The rising of aging and the declining of birth rates have forced the public to focus on the youth’s view on marriage.Based on critical discourse analysis and combined with Fairclough’s three-dimensional discourse an...The rising of aging and the declining of birth rates have forced the public to focus on the youth’s view on marriage.Based on critical discourse analysis and combined with Fairclough’s three-dimensional discourse analysis model,this paper builds a“Chinese media News Report Corpus on the topic of‘marriage’”whose news are collected from China Daily.It is found that the discourses are neutral and objective with regard to the advantages and disadvantages of marriage,but in general,it is still a traditional view of marriage that is inevitable and closely related to fertility.Although this is controlled by the policies and the social reasons including declining fertility rate,it deviates from the current view of the youth towards marriage,resulting in many serious consequences such as young people’s rejection.In addition,this research found that male and female have great differences in their views on marriage,and men’s resistance to marriage is far greater than that of women,which is departure from the public’s cognition.The reasons behind this need to be explored in order to solve the marriage and love problems of young people in today’s era and realize the healthy development of young marriage.展开更多
In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open ...In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out.展开更多
The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of ran...The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata.展开更多
Population aging has become an inevitable trend and exerted profound influences on socio-economic development in China.In this study,we utilized data from national population census and statistical yearbooks in 2010 a...Population aging has become an inevitable trend and exerted profound influences on socio-economic development in China.In this study,we utilized data from national population census and statistical yearbooks in 2010 and 2020 to explore spatio-temporal patterns of aging population and its coupling correlations with socio-economic factors from both global and local perspectives.The results from Local Indicators of Spatial Association(LISA)uncover notable spatial disparities in aging population rates,with higher rates concentrated in the eastern regions and lower rates in the western areas of the Chinese mainland.The results from the global correlation analysis with the changes in aging population rates show significant positive correlations with government interventions and industrial structures,but negatively correlated with economic development,social consumption,and medical facilities.From a local perspective,a Geographically Weighted(GW)correlation analysis is employed to uncover local correlations between aging trends and socio-economic factors.The insights gained from this technique not only underscore the complexity and diversity of economic implications stemming from population aging,but also provide invaluable guidance for crafting region-specific economic policies tailored to various stages of population aging.展开更多
With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms ...With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms of spatial crowd-sensing,it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models.Besides collecting sensing data,spatial crowdsourcing also includes spatial delivery services like DiDi and Uber.Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications.Previous research conducted task assignments via traditional matching approaches or using simple network models.However,advanced mining methods are lacking to explore the relationship between workers,task publishers,and the spatio-temporal attributes in tasks.Therefore,in this paper,we propose a Deep Double Dueling Spatial-temporal Q Network(D3SQN)to adaptively learn the spatialtemporal relationship between task,task publishers,and workers in a dynamic environment to achieve optimal allocation.Specifically,D3SQNis revised through reinforcement learning by adding a spatial-temporal transformer that can estimate the expected state values and action advantages so as to improve the accuracy of task assignments.Extensive experiments are conducted over real data collected fromDiDi and ELM,and the simulation results verify the effectiveness of our proposed models.展开更多
In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation betw...In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.展开更多
Serial remote sensing images offer a valuable means of tracking the evolutionary changes and growth of a specific geographical area over time.Although the original images may provide limited insights,they harbor consi...Serial remote sensing images offer a valuable means of tracking the evolutionary changes and growth of a specific geographical area over time.Although the original images may provide limited insights,they harbor considerable potential for identifying clusters and patterns.The aggregation of these serial remote sensing images(SRSI)becomes increasingly viable as distinct patterns emerge in diverse scenarios,such as suburbanization,the expansion of native flora,and agricultural activities.In a novel approach,we propose an innovative method for extracting sequential patterns by combining Ant Colony Optimization(ACD)and Empirical Mode Decomposition(EMD).This integration of the newly developed EMD and ACO techniques proves remarkably effective in identifying the most significant characteristic features within serial remote sensing images,guided by specific criteria.Our findings highlight a substantial improvement in the efficiency of sequential pattern mining through the application of this unique hybrid method,seamlessly integrating EMD and ACO for feature selection.This study exposes the potential of our innovative methodology,particularly in the realms of urbanization,native vegetation expansion,and agricultural activities.展开更多
