Objective To evaluate left atrial function in essential hypertension patients with different patterns of left ventricular geometric models by real-time three-dimensional echocardiography (RT-3DE) and left atrial tra...Objective To evaluate left atrial function in essential hypertension patients with different patterns of left ventricular geometric models by real-time three-dimensional echocardiography (RT-3DE) and left atrial tracking (EAT).展开更多
A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream su...A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.展开更多
Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imagi...Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imaging system.Using the point spread function of the imaging system to realize the non-coding measurement on the target, the full-focus images and depth information of the 3D target can be extracted from a single two-dimensional(2D) image through the compressed sensing algorithm. Simulation and experiments show that this approach can complete passive 3D imaging based on an ordinary imaging system without any coding operations. This method can achieve millimeter-level vertical resolution under single exposure conditions and has the potential for real-time dynamic 3D imaging. It improves the efficiency of 3D information detection, reduces the complexity of the imaging system, and may be of considerable value to the field of computer vision and other related applications.展开更多
The optimal plane for measurement of the right ventricular (RV) volumes by real-time three-dimensional echocardiography (RT3DE) was determined and the feasibility and accuracy of RT3DE in studying RV systolic function...The optimal plane for measurement of the right ventricular (RV) volumes by real-time three-dimensional echocardiography (RT3DE) was determined and the feasibility and accuracy of RT3DE in studying RV systolic function was assessed. RV “Full volume” images were acquired by RT3DE in 22 healthy subjects. RV end-diastolic volumes (RVEDV) and end-systolic volumes (RVESV) were outlined using apical biplane, 4-plane, 8-plane, 16-plane offline separately. RVSV and RVEF were calculated. Meanwhile tricuspid annual systolic excursion (TASE) was measured by M-mode echo. LVSV was outlined by 2-D echo according to the biplane Simpson's rule. The results showed: (1) There was a good correlation between RVSV measured from series planes and LVSV from 2-D echo (r=0.73; r=0.69; r=0.63; r=0.66, P<0.25—0.0025); (2) There were significant differences between RVEDV in biplane and those in 4-, 8-, 16-plane (P<0.001). There was also difference between RV volume in 4-plane and that in 8-plane (P<0.05), but there was no significant difference between RV volume in 8-plane and that in 16-plane (P>0.05); (3) Inter-observers and intro-observers variability analysis showed that there were close agreements and relations for RV volumes (r=0.986, P<0.001; r=0.93, P<0.001); (4) There was a significantly positive correlation of TASE to RVSV and RVEF from RT3DE (r=0.83; r=0.90). So RV volume measures with RT3DE are rapid, accurate and reproducible. In view of RV's complex shape, apical 8-plane method is better in clinical use. It may allow early detection of RV systolic function.展开更多
This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary eleme...This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary element method(BEM),which uses a half-space Green function instead of the more conventional free-space Green function.On the other hand,a numerical implementation is illustrated to explore the formulation in simple idealized cases,controlled by a few parameters,which provides necessary tests for the accuracy and performance of the model.The half-space Green's function,which has been previously used in scattering and diffraction,adds terms to the usual expressions of the integral operators without altering their continuity properties.Verifications against the wavenumber integration solution of the Pekeris waveguide suggest that the model allows an adequate prediction for the acoustic field.Likewise,numerical experiments in relation to the necessary mesh size for the description of the water-marine sediment interface lead to the conclusion that a transmission loss prediction with acceptable accuracy can be obtained with the use of a limited mesh around the desired evaluation region.展开更多
A three-dimensional analysis of a simply-supported functionally graded rectangular plate with an arbitrary distribution of material properties is made using a simple and effective method based on the Haar wavelet. Wit...A three-dimensional analysis of a simply-supported functionally graded rectangular plate with an arbitrary distribution of material properties is made using a simple and effective method based on the Haar wavelet. With good features in treating singularities, Haar series solution converges rapidly for arbitrary distributions, especially for the case where the material properties change rapidly in some regions. Through numerical examples the influences of the ratio of material constants on the top and bottom surfaces and different material gradient distributions on the structural response of the plate to mechanical stimuli are studied.展开更多
The three-dimensional(3D) visualization of the functional bundles in the peripheral nerve provides direct and detailed intraneural spatial information. It is useful for selecting suitable surgical methods to repair ...The three-dimensional(3D) visualization of the functional bundles in the peripheral nerve provides direct and detailed intraneural spatial information. It is useful for selecting suitable surgical methods to repair nerve defects and in optimizing the construction of tissue-engineered nerve grafts. However, there remain major technical hurdles in obtaining, registering and interpreting 2D images, as well as in establishing 3D models. Moreover, the 3D models are plagued by poor accuracy and lack of detail and cannot completely reflect the stereoscopic microstructure inside the nerve. To explore and help resolve these key technical problems of 3D reconstruction, in the present study, we designed a novel method based on re-imaging techniques and computer image layer processing technology. A 