and studies the dynamic representation technologies of topographic 3D-map based on LOD, space partitioning, DOL and object culling. Moreover, such interactive operation functions are explored, in this paper, as spatial query, scene editing and management of topographic 3D-map. Finally, this paper describes briefly the applications of topographic 3D-map in its related fields.展开更多
This study is to compare three-dimensional(3D)isotropic T2-weighted magnetic resonance imaging(MRI)with compressed sensing-sampling perfection with application optimized contrast(CS-SPACE)and the conventional image(3D...This study is to compare three-dimensional(3D)isotropic T2-weighted magnetic resonance imaging(MRI)with compressed sensing-sampling perfection with application optimized contrast(CS-SPACE)and the conventional image(3D-SPACE)sequence in terms of image quality,estimated signal-to-noise ratio(SNR),relative contrast-to-noise ratio(CNR),and the lesions’conspicuous of the female pelvis.Thirty-six females(age:51,28-73)with cervical carcinoma(n=20),rectal carcinoma(n=7),or uterine fibroid(n=9)were included.Patients underwent magnetic resonance(MR)imaging at a 3T scanner with the sequences of 3D-SPACE,CS-SPACE,and twodimensional(2D)T2-weighted turbo-spin echo(TSE).Quantitative analyses of estimated SNR and relative CNR between tumors and other tissues,image quality,and tissue conspicuity were performed.Two radiologists assessed the difference in diagnostic findings for carcinoma.Quantitative values and qualitative scores were analyzed,respectively.The estimated SNR and the relative CNR of tumor-to-muscle obturator internus,tumor-to-myometrium,and myometrium-to-muscle obturator internus was comparable between 3D-SPACE and CS-SPACE.The overall image quality and the conspicuity of the lesion scores of the CS-SPACE were higher than that of the 3D-SPACE(P<0.01).The CS-SPACE sequence offers shorter scan time,fewer artifacts,and comparable SNR and CNR to conventional 3D-SPACE,and has the potential to improve the performance of T2-weighted images.展开更多
Path planning for space vehicles is still a challenging problem although considerable progress has been made over the past decades.The major difficulties are that most of existing methods only adapt to static environm...Path planning for space vehicles is still a challenging problem although considerable progress has been made over the past decades.The major difficulties are that most of existing methods only adapt to static environment instead of dynamic one,and also can not solve the inherent constraints arising from the robot body and the exterior environment.To address these difficulties,this research aims to provide a feasible trajectory based on quadratic programming(QP) for path planning in three-dimensional space where an autonomous vehicle is requested to pursue a target while avoiding static or dynamic obstacles.First,the objective function is derived from the pursuit task which is defined in terms of the relative distance to the target,as well as the angle between the velocity and the position in the relative velocity coordinates(RVCs).The optimization is in quadratic polynomial form according to QP formulation.Then,the avoidance task is modeled with linear constraints in RVCs.Some other constraints,such as kinematics,dynamics,and sensor range,are included.Last,simulations with typical multiple obstacles are carried out,including in static and dynamic environments and one of human-in-the-loop.The results indicate that the optimal trajectories of the autonomous robot in three-dimensional space satisfy the required performances.Therefore,the QP model proposed in this paper not only adapts to dynamic environment with uncertainty,but also can satisfy all kinds of constraints,and it provides an efficient approach to solve the problems of path planning in three-dimensional space.展开更多
In order to achieve a clear and steady swept-volume display,the method of swept-volume display based on cylindrical space projection was presented. One projector generated the image volume in π× 70 mm × 70 ...In order to achieve a clear and steady swept-volume display,the method of swept-volume display based on cylindrical space projection was presented. One projector generated the image volume in π× 70 mm × 70 mm × 150 mm space. Experimentally,the resolution of images was 800 pixel × 600 pixel × 360 pixel,which resulted in almost 345 million voxels. In order to achieve space voxels with uniform brightness, curved reflectors were also designed. In addition,the match conditions between triangles and the scanning planes in the volume space were classified and a sweptvolume graphics engine based on embedded platform was designed.The image rendering the hardware foundation for three-dimensional( 3D) dynamic images generation was achieved. Demonstrated in the experiments,light source utilization of the second-generation system based on curved mirror is about three times brighter than the firstgeneration 3D minitor based on flat mirror,and this system is able to display color,clear and well-proportioned 3D images in brighter room light.展开更多
文摘Mine safety have top-five disasters,which including the water,gas,fire,dust and geological dynamic disaster.The coal mine water disaster is one of the important factors which restricted the development of China’s coal production.It is showed by statistics that 60%of mine accidents are affected by groundwater,which not only result in the production losses,casualties and a variety of
文摘Based on three-dimensional joint finite element, this paper discusses the theory and methodology about inversionof geodetic data. The FEM and inversion formula is given in detail; also a related code is developed. By use of theGreen's function about 3-D FEM, we invert geodetic measurementS of coseismic deformation of the 1989 Ms=7. 1Loma Prieta earthquake to datermine itS source mechanism. The result indicates that the slip on the fault plane isvery heterogeneous. The maximum slip and shear stress are located about 10 kin to northwest of the eathquakesource, the stress drop is about more than 1 MPa.