In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest a...In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest access. Urban Heat Island Effects are measurable phenomenon that are being experienced by the world’s most urbanized areas, including increased summer high temperatures and lower evapotranspiration from having impervious surfaces instead of vegetation and trees. Tree canopy cover is our natural mitigation tool that absorbs sunlight for photosynthesis, protects humans from incoming radiation, and releases cooling moisture into the air. Unfortunately, urban areas typically have low levels of vegetation. Vulnerable urban communities are lower-income areas of inner cities with less access to heat protection like air conditioners. This study uses mean evapotranspiration levels to assess the variability of urban heat island effects across the state of Tennessee. Results show that increased developed land surface cover in Tennessee creates measurable changes in atmospheric evapotranspiration. As a result, the mean evapotranspiration levels in areas with less tree vegetation are significantly lower than the surrounding forested areas. Central areas of urban cities in Tennessee had lower mean evapotranspiration recordings than surrounding areas with less development. This work demonstrates the need for increased tree canopy coverage.展开更多
Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of...Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes.展开更多
A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-indu...A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.展开更多
In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a ...In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a linear displacement function to describe the block movement and deformation, which would cause block expansion under rigid body rotation and thus limit its capability to model block de- formation. In this paper, 3D DDA is coupled with tetrahe- dron finite elements to tackle these two problems. Tetrahe- dron is the simplest in the 3D domain and makes it easy to implement automatic discretization, even for complex topol- ogy shape. Furthermore, element faces will remain planar and element edges will remain straight after deformation for tetrahedron finite elements and polyhedral contact detection schemes can be used directly. The matrices of equilibrium equations for this coupled method are given in detail and an effective contact searching algorithm is suggested. Valida- tion is conducted by comparing the results of the proposed coupled method with that of physical model tests using one of the most common failure modes, i.e., wedge failure. Most of the failure modes predicted by the coupled method agree with the physical model results except for 4 cases out of the total 65 cases. Finally, a complex rockslide example demon- strates the robustness and versatility of the coupled method.展开更多
A three-dimensional analysis of a simply-supported functionally graded rectangular plate with an arbitrary distribution of material properties is made using a simple and effective method based on the Haar wavelet. Wit...A three-dimensional analysis of a simply-supported functionally graded rectangular plate with an arbitrary distribution of material properties is made using a simple and effective method based on the Haar wavelet. With good features in treating singularities, Haar series solution converges rapidly for arbitrary distributions, especially for the case where the material properties change rapidly in some regions. Through numerical examples the influences of the ratio of material constants on the top and bottom surfaces and different material gradient distributions on the structural response of the plate to mechanical stimuli are studied.展开更多
A three-dimensional analysis model based on the finite element method (FEM) is developed, which can derive the evolution and distribution characteristics of heat flux deposited on the divertor plate from the surface...A three-dimensional analysis model based on the finite element method (FEM) is developed, which can derive the evolution and distribution characteristics of heat flux deposited on the divertor plate from the surface temperature measured by infrared thermography diagnostics. The numerical simulations of surface heating due to localized power bursts and the power deposition calculations demonstrate that this analysis can provide accurate results and useful information about localized hot spots compared with the normal one- and two-dimensional calculations. In this paper, the details of this three- dimensional analysis are presented, and some results in ohmic heating and electron cyclotron resonant heating (ECRH) discharge on HL-2A are given.展开更多
In the framework of upper bound theorem of limit analysis, the progressive collapse of shallow rectangular tunnels with double-layer rock mass has been theoretically analyzed based on the three-dimensional (3D) veloci...In the framework of upper bound theorem of limit analysis, the progressive collapse of shallow rectangular tunnels with double-layer rock mass has been theoretically analyzed based on the three-dimensional (3D) velocity discontinuity surfaces. According to the virtual work principle, the difference theorem and the variation method, the collapse surface of double-layer rock mass is determined based on the Hoek-Brown failure criterion. The formula can be degenerated to a single-layer rock collapsing problem when the rock mass is homogeneous. To estimate the validity of the result, the numerical simulation software PLAXIS 3D is used to simulate the collapse of shallow tunnels with double-layer rock mass, and the comparative analysis shows that numerical results are in good agreement with upper-bound solutions. According to the results of parametric analysis, the potential range of collapse of a double-layer rock mass above a shallow cavity decreases with a decrease in A1/A2,σci1/σci2 and σtm1/σtm2 and an increase in B1/B2,γ1/γ2. The range will decrease with a decrease in support pressure q and increase with a decrease in surface overload σs. Therefore, reinforced supporting is beneficial to improve the stability of the cavity during actual construction.展开更多