20-cm ulnar nerve segment from the upper arm of a fresh adult cadaver was used for acetylcholinesterase(ACh E) staining. Then, 2D panoramic images were obtained before and after ACh E staining under the stereomicroscope. Using layer processing techniques in Photoshop, a space transformation method was used to fulfill automatic registration. The contours were outlined, and the 3D rendering of functional fascicular groups in the long-segment ulnar nerve was performed with Amira 4.1 software. The re-imaging technique based on layer processing in Photoshop produced an image that was detailed and accurate. The merging of images was accurate, and the whole procedure was simple and fast. The least square support vector machine was accurate, with an error rate of only 8.25%. The 3D reconstruction directly revealed changes in the fusion of different nerve functional fascicular groups. In conclusion. The technique is fast with satisfactory visual reconstruction.展开更多
A versatile and effective method for incorporating functional groups on the pore wall of three-dimensionally ordered macroporous cross-linked polystyrene(3DOM CLPS) by hydrophilic spacer arm has been investigated.Th...A versatile and effective method for incorporating functional groups on the pore wall of three-dimensionally ordered macroporous cross-linked polystyrene(3DOM CLPS) by hydrophilic spacer arm has been investigated.The 3DOM CLPS with pore size 865 nm was prepared by sacrifice template method.The hydrophilic spacer arm(polyethylene glycol,molecular weight is 600) was grafted to the 3DOM CLPS via nucleophilic substitution reaction.The other side of active hydroxyl can be further converted into a lot of other functional groups.In this report,the chelating ligand 2-mercaptobenzothiazole(MBZ) group was introduced on the end of the PGE chain to evidence the versatile functionalization approach.The functionalized ordered macroporous materials were characterized by FT-IR,element analyzer,SEM.The results reveal that the pores were successfully bonded with 2-mercaptobenzothiazole groups via hydrophilic spacer arms and the original morphology of ordered macroporous materials were remained after functionalization.The MBZ group density is 0.052 mmol/m^2.The functionalized 3DOM CLPS are expected to application as heavy metal ions adsorbent.展开更多
In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination...In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.展开更多
BACKGROUND The quality of life in patients who develop low anterior resection syndrome(LARS)after surgery for mid-low rectal cancer is seriously impaired.The underlying pathophysiological mechanism of LARS has not bee...BACKGROUND The quality of life in patients who develop low anterior resection syndrome(LARS)after surgery for mid-low rectal cancer is seriously impaired.The underlying pathophysiological mechanism of LARS has not been fully investigated.AIM To assess anorectal function of mid-low rectal cancer patients developing LARS perioperatively.METHODS Patients diagnosed with mid-low rectal cancer were included.The LARS score was used to evaluate defecation symptoms 3 and 6 mo after anterior resection or a stoma reversal procedure.Anorectal functions were assessed by threedimensional high resolution anorectal manometry preoperatively and 3-6 mo after surgery.RESULTS The study population consisted of 24 patients.The total LARS score was decreased at 6 mo compared with 3 mo after surgery(P<0.05),but 58.3%(14/24)lasted as major LARS at 6 mo after surgery.The length of the high-pressure zone of the anal sphincter was significantly shorter,the mean resting pressure and maximal squeeze pressure of the anus were significantly lower than those before surgery in allpatients (P < 0.05), especially in the neoadjuvant therapy group after surgery (n = 18). The focalpressure defects of the anal canal were detected in 70.8% of patients, and those patients had higherLARS scores at 3 mo postoperatively than those without focal pressure defects (P < 0.05). Spasticperistaltic contractions from the new rectum to anus were detected in 45.8% of patients, whichwere associated with a higher LARS score at 3 mo postoperatively (P < 0.05).CONCLUSIONThe LARS score decreases over time after surgery in the majority of patients with mid-low rectalcancer. Anorectal dysfunctions, especially focal pressure defects of the anal canal and spasticperistaltic contractions from the new rectum to anus postoperatively, might be the majorpathophysiological mechanisms of LARS.展开更多
Several kinds of stream ciphers—complementary sequences of period sequences,partial sum of period sequences,inverse order sequences and finitely generated sequences,arestudied by using techniques of generating functi...Several kinds of stream ciphers—complementary sequences of period sequences,partial sum of period sequences,inverse order sequences and finitely generated sequences,arestudied by using techniques of generating functions.Their minimal polynomials,periods,as wellas generating functions are given.As to finitely generated sequences,the change of their linearcomplexity profiles as well as the relationship between the two generated sequences usder thecase in which the degree of connected polynomials are fixed,are discussed.展开更多
Three-dimensional elasticity solutions for static bending of thick functionally graded plates are presented using a hybrid semi-analytical approach-the state-space based differential quadrature method (SSDQM). The p...Three-dimensional elasticity solutions for static bending of thick functionally graded plates are presented using a hybrid semi-analytical approach-the state-space based differential quadrature method (SSDQM). The plate is generally supported at four edges for which the two-way differential quadrature method is used to solve the in-plane variations of the stress and displacement fields numerically. An approximate laminate model (ALM) is exploited to reduce the inhomogeneous plate into a multi-layered laminate, thus applying the state space method to solve analytically in the thickness direction. Both the convergence properties of SSDQM and ALM are examined. The SSDQM is validated by comparing the numerical results with the exact solutions reported in the literature. As an example, the Mori-Tanaka model is used to predict the effective bulk and shear moduli. Effects of gradient index and aspect ratios on the bending behavior of functionally graded thick plates are investigated.展开更多
