Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.Howev...Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.展开更多
An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable...An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable or similar features of binocular images. In order to reduce the probability of mismatching and improve the measure precision, a four-camera measurement system which can add extra matching constraints and offer multiple measurements is applied in this work. Moreover, a series of different checkerboard patterns are projected onto the object to obtain dense feature points and remove mismatched points. Finally, the 3D model is generated by performing Delaunay triangulation and texture mapping on the point cloud obtained by four-view matching. This method was tested on the 3D reconstruction of a terracotta soldier sculpture and the Buddhas in the Mogao Grottoes. Their point clouds without mismatched points were obtained and less processing time was consumed in most cases relative to binocular matching. These good reconstructed models show the effectiveness of the method.展开更多
Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affe...Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affected, and the environment for Qiang Culture was difficult to recover. It highlighted that three-dimensional reconstruction of Qiang Culture should stress the core task and timely and effectively rescue endangered cultural heritages of Qiang Nationality from the perspectives of material and spiritual life. It had explained focuses of three-dimensional pattern construction in detail. In terms of spatial reconstruction, it should reconstruct native culture and history while material culture was constructed, and reconstruct Qiang culture highland by depending on aborigines; in terms of cluster reconstruction, it should give support to large tourism enterprises and perfect tourism chain; in terms of ecological reconstruction, it should enhance construction and demonstration of "ecological protection pilot area of Qiang culture"; in terms of development reconstruction, it should realize coordinated unity between protection and development according to classification protection, characteristic protection and key protection, so as to form the virtuous circle of post-disaster recovery protection and sustainable development.展开更多
Three-dimensional(3D)imaging with structured light is crucial in diverse scenarios,ranging from intelligent manufacturing and medicine to entertainment.However,current structured light methods rely on projector-camera...Three-dimensional(3D)imaging with structured light is crucial in diverse scenarios,ranging from intelligent manufacturing and medicine to entertainment.However,current structured light methods rely on projector-camera synchronization,limiting the use of affordable imaging devices and their consumer applications.In this work,we introduce an asynchronous structured light imaging approach based on generative deep neural networks to relax the synchronization constraint,accomplishing the challenges of fringe pattern aliasing,without relying on any a priori constraint of the projection system.To overcome this need,we propose a generative deep neural network with U-Net-like encoder-decoder architecture to learn the underlying fringe features directly by exploring the intrinsic prior principles in the fringe pattern aliasing.We train within an adversarial learning framework and supervise the network training via a statisticsinformed loss function.We demonstrate that by evaluating the performance on fields of intensity,phase,and 3D reconstruction.It is shown that the trained network can separate aliased fringe patterns for producing comparable results with the synchronous one:the absolute error is no greater than 8μm,and the standard deviation does not exceed 3μm.Evaluation results on multiple objects and pattern types show it could be generalized for any asynchronous structured light scene.展开更多
This paper presents a novel geometric parameters analysis to improve the measurement accuracy of stereo deflectometry.Stereo deflectometry can be used to obtain form information for freeform specular surfaces.A measur...This paper presents a novel geometric parameters analysis to improve the measurement accuracy of stereo deflectometry.Stereo deflectometry can be used to obtain form information for freeform specular surfaces.A measurement system based on stereo deflectometry typically consists of a fringe-displaying screen,a main camera,and a reference camera.The arrangement of the components of a stereo deflectometry system is important for achieving high-accuracy measurements.In this paper,four geometric parameters of a stereo deflectometry system are analyzed and evaluated:the distance between the main camera and the measured object surface,the angle between the main camera ray and the surface normal,the distance between the fringe-displaying screen and the object,and the angle between the main camera and the reference camera.The influence of the geometric parameters on the measurement accuracy is evaluated.Experiments are performed using simulated and experimental data.The experimental results confirm the impact of these parameters on the measurement accuracy.A measurement system based on the proposed analysis has been set up to measure a stock concave mirror.Through a comparison of the given surface parameters of the concave mirror,a global measurement accuracy of 154.2 nm was achieved.展开更多