Using bathymetry and altimetric gravity anomalies, a 1°×9 1° lithospheric effective elastic thickness(Te) model over the Louisville Ridge and its adjacent regions is calculated using the moving window...Using bathymetry and altimetric gravity anomalies, a 1°×9 1° lithospheric effective elastic thickness(Te) model over the Louisville Ridge and its adjacent regions is calculated using the moving window admittance technique. For comparison, three bathymetry models are used: general bathymetric charts of the oceans, SIO V15.1,and BAT_VGG. The results show that BAT_VGG is more suitable for calculating T e than the other two models. T e along the Louisville Ridge was re-evaluated. The southeast of the ridge has a medium Te of 10–20 km, while Te increases dramatically seaward of the Tonga-Kermadec trench as a result of the collision of the Pacific and IndoAustralian plates.展开更多
This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. Th...This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.展开更多
Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rul...Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rules are (1) for a rotor cascade without shroud band, the total number of nodal points equals that the saddle points on the skin-friction line vector fields in eachpitch range; (2) for an annular or straight cascade with no-clearances at blade ends, the total number of saddle points is two more than that of nodal points on the skin-friction line fields in a pitch; (3) the total number of saddles in the secondary flow fields on cross-sections in cascade is one less than that of nodes; (4) in the section streamline vector fields on a meridian surface penetrating a flow passage, and on leading and trailing edge sections, the total number of nodes is equal to that of saddles; (5) on the streamline vector fields of a blade-to-blade surface, the total number of nodes is one less than that of saddles.展开更多
This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and stron...This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior.展开更多
A new collapse model of the trapdoors,three-dimensional rectangular trapdoor(3DRT),is presented for ground surface collapse.Undrained stability of 3DRT is examined with the upper bound method of plasticity limit analy...A new collapse model of the trapdoors,three-dimensional rectangular trapdoor(3DRT),is presented for ground surface collapse.Undrained stability of 3DRT is examined with the upper bound method of plasticity limit analysis theory.The soil where the trapdoors are located is assumed to be a perfectly plastic model with a Tresca yield criterion.Block analysis technique is employed to investigate the collapse of 3DRT.The model is divided into five different block types and added up to ten rigid blocks.According to the law of conservation of energy,the critical stability ratios of 3DRT are obtained through a search proceeding.The results of upper bound solution for 3DRT are given,and three trapdoor models with depth various are discussed during the application in the stability analysis of square trapdoors.The critical stability ratios can be used in the design of underground excavation and support force.展开更多
The intricate anatomy of the corpus cavernosum in both the flaccid and tumescent state has not been fully elucidated. We report our experience using a three-dimensional (3D) scanner to reconstruct cadaveric casts an...The intricate anatomy of the corpus cavernosum in both the flaccid and tumescent state has not been fully elucidated. We report our experience using a three-dimensional (3D) scanner to reconstruct cadaveric casts and compare them with 3D images of two prototypes of penile prosthesis. Two different models of the Titan Coloplast inflatable penile prosthesis were analyzed using a 3D scanner. The first was the standard model and the second was a newer model with a rounder silicone tip. Two cadaveric phalluses were harvested using Smooth-Cast 300Q polyurethane molding. The molds were excised and scanned along side the penile prosthesis. 3D scans were completed and analyzed using Leios Mesh software, and GOM Inspect software. The 3D scans demonstrated the mean human corporal radii 2 mm from the distal tip to be 36.51 mm (36.01-37.0 mm), which is an obtuse angle. The standard Titan penile prosthesis spherical radius at the same level was 202.52 mm, while the new silicone tip prosthesis had a radius of 139.33 mm. 3D mapping further demonstrated the trajectory of the cavernosa appeared curvilinear and the distal ends appeared blunt. The use of cadaveric cavernosal molds in combination with the 3D scanner allowed us to accurately image the corpus cavernosum for the first time. Our findings suggest that anatomically accurate corporal tips appear to be relatively blunt and that the new Titan silicone tip penile prosthesis more closely resembles the human corporal tip.展开更多
文摘The rising of aging and the declining of birth rates have forced the public to focus on the youth’s view on marriage.Based on critical discourse analysis and combined with Fairclough’s three-dimensional discourse analysis model,this paper builds a“Chinese media News Report Corpus on the topic of‘marriage’”whose news are collected from China Daily.It is found that the discourses are neutral and objective with regard to the advantages and disadvantages of marriage,but in general,it is still a traditional view of marriage that is inevitable and closely related to fertility.Although this is controlled by the policies and the social reasons including declining fertility rate,it deviates from the current view of the youth towards marriage,resulting in many serious consequences such as young people’s rejection.In addition,this research found that male and female have great differences in their views on marriage,and men’s resistance to marriage is far greater than that of women,which is departure from the public’s cognition.The reasons behind this need to be explored in order to solve the marriage and love problems of young people in today’s era and realize the healthy development of young marriage.