A new physical structure of vortical flow, i.e., tubular limiting stream surface(TLSS), is reported. It is defined as a general mathematical structure for the physical flow field in the neighborhood of a singularity, ...A new physical structure of vortical flow, i.e., tubular limiting stream surface(TLSS), is reported. It is defined as a general mathematical structure for the physical flow field in the neighborhood of a singularity, and has a close relationship with limit cycles.The TLSS is a tornado-like structure, which separates a vortex into two regions, i.e., the inner region near the vortex axis and the outer region further away from the vortex axis.The flow particles in these two regions can approach to(or leave) the TLSS, but never could reach it.展开更多
Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps...Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps(BFM).The BFM algorithm generalizes the point-based correspondence to functions.By choosing the Laplace-Beltrami eigenfunctions as the function basis,the transformations between shapes can be represented by the functional map(FM)matrix.In addition,many constraints on shape registration,such as the feature descriptor,keypoint,and salient region correspondence,can be formulated linearly using the matrix.By bi-directionally searching for the nearest neighbors of points’indicator functions in the function space,the point-based correspondence can be derived from FMs.We conducted several experiments on the Topology and Orchestration Specification for Cloud Applications(TOSCA)dataset and the Shape Completion and Animation of People(SCAPE)dataset.Experimental results show that the proposed BFM algorithm is effective and has superior performance than the state-of-the-art methods on both datasets.展开更多
The volume-time curve change in patients with normal left ventricular (LV) diastolic function and diastolic dysfunction was evaluated by real-time three-dimensional echocardiography (RT3DE). LV diastolic dysfuncti...The volume-time curve change in patients with normal left ventricular (LV) diastolic function and diastolic dysfunction was evaluated by real-time three-dimensional echocardiography (RT3DE). LV diastolic dysfunction was defined by E'〈A' in pulse-wave tissue Doppler for inter-ventricular septal (IVS) of mitral annulus. In 24 patients with LV diastolic dysfunction, including 12 patients with delayed relaxation (delayed relaxation group) and 12 patients with pseudo-normal function (pseudo-normal group) and 24 normal volunteers (control group), data of full-volume image were acquired by real-time three-dimensional echocardiography and subjected to volume-time curve analysis. EDV (end-diastolic volume), ESV (end-systolic volume), LVEF (left ventricular ejection fraction), PER (peak ejection rate), PFR (peak filling rate) from RT3DE were examined in the three groups. Compared to the control group, PFR (diastolic filling index of RT3DE) was significantly reduced in the delayed relaxation group and pseudo-normal group (P〈0.05). There were no significant differences in EDV, ESV, LVEE PER (P〉0.05). It is concluded that PFR, as a diastolic filling index of RT3DE, can reflect the early diastolic function and serve as a new non-invasive, quick and accurate tool for clinical assessment of LV diastolic function.展开更多
Objective:To analyze the correlation between real-time three-dimensional ultrasound in diagnosis of left ventricular function, portal hemodynamics and severity of liver function in patients with liver cirrhosis.Method...Objective:To analyze the correlation between real-time three-dimensional ultrasound in diagnosis of left ventricular function, portal hemodynamics and severity of liver function in patients with liver cirrhosis.Methods: 90 patients with cirrhosis admitted to our hospital from January 2017 to December 2018 were enrolled in the cirrhosis group, and the cirrhosis components were group A, B and C according to the Child-Pauh classification criteria. During the same period, 90 healthy subjects who underwent physical examination were selected as the control group;real-time three-dimensional ultrasonography was performed to examine left ventricular function and portal hemodynamic parameters;Pearson correlation was used to analyze left ventricular function, portal hemodynamics and liver. Functional severity relationship.Results: The left heart E and E/A levels in the cirrhosis group were significantly lower than those in the control group (P<0.05), and the A level was significantly higher than the control group (P<0.05). The Dpv and Q levels in the cirrhosis group were significantly higher than those in the healthy control group. The difference was statistically significant (P<0.05), and the level of Vpv was significantly lower than that of healthy controls (P<0.05). There were significant differences in E, A and E/A levels between different Child-Paugh patients (P<0.05). There were significant differences in portal hemodynamics Dpv, Vpv and Q between the different Child-Paugh grades, and the difference was statistically significant (P<0.05);left heart function E and E/A and liver function severity There was a significant negative correlation (P<0.05). There was a significant positive correlation between left cardiac function A and liver function severity (P<0.05). Portal vein hemodynamics Dpv, Vpv and QE were significantly associated with liver function severity. Positive correlation (P<0.05). Conclusion: Real-time three-dimensional ultrasound can effectively detect left ventricular function and portal hemodynamics changes in patients with cirrhosis, and left heart function, portal hemodynamics and liver function severity are significantly correlated.展开更多