Urban landscape is directly perceived by residents and is a significant symbol of urbanization development.A comprehensive assessment of urban landscapes is crucial for guiding the development of inclusive,resilient,a...Urban landscape is directly perceived by residents and is a significant symbol of urbanization development.A comprehensive assessment of urban landscapes is crucial for guiding the development of inclusive,resilient,and sustainable cities and human settlements.Previous studies have primarily analyzed two-dimensional landscape indicators derived from satellite remote sensing,potentially overlooking the valuable insights provided by the three-dimensional configuration of landscapes.This limitation arises from the high cost of acquiring large-area three-dimensional data and the lack of effective assessment indicators.Here,we propose four urban landscapes indicators in three dimensions(UL3D):greenness,grayness,openness,and crowding.We construct the UL3D using 4.03 million street view images from 303 major cities in China,employing a deep learning approach.We combine urban background and two-dimensional urban landscape indicators with UL3D to predict the socioeconomic profiles of cities.The results show that UL3D indicators differs from two-dimensional landscape indicators,with a low average correlation coefficient of 0.31 between them.Urban landscapes had a changing point in2018–2019 due to new urbanization initiatives,with grayness and crowding rates slowing,while openness increased.The incorporation of UL3D indicators significantly enhances the explanatory power of the regression model for predicting socioeconomic profiles.Specifically,GDP per capita,urban population rate,built-up area per capita,and hospital count correspond to improvements of 25.0%,19.8%,35.5%,and 19.2%,respectively.These findings indicate that UL3D indicators have the potential to reflect the socioeconomic profiles of cities.展开更多
When obtaining three-dimensional(3D)face point cloud data based on structured light,factors related to the environment,occlusion,and illumination intensity lead to holes in the collected data,which affect subsequent r...When obtaining three-dimensional(3D)face point cloud data based on structured light,factors related to the environment,occlusion,and illumination intensity lead to holes in the collected data,which affect subsequent recognition.In this study,we propose a hole-filling method based on stereo-matching technology combined with a B-spline.The algorithm uses phase information acquired during raster projection to locate holes in the point cloud,simultaneously extracting boundary point cloud sets.By registering the face point cloud data using the stereo-matching algorithm and the data collected using the raster projection method,some supplementary information points can be obtained at the holes.The shape of the B-spline curve can then be roughly described by a few key points,and the control points are put into the hole area as key points for iterative calculation of surface reconstruction.Simulations using smooth ceramic cups and human face models showed that our model can accurately reproduce details and accurately restore complex shapes on the test surfaces.Simulation results indicated the robustness of the method,which is able to fill holes on complex areas such as the inner side of the nose without a prior model.This approach also effectively supplements the hole information,and the patched point cloud is closer to the original data.This method could be used across a wide range of applications requiring accurate facial recognition.展开更多
文摘Understanding the pore water pressure distribution in unsaturated soil is crucial in predicting shallow landslides triggered by rainfall,mainly when dealing with different temporal patterns of rainfall intensity.However,the hydrological response of vegetated slopes,especially three-dimensional(3D)slopes covered with shrubs,under different rainfall patterns remains unclear and requires further investigation.To address this issue,this study adopts a novel 3D numerical model for simulating hydraulic interactions between the root system of the shrub and the surrounding soil.Three series of numerical parametric studies are conducted to investigate the influences of slope inclination,rainfall pattern and rainfall duration.Four rainfall patterns(advanced,bimodal,delayed,and uniform)and two rainfall durations(4-h intense and 168-h mild rainfall)are considered to study the hydrological response of the slope.The computed results show that 17%higher transpiration-induced suction is found for a steeper slope,which remains even after a short,intense rainfall with a 100-year return period.The extreme rainfalls with advanced(PA),bimodal(PB)and uniform(PU)rainfall patterns need to be considered for the short rainfall duration(4 h),while the delayed(PD)and uniform(PU)rainfall patterns are highly recommended for long rainfall durations(168 h).The presence of plants can improve slope stability markedly under extreme rainfall with a short duration(4 h).For the long duration(168 h),the benefit of the plant in preserving pore-water pressure(PWP)and slope stability may not be sufficient.