基金This work was supported by the Brain Korea 2lProject and the Grallt of Post-Doc Program, KyungpookNational University (1999).
文摘Some techniques such as die surface description, contact judgement algorithm and remeshing are proposed to improve the robustness of the numerical solution. Based on these techniques, a three-dimensional rigid-plastic FEM code has been developed. Isothermal forging process of a cylindrical housing has been simulated. The simulation results show that the given techniques and the FEM code are reasonable and feasible for three-dimensional bulk forming processes.
基金supported by National Natural Science Funds for Young Scholar(No.50903027)the Natural Science Foundation of Hebei Province(No.E2010000058)Education Department Science Research Plan of Hebei Province(No.2007307).
文摘A versatile and effective method for incorporating functional groups on the pore wall of three-dimensionally ordered macroporous cross-linked polystyrene(3DOM CLPS) by hydrophilic spacer arm has been investigated.The 3DOM CLPS with pore size 865 nm was prepared by sacrifice template method.The hydrophilic spacer arm(polyethylene glycol,molecular weight is 600) was grafted to the 3DOM CLPS via nucleophilic substitution reaction.The other side of active hydroxyl can be further converted into a lot of other functional groups.In this report,the chelating ligand 2-mercaptobenzothiazole(MBZ) group was introduced on the end of the PGE chain to evidence the versatile functionalization approach.The functionalized ordered macroporous materials were characterized by FT-IR,element analyzer,SEM.The results reveal that the pores were successfully bonded with 2-mercaptobenzothiazole groups via hydrophilic spacer arms and the original morphology of ordered macroporous materials were remained after functionalization.The MBZ group density is 0.052 mmol/m^2.The functionalized 3DOM CLPS are expected to application as heavy metal ions adsorbent.
基金Project supported by the National Basic Research Program of China (Grant No. 2010CB327702)
文摘We report an integral imaging method with continuous imaging space. This method simultaneously reconstructs real and virtual images in the virtual mode, with a minimum gap that separates the entire imaging space into real and virtual space. Experimental results show that the gap is reduced to 45% of that in a conventional integral imaging system with the same parameters.
基金Special Fund Project for Innovation Driven Development of Guangxi(Gui Ke AA17204037)Key Science and Technology Project of Guangxi(Gui Ke AA16380017)Team Project of Guangxi Academy of Agricultural Sciences(2015YT60).
文摘Fenlong Technology has been applied to increase yield by 20%-50%,improve quality by 5%,and retain water by 100%in 40 kinds of crop cultivated land and saline-alkali land in 26 provinces of China.This paper clarified for the first time the scientific theory system of Fenlong Technology using three-dimensional space resources"Fenlong Agricultural Nature Theory"and the development of the relative"limits"of agricultural growth,which provides a huge power support and natural force for expanding human living spaces.Through inventing and creating a scientific and technological system of farming tools,farming machinery,farming modes,and magic weapons for cultivation,Fenlong Technology can increase grain,promote ecological development,and greatly expand the living spaces of the Chinese nation and achieve sustainable development.Using Fenlong Technology,China has expanded from the current single"cultivated land agriculture"to the"big pattern agriculture"of Fenlong"cultivated land+saline land+degraded grassland+marginal land+desertified land+river water",flexibly used 147 million ha of"three-dimensional space resources"of land,and the newly increased food,meat,and fish can feed 300 million to 400 million people,increased the water storage by 100 billion m^(3),and reduced the collection of groundwater by 20 million to 60 billion m^(3).
文摘This paper advances a three-dimensional space interpolation method of grey / depth image sequence, which breaks free from the limit of original practical photographing route. Pictures can cruise at will in space. By using space sparse sampling, great memorial capacity can be saved and reproduced scenes can be controlled. To solve time consuming and complex computations in three-dimensional interpolation algorithm, we have studied a fast and practical algorithm of scattered space lattice and that of 'Warp' algorithm with proper depth. By several simple aspects of three dimensional space interpolation, we succeed in developing some simple and practical algorithms. Some results of simulated experiments with computers have shown that the new method is absolutely feasible.