Objective:To investigate the value of two-dimensional ultrasound speckle tracking(2D-STI)and three-dimensional ultrasound speckle tracking(3D-STI)in evaluating myocardial function in children with Kawasaki disease.Met...Objective:To investigate the value of two-dimensional ultrasound speckle tracking(2D-STI)and three-dimensional ultrasound speckle tracking(3D-STI)in evaluating myocardial function in children with Kawasaki disease.Methods 92 children with Kawasaki disease admitted to our hospital from February 2017 to February 2019 were retrospectively analyzed.50 children who underwent 3D-STI examination were taken as observation group and 42 children who underwent 2D-STI examination were taken as control group.The left ventricular systolic function index,storage time and analysis time of the image,the diameter of coronary artery,the strain difference of left ventricular basal segment,middle segment,apical segment and whole segment were observed.Results The levels of left ventricular end-diastolic volume(LVEDV),left ventricular end-systolic volume(LVESV),left ventricular myocardial mass(LVMI)in the observation group were higher than those in the control group(P<0.05),but there was no statistical difference in left ventricular ejection fraction(LVEF)between the two groups(P>0.05).The storage time and analysis time of the image in the observation group were significantly lower than those in the control group(P<0.05).The left coronary artery(LCA)and right coronary artery(RCA)in the observation group were higher than those in the control group(P<0.05).There was no statistical difference between left anterior descending(LAD)in the two groups(P>0.05).The longitudinal peak systolic strain(LS),circumferential peak systolic strain(CS)and radial peak systolic strain(RS)in the observation group were higher than those in the control group(P<0.05).The global longitudinal peak strain(GLS),global circumferential peak strain(GCS)and global radial peak strain(GRS)in the observation group were higher than those in the control group(P<0.05).LS and CS in the middle segment of the observation group were higher than those in the control group(P<0.05).Conclusions Compared with 2D-STI,3D-STI can objectively and accurately reflect the myocardial function of children with Kawasaki disease.展开更多
An orthotropic functionally graded piezoelectric rectangular plate with arbitrarily distributed material properties was studied, which is simply supported and grounded(electrically) on its four lateral edges. The st...An orthotropic functionally graded piezoelectric rectangular plate with arbitrarily distributed material properties was studied, which is simply supported and grounded(electrically) on its four lateral edges. The state equations of the functionally graded piezoelectric material were obtained using the state-space approach, and a Peano-Baker series solution was obtained for the coupled electroelastic fi elds of the functionally graded piezoelectric plate subjected to mechanical and electric loading on its upper and lower surfaces. The influence of different distributions of material properties on the structural response of the plate was studied using the obtained solutions.展开更多
This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zer...This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.展开更多
Two kinds of contact problems, i.e., the frictional contact problem and the adhesive contact problem, in three-dimensional (3D) icosahedral quasicrystals are dis- cussed by a complex variable function method. For th...Two kinds of contact problems, i.e., the frictional contact problem and the adhesive contact problem, in three-dimensional (3D) icosahedral quasicrystals are dis- cussed by a complex variable function method. For the frictional contact problem, the contact stress exhibits power singularities at the edge of the contact zone. For the adhe- sive contact problem, the contact stress exhibits oscillatory singularities at the edge of the contact zone. The numerical examples show that for the two kinds of contact problems, the contact stress exhibits singularities, and reaches the maximum value at the edge of the contact zone. The phonon-phason coupling constant has a significant effect on the contact stress intensity, while has little impact on the contact stress distribution regu- lation. The results are consistent with those of the classical elastic materials when the phonon-phason coupling constant is 0. For the adhesive contact problem, the indentation force has positive correlation with the contact displacement, but the phonon-phason cou- pling constant impact is barely perceptible. The validity of the conclusions is verified.展开更多
基金Supported by the Natural Science Foundation of Liaoning ProvinceChina(2013023010)
文摘Objective To evaluate left atrial function in essential hypertension patients with different patterns of left ventricular geometric models by real-time three-dimensional echocardiography (RT-3DE) and left atrial tracking (EAT).
基金Sponsored by National Natural Science Foundation of China(50175095)Provincial Natural Science Foundation of Hebei of China(502173)
文摘A new method,the stream surface strip element method,for simulating the three-dimensional deformation of plate and strip rolling process was proposed.The rolling deformation zone was divided into a number of stream surface(curved surface)strip elements along metal flow traces,and the stream surface strip elements were mapped into the corresponding plane strip elements for analysis and computation.The longitudinal distributions of the lateral displacement and the altitudinal displacement of metal were respectively constructed to be a quartic curve and a quadratic curve,of which the lateral distributions were expressed as the third-power spline function,and the altitudinal distributions were fitted in the quadratic curve.From the flow theory of plastic mechanics,the mathematical models of the three-dimensional deformations and stresses of the deformation zone were constructed.Compared with the streamline strip element method proposed by the first author of this paper,the stream surface strip element method takes into account the uneven distributions of stresses and deformations along altitudinal direction,and realizes the precise three-dimensional analysis and computation.The simulation example of continuous hot rolled strip indicates that the method and the model accord with facts and provide a new reliable engineering-computation method for the three-dimensional mechanics simulation of plate and strip rolling process.