基金supported by the Fundamental Research Funds for the Central Universities(No.2022YJS094)。
文摘In this work,based on the role of pre-ionization of the non-uniform electric field and its effect of reducing the collisional ionization coefficient,a diffuse dielectric barrier discharge plasma is formed in the open space outside the electrode structure at a lower voltage by constructing a three-dimensional non-uniform spatial electric field using a contact electrode structure.The air purification study is also carried out.Firstly,a contact electrode structure is constructed using a three-dimensional wire electrode.The distribution characteristics of the spatial electric field formed by this electrode structure are analyzed,and the effects of the non-uniform electric field and the different angles of the vertical wire on the generation of three-dimensional spatial diffuse discharge are investigated.Secondly,the copper foam contact electrode structure is constructed using copper foam material,and the effects of different mesh sizes on the electric field distribution are analyzed.The results show that as the mesh size of the copper foam becomes larger,a strong electric field region exists not only on the surface of the insulating layer,but also on the surface of the vertical wires inside the copper foam,i.e.,the strong electric field region shows a three-dimensional distribution.Besides,as the mesh size increases,the area of the vertical strong electric field also increases.However,the electric field strength on the surface of the insulating layer gradually decreases.Therefore,the appropriate mesh size can effectively increase the discharge area,which is conducive to improving the air purification efficiency.Finally,a highly permeable stacked electrode structure of multilayer wire-copper foam is designed.In combination with an ozone treatment catalyst,an air purification device is fabricated,and the air purification experiment is carried out.
基金supported by the National Natural Science Foundation of China(Grant No.U22A20594)the Fundamental Research Funds for the Central Universities(Grant No.B230205028)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(Grant No.KYCX23_0694).
文摘The traditional deterministic analysis for tunnel face stability neglects the uncertainties of geotechnical parameters,while the simplified reliability analysis which models the potential uncertainties by means of random variables usually fails to account for soil spatial variability.To overcome these limitations,this study proposes an efficient framework for conducting reliability analysis and reliability-based design(RBD)of tunnel face stability in spatially variable soil strata.The three-dimensional(3D)rotational failure mechanism of the tunnel face is extended to account for the soil spatial variability,and a probabilistic framework is established by coupling the extended mechanism with the improved Hasofer-Lind-Rackwits-Fiessler recursive algorithm(iHLRF)as well as its inverse analysis formulation.The proposed framework allows for rapid and precise reliability analysis and RBD of tunnel face stability.To demonstrate the feasibility and efficacy of the proposed framework,an illustrative case of tunnelling in frictional soils is presented,where the soil's cohesion and friction angle are modelled as two anisotropic cross-correlated lognormal random fields.The results show that the proposed method can accurately estimate the failure probability(or reliability index)regarding the tunnel face stability and can efficiently determine the required supporting pressure for a target reliability index with soil spatial variability being taken into account.Furthermore,this study reveals the impact of various factors on the support pressure,including coefficient of variation,cross-correlation between cohesion and friction angle,as well as autocorrelation distance of spatially variable soil strata.The results also demonstrate the feasibility of using the forward and/or inverse first-order reliability method(FORM)in high-dimensional stochastic problems.It is hoped that this study may provide a practical and reliable framework for determining the stability of tunnels in complex soil strata.