基金Project(2012CB725301)supported by the National Basic Research Program of ChinaProject(201412015)supported by the National Special Fund for Surveying and Mapping Geographic Information Scientific Research in the Public Welfare of ChinaProject(212000168)supported by the Basic Survey-Mapping Program of National Administration of Surveying,Mapping and Geoinformation of China
文摘An automatic three-dimensional(3D) reconstruction method based on four-view stereo vision using checkerboard pattern is presented. Mismatches easily exist in traditional binocular stereo matching due to the repeatable or similar features of binocular images. In order to reduce the probability of mismatching and improve the measure precision, a four-camera measurement system which can add extra matching constraints and offer multiple measurements is applied in this work. Moreover, a series of different checkerboard patterns are projected onto the object to obtain dense feature points and remove mismatched points. Finally, the 3D model is generated by performing Delaunay triangulation and texture mapping on the point cloud obtained by four-view matching. This method was tested on the 3D reconstruction of a terracotta soldier sculpture and the Buddhas in the Mogao Grottoes. Their point clouds without mismatched points were obtained and less processing time was consumed in most cases relative to binocular matching. These good reconstructed models show the effectiveness of the method.
文摘Through the introduction of disaster situation of Qiang Culture after Wenchuan Earthquake, the paper emphasized that carriers of Qiang Culture had been seriously damaged, the inheritance of Qiang Culture had been affected, and the environment for Qiang Culture was difficult to recover. It highlighted that three-dimensional reconstruction of Qiang Culture should stress the core task and timely and effectively rescue endangered cultural heritages of Qiang Nationality from the perspectives of material and spiritual life. It had explained focuses of three-dimensional pattern construction in detail. In terms of spatial reconstruction, it should reconstruct native culture and history while material culture was constructed, and reconstruct Qiang culture highland by depending on aborigines; in terms of cluster reconstruction, it should give support to large tourism enterprises and perfect tourism chain; in terms of ecological reconstruction, it should enhance construction and demonstration of "ecological protection pilot area of Qiang culture"; in terms of development reconstruction, it should realize coordinated unity between protection and development according to classification protection, characteristic protection and key protection, so as to form the virtuous circle of post-disaster recovery protection and sustainable development.
基金funding from the National Natural Science Foundation of China(Grant Nos.62375078 and 12002197)the Youth Talent Launching Program of Shanghai University+2 种基金the General Science Foundation of Henan Province(Grant No.222300420427)the Key Research Project Plan for Higher Education Institutions in Henan Province(Grant No.24ZX011)the National Key Laboratory of Ship Structural Safety
文摘Three-dimensional(3D)imaging with structured light is crucial in diverse scenarios,ranging from intelligent manufacturing and medicine to entertainment.However,current structured light methods rely on projector-camera synchronization,limiting the use of affordable imaging devices and their consumer applications.In this work,we introduce an asynchronous structured light imaging approach based on generative deep neural networks to relax the synchronization constraint,accomplishing the challenges of fringe pattern aliasing,without relying on any a priori constraint of the projection system.To overcome this need,we propose a generative deep neural network with U-Net-like encoder-decoder architecture to learn the underlying fringe features directly by exploring the intrinsic prior principles in the fringe pattern aliasing.We train within an adversarial learning framework and supervise the network training via a statisticsinformed loss function.We demonstrate that by evaluating the performance on fields of intensity,phase,and 3D reconstruction.It is shown that the trained network can separate aliased fringe patterns for producing comparable results with the synchronous one:the absolute error is no greater than 8μm,and the standard deviation does not exceed 3μm.Evaluation results on multiple objects and pattern types show it could be generalized for any asynchronous structured light scene.