基金Project supported by the National Key Research and Development Program of China (Grant No. 2018YFB0504302)Beijing Institute of Technology Research Fund Program for Young Scholars (Grant No. 202122012)。
文摘Existing three-dimensional(3D) imaging technologies have issues such as requiring active illumination, multiple exposures, or coding modulation. We propose a passive single 3D imaging method based on an ordinary imaging system.Using the point spread function of the imaging system to realize the non-coding measurement on the target, the full-focus images and depth information of the 3D target can be extracted from a single two-dimensional(2D) image through the compressed sensing algorithm. Simulation and experiments show that this approach can complete passive 3D imaging based on an ordinary imaging system without any coding operations. This method can achieve millimeter-level vertical resolution under single exposure conditions and has the potential for real-time dynamic 3D imaging. It improves the efficiency of 3D information detection, reduces the complexity of the imaging system, and may be of considerable value to the field of computer vision and other related applications.
文摘The optimal plane for measurement of the right ventricular (RV) volumes by real-time three-dimensional echocardiography (RT3DE) was determined and the feasibility and accuracy of RT3DE in studying RV systolic function was assessed. RV “Full volume” images were acquired by RT3DE in 22 healthy subjects. RV end-diastolic volumes (RVEDV) and end-systolic volumes (RVESV) were outlined using apical biplane, 4-plane, 8-plane, 16-plane offline separately. RVSV and RVEF were calculated. Meanwhile tricuspid annual systolic excursion (TASE) was measured by M-mode echo. LVSV was outlined by 2-D echo according to the biplane Simpson's rule. The results showed: (1) There was a good correlation between RVSV measured from series planes and LVSV from 2-D echo (r=0.73; r=0.69; r=0.63; r=0.66, P<0.25—0.0025); (2) There were significant differences between RVEDV in biplane and those in 4-, 8-, 16-plane (P<0.001). There was also difference between RV volume in 4-plane and that in 8-plane (P<0.05), but there was no significant difference between RV volume in 8-plane and that in 16-plane (P>0.05); (3) Inter-observers and intro-observers variability analysis showed that there were close agreements and relations for RV volumes (r=0.986, P<0.001; r=0.93, P<0.001); (4) There was a significantly positive correlation of TASE to RVSV and RVEF from RT3DE (r=0.83; r=0.90). So RV volume measures with RT3DE are rapid, accurate and reproducible. In view of RV's complex shape, apical 8-plane method is better in clinical use. It may allow early detection of RV systolic function.
文摘This work has a two-fold purpose.On the one hand,the theoretical formulation of a three-dimensional(3D)acoustic propagation model for shallow waters with a constant sound speed is presented,based on the boundary element method(BEM),which uses a half-space Green function instead of the more conventional free-space Green function.On the other hand,a numerical implementation is illustrated to explore the formulation in simple idealized cases,controlled by a few parameters,which provides necessary tests for the accuracy and performance of the model.The half-space Green's function,which has been previously used in scattering and diffraction,adds terms to the usual expressions of the integral operators without altering their continuity properties.Verifications against the wavenumber integration solution of the Pekeris waveguide suggest that the model allows an adequate prediction for the acoustic field.Likewise,numerical experiments in relation to the necessary mesh size for the description of the water-marine sediment interface lead to the conclusion that a transmission loss prediction with acceptable accuracy can be obtained with the use of a limited mesh around the desired evaluation region.
基金Project supported by the National Natural Sciences Foundation of China(No.10432030).
文摘A three-dimensional analysis of a simply-supported functionally graded rectangular plate with an arbitrary distribution of material properties is made using a simple and effective method based on the Haar wavelet. With good features in treating singularities, Haar series solution converges rapidly for arbitrary distributions, especially for the case where the material properties change rapidly in some regions. Through numerical examples the influences of the ratio of material constants on the top and bottom surfaces and different material gradient distributions on the structural response of the plate to mechanical stimuli are studied.
基金supported by the National Natural Science Foundation of China,No.30571913a grant from the Science and Technology Project of Guangdong Province of China,No.2013B010404019+1 种基金the Natural Science Foundation of Guangdong Province of China,No.9151008901000006the Medical Scientific Research Foundation of Guangdong Province of China,No.A2009173
文摘The three-dimensional(3D) visualization of the functional bundles in the peripheral nerve provides direct and detailed intraneural spatial information. It is useful for selecting suitable surgical methods to repair nerve defects and in optimizing the construction of tissue-engineered nerve grafts. However, there remain major technical hurdles in obtaining, registering and interpreting 2D images, as well as in establishing 3D models. Moreover, the 3D models are plagued by poor accuracy and lack of detail and cannot completely reflect the stereoscopic microstructure inside the nerve. To explore and help resolve these key technical problems of 3D reconstruction, in the present study, we designed a novel method based on re-imaging techniques and computer image layer processing technology. A 20-cm ulnar nerve segment from the upper arm of a fresh adult cadaver was used for acetylcholinesterase(ACh E) staining. Then, 2D panoramic images were obtained before and after ACh E staining under the stereomicroscope. Using layer processing techniques in Photoshop, a space transformation method was used to fulfill automatic registration. The contours were outlined, and the 3D rendering of functional fascicular groups in the long-segment ulnar nerve was performed with Amira 4.1 software. The re-imaging technique based on layer processing in Photoshop produced an image that was detailed and accurate. The merging of images was accurate, and the whole procedure was simple and fast. The least square support vector machine was accurate, with an error rate of only 8.25%. The 3D reconstruction directly revealed changes in the fusion of different nerve functional fascicular groups. In conclusion. The technique is fast with satisfactory visual reconstruction.