基金National Natural Science Foundation of China(No.42071368)Fundamental Research Funds for the Central Universities(Nos.2042022dx0001,2042024kf0005).
文摘Population aging has become an inevitable trend and exerted profound influences on socio-economic development in China.In this study,we utilized data from national population census and statistical yearbooks in 2010 and 2020 to explore spatio-temporal patterns of aging population and its coupling correlations with socio-economic factors from both global and local perspectives.The results from Local Indicators of Spatial Association(LISA)uncover notable spatial disparities in aging population rates,with higher rates concentrated in the eastern regions and lower rates in the western areas of the Chinese mainland.The results from the global correlation analysis with the changes in aging population rates show significant positive correlations with government interventions and industrial structures,but negatively correlated with economic development,social consumption,and medical facilities.From a local perspective,a Geographically Weighted(GW)correlation analysis is employed to uncover local correlations between aging trends and socio-economic factors.The insights gained from this technique not only underscore the complexity and diversity of economic implications stemming from population aging,but also provide invaluable guidance for crafting region-specific economic policies tailored to various stages of population aging.
基金supported in part by the Pioneer and Leading Goose R&D Program of Zhejiang Province under Grant 2022C01083 (Dr.Yu Li,https://zjnsf.kjt.zj.gov.cn/)Pioneer and Leading Goose R&D Program of Zhejiang Province under Grant 2023C01217 (Dr.Yu Li,https://zjnsf.kjt.zj.gov.cn/).
文摘With the rapid development ofmobile Internet,spatial crowdsourcing has becomemore andmore popular.Spatial crowdsourcing consists of many different types of applications,such as spatial crowd-sensing services.In terms of spatial crowd-sensing,it collects and analyzes traffic sensing data from clients like vehicles and traffic lights to construct intelligent traffic prediction models.Besides collecting sensing data,spatial crowdsourcing also includes spatial delivery services like DiDi and Uber.Appropriate task assignment and worker selection dominate the service quality for spatial crowdsourcing applications.Previous research conducted task assignments via traditional matching approaches or using simple network models.However,advanced mining methods are lacking to explore the relationship between workers,task publishers,and the spatio-temporal attributes in tasks.Therefore,in this paper,we propose a Deep Double Dueling Spatial-temporal Q Network(D3SQN)to adaptively learn the spatialtemporal relationship between task,task publishers,and workers in a dynamic environment to achieve optimal allocation.Specifically,D3SQNis revised through reinforcement learning by adding a spatial-temporal transformer that can estimate the expected state values and action advantages so as to improve the accuracy of task assignments.Extensive experiments are conducted over real data collected fromDiDi and ELM,and the simulation results verify the effectiveness of our proposed models.
文摘In order to improve the detection accuracy of Doppler asymmetric spatial heterodyne(DASH)interferometer in harsh temperatures,an opto-mechanical-thermal integration analysis is carried out.Firstly,the correlation between the interference phase and temperature is established according to the working principle and the phase algorithm of the interferometer.Secondly,the optical mechanical thermal analysis model and thermal deformation data acquisition model are designed.The deformation data of the interference module and the imaging optical system at different temperatures are given by temperature load simulation analysis,and the phase error caused by thermal deformation is obtained by fitting.Finally,based on the wind speed error caused by thermal deformation of each component,a reasonable temperature control scheme is proposed.The results show that the interference module occupies the main cause,the temperature must be controlled within(20±0.05)℃,and the temperature control should be carried out for the temperature sensitive parts,and the wind speed error caused by the part is 3.8 m/s.The thermal drift between the magnification of the imaging optical system and the thermal drift of the relative position between the imaging optical system and the detector should occupy the secondary cause,which should be controlled within(20±2)℃,and the wind speed error caused by the part is 3.05 m/s.In summary,the wind measurement error caused by interference module,imaging optical system,and the relative position between the imaging optical system and the detector can be controlled within 6.85 m/s.The analysis and temperature control schemes presented in this paper can provide theoretical basis for DASH interferometer engineering applications.