基金Under the auspices of the Key Direction in Knowledge Innovation Programs of Chinese Academy of Sciences (No KZCX2-YW-422)National Natural Science Foundation of China (No 40701059)
文摘Urban expansion is a phenomenon of urban space increase,and an important measuring index of the process of urbanization.Taking Shanghai as an example,the changes of urban average height and built-up area were studied to represent city's vertical and horizontal increases respectively,and statistical methods were used to analyze the driving forces of urban expansion.The research drew following conclusions:1) The urban expansion process of Shanghai from 1985 to 2006 had a clear periodic feature,and could be divided into three stages:vertical expansion in dominance,coordinated vertical and horizontal expansion,and horizontal expansion in dominance.2) The average height and quantity of buildings in core city were significantly bigger than those in suburbs,but the changing speed of the latter was faster.And 3) urbanization process was the major driving force for the city's horizontal expansion,while industrial structure improvement was the key driving factor for the vertical expansion.Those two driving forces were simultaneously affected by city's political factors.
基金supported by the National Natural Science Foundation of China(61803357)。
文摘The traditional guidance law only guarantees the accuracy of attacking a target. However, the look angle and acceleration constraints are indispensable in applications. A new adaptive three-dimensional proportional navigation(PN) guidance law is proposed based on convex optimization. Decomposition of the three-dimensional space is carried out to establish threedimensional kinematic engagements. The constraints and the performance index are disposed by using the convex optimization method. PN guidance gains can be obtained by solving the optimization problem. This solution is more rapid and programmatic than the traditional method and provides a foundation for future online guidance methods, which is of great value for engineering applications.
基金supported by the Aeronautical Science Foundation of China(20135584010)
文摘Focusing on obstacle avoidance in three-dimensional space for unmanned aerial vehicle(UAV), the direct obstacle avoidance method in dynamic space based on three-dimensional velocity obstacle spherical cap is proposed, which quantifies the influence of threatening obstacles through velocity obstacle spherical cap parameters. In addition, the obstacle avoidance schemes of any point on the critical curve during the multi-obstacles avoidance are given. Through prediction, the insertion point for the obstacle avoidance can be obtained and the flight path can be replanned. Taking the Pythagorean Hodograph(PH) curve trajectory re-planning as an example, the three-dimensional direct obstacle avoidance method in dynamic space is tested. Simulation results show that the proposed method can realize the online obstacle avoidance trajectory re-planning, which increases the flexibility of obstacle avoidance greatly.
基金Open Project Program of Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province,China(No.MTC2021-02)。
文摘An electromagnetic shielding metacomposite based on the absorbing mechanism was prepared by weaving ferromagnetic microwires into the three-dimensional(3D)fabric.The influence of the ferromagnetic microwire spacing on electromagnetic shielding performance and the electromagnetic shielding mechanism of 3D metacomposites were studied.The total electromagnetic shielding performance increases with the increase of electromagnetic wave frequency.3D metacomposites based on the absorbing mechanism can avoid the secondary pollution of electromagnetic waves,and have great potential in military,civil,aerospace and other fields.
文摘Outlier detection has very important applied value in data mining literature. Different outlier detection algorithms based on distinct theories have different definitions and mining processes. The three-dimensional space graph for constructing applied algorithms and an improved GridOf algorithm were proposed in terms of analyzing the existing outlier detection algorithms from criterion and theory. Key words outlier - detection - three-dimensional space graph - data mining CLC number TP 311. 13 - TP 391 Foundation item: Supported by the National Natural Science Foundation of China (70371015)Biography: ZHANG Jing (1975-), female, Ph. D, lecturer, research direction: data mining and knowledge discovery.
文摘A three-dimensional state space method has been developed for the calculation of dynamic response of plates with two free edges and two simply supported edges.A complex damping model was introduced, then the exact solutions which satisfy all the governing equations and boundary conditions were obtained.In order to overcome the difficulty of satisfying all the stress conditions at free edges, the displacement functions of free edges were assumed.The boundary conditions were strictly satisfied when the convergence rate was good.The computing time was evidently less than that of finite element method.The comparison of the solution with those of finite element method show that there is an excellent agreement for displacements.When the imaginary parts of normal stress deviated, the finite element results showed existence of shear stresses at top and bottom surfaces, and the boundary conditions of FEM model were not strictly satisfied.