基金supported by National Natural Science Funds for Young Scholar(No.50903027)the Natural Science Foundation of Hebei Province(No.E2010000058)Education Department Science Research Plan of Hebei Province(No.2007307).
文摘A versatile and effective method for incorporating functional groups on the pore wall of three-dimensionally ordered macroporous cross-linked polystyrene(3DOM CLPS) by hydrophilic spacer arm has been investigated.The 3DOM CLPS with pore size 865 nm was prepared by sacrifice template method.The hydrophilic spacer arm(polyethylene glycol,molecular weight is 600) was grafted to the 3DOM CLPS via nucleophilic substitution reaction.The other side of active hydroxyl can be further converted into a lot of other functional groups.In this report,the chelating ligand 2-mercaptobenzothiazole(MBZ) group was introduced on the end of the PGE chain to evidence the versatile functionalization approach.The functionalized ordered macroporous materials were characterized by FT-IR,element analyzer,SEM.The results reveal that the pores were successfully bonded with 2-mercaptobenzothiazole groups via hydrophilic spacer arms and the original morphology of ordered macroporous materials were remained after functionalization.The MBZ group density is 0.052 mmol/m^2.The functionalized 3DOM CLPS are expected to application as heavy metal ions adsorbent.
基金Project(2017YFC0404802)supported by the National Key R&D Program of ChinaProjects(U1965206,51979143)supported by the National Natural Science Foundation of China。
文摘In the finite element method,the numerical simulation of three-dimensional crack propagation is relatively rare,and it is often realized by commercial programs.In addition to the geometric complexity,the determination of the cracking direction constitutes a great challenge.In most cases,the local stress state provides the fundamental criterion to judge the presence of cracks and the direction of crack propagation.However,in the case of three-dimensional analysis,the coordination relationship between grid elements due to occurrence of cracks becomes a difficult problem for this method.In this paper,based on the extended finite element method,the stress-related function field is introduced into the calculation domain,and then the boundary value problem of the function is solved.Subsequently,the envelope surface of all propagation directions can be obtained at one time.At last,the possible surface can be selected as the direction of crack development.Based on the aforementioned procedure,such method greatly reduces the programming complexity of tracking the crack propagation.As a suitable method for simulating tension-induced failure,it can simulate multiple cracks simultaneously.
基金Supported by the National High-tech R&D Program (“863” Program) of China,No. 2010AA023007
文摘BACKGROUND The quality of life in patients who develop low anterior resection syndrome(LARS)after surgery for mid-low rectal cancer is seriously impaired.The underlying pathophysiological mechanism of LARS has not been fully investigated.AIM To assess anorectal function of mid-low rectal cancer patients developing LARS perioperatively.METHODS Patients diagnosed with mid-low rectal cancer were included.The LARS score was used to evaluate defecation symptoms 3 and 6 mo after anterior resection or a stoma reversal procedure.Anorectal functions were assessed by threedimensional high resolution anorectal manometry preoperatively and 3-6 mo after surgery.RESULTS The study population consisted of 24 patients.The total LARS score was decreased at 6 mo compared with 3 mo after surgery(P<0.05),but 58.3%(14/24)lasted as major LARS at 6 mo after surgery.The length of the high-pressure zone of the anal sphincter was significantly shorter,the mean resting pressure and maximal squeeze pressure of the anus were significantly lower than those before surgery in allpatients (P < 0.05), especially in the neoadjuvant therapy group after surgery (n = 18). The focalpressure defects of the anal canal were detected in 70.8% of patients, and those patients had higherLARS scores at 3 mo postoperatively than those without focal pressure defects (P < 0.05). Spasticperistaltic contractions from the new rectum to anus were detected in 45.8% of patients, whichwere associated with a higher LARS score at 3 mo postoperatively (P < 0.05).CONCLUSIONThe LARS score decreases over time after surgery in the majority of patients with mid-low rectalcancer. Anorectal dysfunctions, especially focal pressure defects of the anal canal and spasticperistaltic contractions from the new rectum to anus postoperatively, might be the majorpathophysiological mechanisms of LARS.
文摘Several kinds of stream ciphers—complementary sequences of period sequences,partial sum of period sequences,inverse order sequences and finitely generated sequences,arestudied by using techniques of generating functions.Their minimal polynomials,periods,as wellas generating functions are given.As to finitely generated sequences,the change of their linearcomplexity profiles as well as the relationship between the two generated sequences usder thecase in which the degree of connected polynomials are fixed,are discussed.