文摘This paper presents a novel geometric parameters analysis to improve the measurement accuracy of stereo deflectometry.Stereo deflectometry can be used to obtain form information for freeform specular surfaces.A measurement system based on stereo deflectometry typically consists of a fringe-displaying screen,a main camera,and a reference camera.The arrangement of the components of a stereo deflectometry system is important for achieving high-accuracy measurements.In this paper,four geometric parameters of a stereo deflectometry system are analyzed and evaluated:the distance between the main camera and the measured object surface,the angle between the main camera ray and the surface normal,the distance between the fringe-displaying screen and the object,and the angle between the main camera and the reference camera.The influence of the geometric parameters on the measurement accuracy is evaluated.Experiments are performed using simulated and experimental data.The experimental results confirm the impact of these parameters on the measurement accuracy.A measurement system based on the proposed analysis has been set up to measure a stock concave mirror.Through a comparison of the given surface parameters of the concave mirror,a global measurement accuracy of 154.2 nm was achieved.
基金supported by the National Key R&D Program of China(2022YFF1303101)。
文摘Urban landscape is directly perceived by residents and is a significant symbol of urbanization development.A comprehensive assessment of urban landscapes is crucial for guiding the development of inclusive,resilient,and sustainable cities and human settlements.Previous studies have primarily analyzed two-dimensional landscape indicators derived from satellite remote sensing,potentially overlooking the valuable insights provided by the three-dimensional configuration of landscapes.This limitation arises from the high cost of acquiring large-area three-dimensional data and the lack of effective assessment indicators.Here,we propose four urban landscapes indicators in three dimensions(UL3D):greenness,grayness,openness,and crowding.We construct the UL3D using 4.03 million street view images from 303 major cities in China,employing a deep learning approach.We combine urban background and two-dimensional urban landscape indicators with UL3D to predict the socioeconomic profiles of cities.The results show that UL3D indicators differs from two-dimensional landscape indicators,with a low average correlation coefficient of 0.31 between them.Urban landscapes had a changing point in2018–2019 due to new urbanization initiatives,with grayness and crowding rates slowing,while openness increased.The incorporation of UL3D indicators significantly enhances the explanatory power of the regression model for predicting socioeconomic profiles.Specifically,GDP per capita,urban population rate,built-up area per capita,and hospital count correspond to improvements of 25.0%,19.8%,35.5%,and 19.2%,respectively.These findings indicate that UL3D indicators have the potential to reflect the socioeconomic profiles of cities.
基金supported by the National Natural Science Foundation of China(No.61405034)the Special Project on Basic Research of Frontier Leading Technology of Jiangsu Province,China(No.BK20192004C)+1 种基金the Shenzhen Science and Technology Innovation Committee(No.JCYJ20180306174455080)the Natural Science Foundation of Jiangsu Province,China(No.BK20181269)。
文摘When obtaining three-dimensional(3D)face point cloud data based on structured light,factors related to the environment,occlusion,and illumination intensity lead to holes in the collected data,which affect subsequent recognition.In this study,we propose a hole-filling method based on stereo-matching technology combined with a B-spline.The algorithm uses phase information acquired during raster projection to locate holes in the point cloud,simultaneously extracting boundary point cloud sets.By registering the face point cloud data using the stereo-matching algorithm and the data collected using the raster projection method,some supplementary information points can be obtained at the holes.The shape of the B-spline curve can then be roughly described by a few key points,and the control points are put into the hole area as key points for iterative calculation of surface reconstruction.Simulations using smooth ceramic cups and human face models showed that our model can accurately reproduce details and accurately restore complex shapes on the test surfaces.Simulation results indicated the robustness of the method,which is able to fill holes on complex areas such as the inner side of the nose without a prior model.This approach also effectively supplements the hole information,and the patched point cloud is closer to the original data.This method could be used across a wide range of applications requiring accurate facial recognition.