文摘With the development of computer graphics, the three-dimensional (3D) visualization brings new technological revolution to the traditional cartography. Therefore, the topographic 3D-map emerges to adapt to this technological revolution, and the applications of topographic 3D-map are spread rapidly to other relevant fields due to its incomparable advantage. The researches on digital map and the construction of map database offer strong technical support and abundant data source for this new technology, so the research and development of topographic 3D-map will receive greater concern. The basic data of the topographic 3D-map are rooted mainly in digital map and its basic model is derived from digital elevation model (DEM) and 3D-models of other DEM-based geographic features. In view of the potential enormous data and the complexity of geographic features, the dynamic representation of geographic information becomes the focus of the research of topographic 3D-map and also the prerequisite condition of 3D query and analysis. In addition to the equipment of hardware that are restraining, to a certain extent, the 3D representation, the data organization structure of geographic information will be the core problem of research on 3D-map. Level of detail (LOD), space partitioning, dynamic object loading (DOL) and object culling are core technologies of the dynamic 3D representation. The object- selection, attribute-query and model-editing are important functions and interaction tools for users with 3D-maps provided by topographic 3D-map system, all of which are based on the data structure of the 3D-model. This paper discusses the basic theories, concepts and cardinal principles of topographic 3D-map, expounds the basic way to organize the scene hierarchy of topographic 3D-map based on the node mechanism and studies the dynamic representation technologies of topographic 3D-map based on LOD, space partitioning, DOL and object culling. Moreover, such interactive operation functions are explored, in this paper, as spatial query, scene editing and management of topographic 3D-map. Finally, this paper describes briefly the applications of topographic 3D-map in its related fields.
文摘This study is to compare three-dimensional(3D)isotropic T2-weighted magnetic resonance imaging(MRI)with compressed sensing-sampling perfection with application optimized contrast(CS-SPACE)and the conventional image(3D-SPACE)sequence in terms of image quality,estimated signal-to-noise ratio(SNR),relative contrast-to-noise ratio(CNR),and the lesions’conspicuous of the female pelvis.Thirty-six females(age:51,28-73)with cervical carcinoma(n=20),rectal carcinoma(n=7),or uterine fibroid(n=9)were included.Patients underwent magnetic resonance(MR)imaging at a 3T scanner with the sequences of 3D-SPACE,CS-SPACE,and twodimensional(2D)T2-weighted turbo-spin echo(TSE).Quantitative analyses of estimated SNR and relative CNR between tumors and other tissues,image quality,and tissue conspicuity were performed.Two radiologists assessed the difference in diagnostic findings for carcinoma.Quantitative values and qualitative scores were analyzed,respectively.The estimated SNR and the relative CNR of tumor-to-muscle obturator internus,tumor-to-myometrium,and myometrium-to-muscle obturator internus was comparable between 3D-SPACE and CS-SPACE.The overall image quality and the conspicuity of the lesion scores of the CS-SPACE were higher than that of the 3D-SPACE(P<0.01).The CS-SPACE sequence offers shorter scan time,fewer artifacts,and comparable SNR and CNR to conventional 3D-SPACE,and has the potential to improve the performance of T2-weighted images.
基金supported by National Natural Science Foundation of China (Grant Nos. 61035005,61075087)Hubei Provincial Natural Science Foundation of China (Grant No. 2010CDA005)Hubei Provincial Education Department Foundation of China (Grant No.Q20111105)
文摘Path planning for space vehicles is still a challenging problem although considerable progress has been made over the past decades.The major difficulties are that most of existing methods only adapt to static environment instead of dynamic one,and also can not solve the inherent constraints arising from the robot body and the exterior environment.To address these difficulties,this research aims to provide a feasible trajectory based on quadratic programming(QP) for path planning in three-dimensional space where an autonomous vehicle is requested to pursue a target while avoiding static or dynamic obstacles.First,the objective function is derived from the pursuit task which is defined in terms of the relative distance to the target,as well as the angle between the velocity and the position in the relative velocity coordinates(RVCs).The optimization is in quadratic polynomial form according to QP formulation.Then,the avoidance task is modeled with linear constraints in RVCs.Some other constraints,such as kinematics,dynamics,and sensor range,are included.Last,simulations with typical multiple obstacles are carried out,including in static and dynamic environments and one of human-in-the-loop.The results indicate that the optimal trajectories of the autonomous robot in three-dimensional space satisfy the required performances.Therefore,the QP model proposed in this paper not only adapts to dynamic environment with uncertainty,but also can satisfy all kinds of constraints,and it provides an efficient approach to solve the problems of path planning in three-dimensional space.
基金Shanghai Committee of Science and Technology,China(No.14511108200)
文摘In order to achieve a clear and steady swept-volume display,the method of swept-volume display based on cylindrical space projection was presented. One projector generated the image volume in π× 70 mm × 70 mm × 150 mm space. Experimentally,the resolution of images was 800 pixel × 600 pixel × 360 pixel,which resulted in almost 345 million voxels. In order to achieve space voxels with uniform brightness, curved reflectors were also designed. In addition,the match conditions between triangles and the scanning planes in the volume space were classified and a sweptvolume graphics engine based on embedded platform was designed.The image rendering the hardware foundation for three-dimensional( 3D) dynamic images generation was achieved. Demonstrated in the experiments,light source utilization of the second-generation system based on curved mirror is about three times brighter than the firstgeneration 3D minitor based on flat mirror,and this system is able to display color,clear and well-proportioned 3D images in brighter room light.