基金Project supported by the National Natural Science Foundation of China(Nos.51108412,11472244,and 11202186)the National Basic Research Program of China(973 Program)(No.2013CB035901)+1 种基金the Fundamental Research Funds for the Central Universities(No.2014QNA4017)the Zhejiang Provincial Natural Science Foundation of China(No.LR13A020001)
文摘Three-dimensional elasticity solutions for static bending of thick functionally graded plates are presented using a hybrid semi-analytical approach-the state-space based differential quadrature method (SSDQM). The plate is generally supported at four edges for which the two-way differential quadrature method is used to solve the in-plane variations of the stress and displacement fields numerically. An approximate laminate model (ALM) is exploited to reduce the inhomogeneous plate into a multi-layered laminate, thus applying the state space method to solve analytically in the thickness direction. Both the convergence properties of SSDQM and ALM are examined. The SSDQM is validated by comparing the numerical results with the exact solutions reported in the literature. As an example, the Mori-Tanaka model is used to predict the effective bulk and shear moduli. Effects of gradient index and aspect ratios on the bending behavior of functionally graded thick plates are investigated.
基金Project supported by the National Natural Science Foundation of China(Nos.11372340 and 11732016)
文摘A new physical structure of vortical flow, i.e., tubular limiting stream surface(TLSS), is reported. It is defined as a general mathematical structure for the physical flow field in the neighborhood of a singularity, and has a close relationship with limit cycles.The TLSS is a tornado-like structure, which separates a vortex into two regions, i.e., the inner region near the vortex axis and the outer region further away from the vortex axis.The flow particles in these two regions can approach to(or leave) the TLSS, but never could reach it.
基金the China Scholarship Council under Grant No.201406070059.
文摘Three-dimensional(3D)shape registration is a challenging problem,especially for shapes under non-rigid transformations.In this paper,a 3D non-rigid shape registration method is proposed,called balanced functional maps(BFM).The BFM algorithm generalizes the point-based correspondence to functions.By choosing the Laplace-Beltrami eigenfunctions as the function basis,the transformations between shapes can be represented by the functional map(FM)matrix.In addition,many constraints on shape registration,such as the feature descriptor,keypoint,and salient region correspondence,can be formulated linearly using the matrix.By bi-directionally searching for the nearest neighbors of points’indicator functions in the function space,the point-based correspondence can be derived from FMs.We conducted several experiments on the Topology and Orchestration Specification for Cloud Applications(TOSCA)dataset and the Shape Completion and Animation of People(SCAPE)dataset.Experimental results show that the proposed BFM algorithm is effective and has superior performance than the state-of-the-art methods on both datasets.
基金This project was supported by a grant from Guangdong Provincial Natural Sciences Foundation (No 05300738)
文摘The volume-time curve change in patients with normal left ventricular (LV) diastolic function and diastolic dysfunction was evaluated by real-time three-dimensional echocardiography (RT3DE). LV diastolic dysfunction was defined by E'〈A' in pulse-wave tissue Doppler for inter-ventricular septal (IVS) of mitral annulus. In 24 patients with LV diastolic dysfunction, including 12 patients with delayed relaxation (delayed relaxation group) and 12 patients with pseudo-normal function (pseudo-normal group) and 24 normal volunteers (control group), data of full-volume image were acquired by real-time three-dimensional echocardiography and subjected to volume-time curve analysis. EDV (end-diastolic volume), ESV (end-systolic volume), LVEF (left ventricular ejection fraction), PER (peak ejection rate), PFR (peak filling rate) from RT3DE were examined in the three groups. Compared to the control group, PFR (diastolic filling index of RT3DE) was significantly reduced in the delayed relaxation group and pseudo-normal group (P〈0.05). There were no significant differences in EDV, ESV, LVEE PER (P〉0.05). It is concluded that PFR, as a diastolic filling index of RT3DE, can reflect the early diastolic function and serve as a new non-invasive, quick and accurate tool for clinical assessment of LV diastolic function.
文摘Objective:To analyze the correlation between real-time three-dimensional ultrasound in diagnosis of left ventricular function, portal hemodynamics and severity of liver function in patients with liver cirrhosis.Methods: 90 patients with cirrhosis admitted to our hospital from January 2017 to December 2018 were enrolled in the cirrhosis group, and the cirrhosis components were group A, B and C according to the Child-Pauh classification criteria. During the same period, 90 healthy subjects who underwent physical examination were selected as the control group;real-time three-dimensional ultrasonography was performed to examine left ventricular function and portal hemodynamic parameters;Pearson correlation was used to analyze left ventricular function, portal hemodynamics and liver. Functional severity relationship.Results: The left heart E and E/A levels in the cirrhosis group were significantly lower than those in the control group (P<0.05), and the A level was significantly higher than the control group (P<0.05). The Dpv and Q levels in the cirrhosis group were significantly higher than those in the healthy control group. The difference was statistically significant (P<0.05), and the level of Vpv was significantly lower than that of healthy controls (P<0.05). There were significant differences in E, A and E/A levels between different Child-Paugh patients (P<0.05). There were significant differences in portal hemodynamics Dpv, Vpv and Q between the different Child-Paugh grades, and the difference was statistically significant (P<0.05);left heart function E and E/A and liver function severity There was a significant negative correlation (P<0.05). There was a significant positive correlation between left cardiac function A and liver function severity (P<0.05). Portal vein hemodynamics Dpv, Vpv and QE were significantly associated with liver function severity. Positive correlation (P<0.05). Conclusion: Real-time three-dimensional ultrasound can effectively detect left ventricular function and portal hemodynamics changes in patients with cirrhosis, and left heart function, portal hemodynamics and liver function severity are significantly correlated.