文摘Serial remote sensing images offer a valuable means of tracking the evolutionary changes and growth of a specific geographical area over time.Although the original images may provide limited insights,they harbor considerable potential for identifying clusters and patterns.The aggregation of these serial remote sensing images(SRSI)becomes increasingly viable as distinct patterns emerge in diverse scenarios,such as suburbanization,the expansion of native flora,and agricultural activities.In a novel approach,we propose an innovative method for extracting sequential patterns by combining Ant Colony Optimization(ACD)and Empirical Mode Decomposition(EMD).This integration of the newly developed EMD and ACO techniques proves remarkably effective in identifying the most significant characteristic features within serial remote sensing images,guided by specific criteria.Our findings highlight a substantial improvement in the efficiency of sequential pattern mining through the application of this unique hybrid method,seamlessly integrating EMD and ACO for feature selection.This study exposes the potential of our innovative methodology,particularly in the realms of urbanization,native vegetation expansion,and agricultural activities.
文摘In recent decades, Urban Heat Island Effects have become more pronounced and more widely examined. Despite great technological advances, our current societies still experience great spatial disparity in urban forest access. Urban Heat Island Effects are measurable phenomenon that are being experienced by the world’s most urbanized areas, including increased summer high temperatures and lower evapotranspiration from having impervious surfaces instead of vegetation and trees. Tree canopy cover is our natural mitigation tool that absorbs sunlight for photosynthesis, protects humans from incoming radiation, and releases cooling moisture into the air. Unfortunately, urban areas typically have low levels of vegetation. Vulnerable urban communities are lower-income areas of inner cities with less access to heat protection like air conditioners. This study uses mean evapotranspiration levels to assess the variability of urban heat island effects across the state of Tennessee. Results show that increased developed land surface cover in Tennessee creates measurable changes in atmospheric evapotranspiration. As a result, the mean evapotranspiration levels in areas with less tree vegetation are significantly lower than the surrounding forested areas. Central areas of urban cities in Tennessee had lower mean evapotranspiration recordings than surrounding areas with less development. This work demonstrates the need for increased tree canopy coverage.
基金Projects(51278382,51479050)supported by the National Natural Science Foundation of ChinaProject(2015CB057901)supported by the National Key Basic Research Program of China+3 种基金Project(201501035-03)supported by the Public Service Sector R&D Project of Ministry of Water Resource of ChinaProject(2014B06814)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(B13024)supported by the"111"ProjectProject(YK913004)supported by the Open Foundation of Key Laboratory of Failure Mechanism and Safety Control Techniques of Earthrock Dam of the Ministry of Water Resources,China
文摘Based on the upper bound of limit analysis, the plane-strain analysis of the slopes reinforced with a row of piles to the 3D case was extended. A 3D rotational failure mechanism was adopted to yield the upper bound of the factor of safety. Parametric studies were carried out to explore the end effects of the slope failures and the effects of the pile location and diameter on the safety of the reinforced slopes. The results demonstrate that the end effects nearly have no effects on the most suitable location of the installed piles but have significant influence on the safety of the slopes. For a slope constrained to a narrow width, the slope becomes more stable owing to the contribution of the end effects. When the slope is reinforced with a row of piles in small space between piles, the effects of group piles are significant for evaluating the safety of slopes. The presented method is more appropriate for assessing the stability of slopes reinforced with piles and can be also utilized in the design of plies stabilizing the unstable slopes.
文摘A three-dimensional finite element simulation was carried out to investigate the effects of tunnel construction on nearby pile foundation.The displacement controlled model (DCM) was used to simulate the tunneling-induced volume loss effects.The numerical model was verified based on the results of a centrifuge test and a set of parametric studies was implemented based on this model.There is good agreement between the trend of the results of the centrifuge test and the present model.The results of parametric studies show that the tunnelling-induced pile internal force and deformation depend mainly on the pile?tunnel distance,the pile length to tunnel depth ratio and the volume loss.Two different zones are separated by a 45° line projected from the tunnel springline.Within the zone of influence,the pile is subjected to tensile force and large settlement;whereas outside the zone of influence,dragload and small settlement are induced.It is also established that the impact of tunnelling on a pile group is substantially smaller as compared with a single pile in the same location with the rear pile in a group,demonstrating a positive pile group effect.