基金Shaanxi key research and development plan(No.2019SF-211).
文摘Objective:To investigate the value of two-dimensional ultrasound speckle tracking(2D-STI)and three-dimensional ultrasound speckle tracking(3D-STI)in evaluating myocardial function in children with Kawasaki disease.Methods 92 children with Kawasaki disease admitted to our hospital from February 2017 to February 2019 were retrospectively analyzed.50 children who underwent 3D-STI examination were taken as observation group and 42 children who underwent 2D-STI examination were taken as control group.The left ventricular systolic function index,storage time and analysis time of the image,the diameter of coronary artery,the strain difference of left ventricular basal segment,middle segment,apical segment and whole segment were observed.Results The levels of left ventricular end-diastolic volume(LVEDV),left ventricular end-systolic volume(LVESV),left ventricular myocardial mass(LVMI)in the observation group were higher than those in the control group(P<0.05),but there was no statistical difference in left ventricular ejection fraction(LVEF)between the two groups(P>0.05).The storage time and analysis time of the image in the observation group were significantly lower than those in the control group(P<0.05).The left coronary artery(LCA)and right coronary artery(RCA)in the observation group were higher than those in the control group(P<0.05).There was no statistical difference between left anterior descending(LAD)in the two groups(P>0.05).The longitudinal peak systolic strain(LS),circumferential peak systolic strain(CS)and radial peak systolic strain(RS)in the observation group were higher than those in the control group(P<0.05).The global longitudinal peak strain(GLS),global circumferential peak strain(GCS)and global radial peak strain(GRS)in the observation group were higher than those in the control group(P<0.05).LS and CS in the middle segment of the observation group were higher than those in the control group(P<0.05).Conclusions Compared with 2D-STI,3D-STI can objectively and accurately reflect the myocardial function of children with Kawasaki disease.
基金Funded by the National Natural Science Foundation of China(Nos.11102136 and 41362016)the Open Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety(No.2013ZDK09)
文摘An orthotropic functionally graded piezoelectric rectangular plate with arbitrarily distributed material properties was studied, which is simply supported and grounded(electrically) on its four lateral edges. The state equations of the functionally graded piezoelectric material were obtained using the state-space approach, and a Peano-Baker series solution was obtained for the coupled electroelastic fi elds of the functionally graded piezoelectric plate subjected to mechanical and electric loading on its upper and lower surfaces. The influence of different distributions of material properties on the structural response of the plate was studied using the obtained solutions.
基金supported by the Development of airborne gravity gradiometer(No.2017YFC0601601)open subject of Key Laboratory of Petroleum Resources Research,Institute of Geology and Geophysics,Chinese Academy of Sciences(No.KLOR2018-8)
文摘This research proposes a novel three-dimensional gravity inversion based on sparse recovery in compress sensing. Zero norm is selected as the objective function, which is then iteratively solved by the approximate zero norm solution. The inversion approach mainly employs forward modeling; a depth weight function is introduced into the objective function of the zero norms. Sparse inversion results are obtained by the corresponding optimal mathematical method. To achieve the practical geophysical and geological significance of the results, penalty function is applied to constrain the density values. Results obtained by proposed provide clear boundary depth and density contrast distribution information. The method's accuracy, validity, and reliability are verified by comparing its results with those of synthetic models. To further explain its reliability, a practical gravity data is obtained for a region in Texas, USA is applied. Inversion results for this region are compared with those of previous studies, including a research of logging data in the same area. The depth of salt dome obtained by the inversion method is 4.2 km, which is in good agreement with the 4.4 km value from the logging data. From this, the practicality of the inversion method is also validated.
基金supported by the National Natural Science Foundation of China(Nos.11362018,11261045,and 11261401)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20116401110002)
文摘Two kinds of contact problems, i.e., the frictional contact problem and the adhesive contact problem, in three-dimensional (3D) icosahedral quasicrystals are dis- cussed by a complex variable function method. For the frictional contact problem, the contact stress exhibits power singularities at the edge of the contact zone. For the adhe- sive contact problem, the contact stress exhibits oscillatory singularities at the edge of the contact zone. The numerical examples show that for the two kinds of contact problems, the contact stress exhibits singularities, and reaches the maximum value at the edge of the contact zone. The phonon-phason coupling constant has a significant effect on the contact stress intensity, while has little impact on the contact stress distribution regu- lation. The results are consistent with those of the classical elastic materials when the phonon-phason coupling constant is 0. For the adhesive contact problem, the indentation force has positive correlation with the contact displacement, but the phonon-phason cou- pling constant impact is barely perceptible. The validity of the conclusions is verified.