基金supported by the Key Project of Chinese National Programs for Fundamental Research and Development(2010CB731502)the National Natural Science Foundation of China(50978745)
文摘In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a linear displacement function to describe the block movement and deformation, which would cause block expansion under rigid body rotation and thus limit its capability to model block de- formation. In this paper, 3D DDA is coupled with tetrahe- dron finite elements to tackle these two problems. Tetrahe- dron is the simplest in the 3D domain and makes it easy to implement automatic discretization, even for complex topol- ogy shape. Furthermore, element faces will remain planar and element edges will remain straight after deformation for tetrahedron finite elements and polyhedral contact detection schemes can be used directly. The matrices of equilibrium equations for this coupled method are given in detail and an effective contact searching algorithm is suggested. Valida- tion is conducted by comparing the results of the proposed coupled method with that of physical model tests using one of the most common failure modes, i.e., wedge failure. Most of the failure modes predicted by the coupled method agree with the physical model results except for 4 cases out of the total 65 cases. Finally, a complex rockslide example demon- strates the robustness and versatility of the coupled method.
基金Project supported by the National Natural Sciences Foundation of China(No.10432030).
文摘A three-dimensional analysis of a simply-supported functionally graded rectangular plate with an arbitrary distribution of material properties is made using a simple and effective method based on the Haar wavelet. With good features in treating singularities, Haar series solution converges rapidly for arbitrary distributions, especially for the case where the material properties change rapidly in some regions. Through numerical examples the influences of the ratio of material constants on the top and bottom surfaces and different material gradient distributions on the structural response of the plate to mechanical stimuli are studied.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10805016)the National Magnetic Confinement Fusion Science Program,China (Grant No. 2009GB104008).
文摘A three-dimensional analysis model based on the finite element method (FEM) is developed, which can derive the evolution and distribution characteristics of heat flux deposited on the divertor plate from the surface temperature measured by infrared thermography diagnostics. The numerical simulations of surface heating due to localized power bursts and the power deposition calculations demonstrate that this analysis can provide accurate results and useful information about localized hot spots compared with the normal one- and two-dimensional calculations. In this paper, the details of this three- dimensional analysis are presented, and some results in ohmic heating and electron cyclotron resonant heating (ECRH) discharge on HL-2A are given.
基金Projects(51478477,51878074)supported by the National Natural Science Foundation of ChinaProject(2017-123-033)supported by the Guizhou Provincial Department of Transportation Foundation,ChinaProjects(2018zzts663,2018zzts656)supported by the Fundamental Research Funds for the Central Universities,China
文摘In the framework of upper bound theorem of limit analysis, the progressive collapse of shallow rectangular tunnels with double-layer rock mass has been theoretically analyzed based on the three-dimensional (3D) velocity discontinuity surfaces. According to the virtual work principle, the difference theorem and the variation method, the collapse surface of double-layer rock mass is determined based on the Hoek-Brown failure criterion. The formula can be degenerated to a single-layer rock collapsing problem when the rock mass is homogeneous. To estimate the validity of the result, the numerical simulation software PLAXIS 3D is used to simulate the collapse of shallow tunnels with double-layer rock mass, and the comparative analysis shows that numerical results are in good agreement with upper-bound solutions. According to the results of parametric analysis, the potential range of collapse of a double-layer rock mass above a shallow cavity decreases with a decrease in A1/A2,σci1/σci2 and σtm1/σtm2 and an increase in B1/B2,γ1/γ2. The range will decrease with a decrease in support pressure q and increase with a decrease in surface overload σs. Therefore, reinforced supporting is beneficial to improve the stability of the cavity during actual construction.
基金supported financially by the Key Foundation of the Institute of Seismology,China Earthquake Administration (No. IS201506205)the National Natural Science Foundation of China (Nos. 41504017, 41204019, 41304003)
文摘Using bathymetry and altimetric gravity anomalies, a 1°×9 1° lithospheric effective elastic thickness(Te) model over the Louisville Ridge and its adjacent regions is calculated using the moving window admittance technique. For comparison, three bathymetry models are used: general bathymetric charts of the oceans, SIO V15.1,and BAT_VGG. The results show that BAT_VGG is more suitable for calculating T e than the other two models. T e along the Louisville Ridge was re-evaluated. The southeast of the ridge has a medium Te of 10–20 km, while Te increases dramatically seaward of the Tonga-Kermadec trench as a result of the collision of the Pacific and IndoAustralian plates.
文摘This paper proposes a based on 3D-VLE (three-dimensional nonlinear viscoelastic theory) three-parameters viscoelastic model for studying the time-dependent behaviour of concrete filled steel tube (CFT) columns. The method of 3D-VLE was developed to analyze the effects of concrete creep behavior on CFT structures. After the evaluation of the parameters in the proposed creep model, experimental measurements of two prestressed reinforced concrete beams were used to investigate the creep phenomenon of three CFT columns under long-term axial and eccentric load was investigated. The experimentally obtained time-dependent creep behaviour accorded well with the cu~'es obtained from the proposed method. Many factors (such as ratio of long-term load to strength, slenderness ratio, steel ratio, and eccentricity ratio) were considered to obtain the regularity of influence of concrete creep on CFT structures. The analytical results can be consulted in the engineering practice and design.
文摘Based on the working of Lighthill and Hunt et al., in the present paper the author has established the topological rules adapting to analysing the skin-friction lines and the section streamlines in cascades. These rules are (1) for a rotor cascade without shroud band, the total number of nodal points equals that the saddle points on the skin-friction line vector fields in eachpitch range; (2) for an annular or straight cascade with no-clearances at blade ends, the total number of saddle points is two more than that of nodal points on the skin-friction line fields in a pitch; (3) the total number of saddles in the secondary flow fields on cross-sections in cascade is one less than that of nodes; (4) in the section streamline vector fields on a meridian surface penetrating a flow passage, and on leading and trailing edge sections, the total number of nodes is equal to that of saddles; (5) on the streamline vector fields of a blade-to-blade surface, the total number of nodes is one less than that of saddles.
基金supported by the Japan Society for the Promotion of Science under KAKENHI Grant Nos.19F19379 and 20H04199。
文摘This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior.
基金the Fundamental Research Funds for the Provincial Universities,China(No.702/000007020303)。
文摘A new collapse model of the trapdoors,three-dimensional rectangular trapdoor(3DRT),is presented for ground surface collapse.Undrained stability of 3DRT is examined with the upper bound method of plasticity limit analysis theory.The soil where the trapdoors are located is assumed to be a perfectly plastic model with a Tresca yield criterion.Block analysis technique is employed to investigate the collapse of 3DRT.The model is divided into five different block types and added up to ten rigid blocks.According to the law of conservation of energy,the critical stability ratios of 3DRT are obtained through a search proceeding.The results of upper bound solution for 3DRT are given,and three trapdoor models with depth various are discussed during the application in the stability analysis of square trapdoors.The critical stability ratios can be used in the design of underground excavation and support force.
文摘The intricate anatomy of the corpus cavernosum in both the flaccid and tumescent state has not been fully elucidated. We report our experience using a three-dimensional (3D) scanner to reconstruct cadaveric casts and compare them with 3D images of two prototypes of penile prosthesis. Two different models of the Titan Coloplast inflatable penile prosthesis were analyzed using a 3D scanner. The first was the standard model and the second was a newer model with a rounder silicone tip. Two cadaveric phalluses were harvested using Smooth-Cast 300Q polyurethane molding. The molds were excised and scanned along side the penile prosthesis. 3D scans were completed and analyzed using Leios Mesh software, and GOM Inspect software. The 3D scans demonstrated the mean human corporal radii 2 mm from the distal tip to be 36.51 mm (36.01-37.0 mm), which is an obtuse angle. The standard Titan penile prosthesis spherical radius at the same level was 202.52 mm, while the new silicone tip prosthesis had a radius of 139.33 mm. 3D mapping further demonstrated the trajectory of the cavernosa appeared curvilinear and the distal ends appeared blunt. The use of cadaveric cavernosal molds in combination with the 3D scanner allowed us to accurately image the corpus cavernosum for the first time. Our findings suggest that anatomically accurate corporal tips appear to be relatively blunt and that the new Titan silicone tip penile prosthesis more closely resembles the human corporal tip.