The effect of varying the temperature and the concentration of ammonium nitrate solution on the stress corrosion cracking (SCC) susceptibility of mild steel is studied. An increase in the temperature causes a decrease...The effect of varying the temperature and the concentration of ammonium nitrate solution on the stress corrosion cracking (SCC) susceptibility of mild steel is studied. An increase in the temperature causes a decrease in the stress corrosion life. It appears that the susceptibility in the range 368 K to 380 K was greater than at other temperatures. Near the boiling point corrosion and stress corrosion occurs, at the boiling point, the cracking was associated with a high rate of general corrosion. Microscopic examination after stress corrosion testing in 10Wt%, 20Wt%, and 52Wt% NH4NO3 solution revealed that in all cases there was severe intergranular attack, especially at the high concentration.展开更多
Objective: To analyze the biomechanical elements of Nitinol Patellar Concentrator (NT-PC) in heating commi nuted patellar fractures. Methods: The epoxy resin three dimensional photoelasticity pobal model was loaded wi...Objective: To analyze the biomechanical elements of Nitinol Patellar Concentrator (NT-PC) in heating commi nuted patellar fractures. Methods: The epoxy resin three dimensional photoelasticity pobal model was loaded with Nitinol Patellar Connector and frozen. After dividing layer, photographing and tracing, iterative method was used to calculate the stress value of every tuteed node. Rasults: Stress values of 1 262 nodes scattered in 12 layers were obtained The stress distribution indicated that an overall stress field was yield when the NT-PC fixated the patellar model, and there existed fixative stress in the facies articularis and distal pole of the patellar model. Conclusion: The NT-PC has evident therapeutic effect for the comminuted patellar fractures. The existing stress is helpful in maintaining anatomical reduction and enhancing fracture healing.展开更多
The theoretical solutions are obtained for the three-dimensional(3-D)stress field in an infinite isotropic elastic plate with a through-the-thickness circular hole subjected to shear load at far field by using Kane an...The theoretical solutions are obtained for the three-dimensional(3-D)stress field in an infinite isotropic elastic plate with a through-the-thickness circular hole subjected to shear load at far field by using Kane and Mindlin′s assumption based on the stress function method.Based on the present solutions,the characteristics of 3-D stress field are analyzed and the emphasis is placed on the effects of the plate thickness and Poisson′s ratio on the deviation of the present 3-D in-plane stress from the related plane stress solutions,the stress concentration and the out-of-plane constraint.The present solutions show that the stress concentration factor reaches its peak value of about 8.9% which is higher than that of the plane stress solutions.As expected,the out-of-plane stress constraint factor can reach 1on the surface of the hole when the plate is a very thick one.展开更多
The presence of porosities in bone cement (polymethylmethacrylate) in total hip prosthesis (THP) cemented is necessary for the diffusion of antibiotics, but it is a critical characteristic of weakening by the effect o...The presence of porosities in bone cement (polymethylmethacrylate) in total hip prosthesis (THP) cemented is necessary for the diffusion of antibiotics, but it is a critical characteristic of weakening by the effect of stress concentration and the interconnecting pores. The aim of this study was to analyse by the finite element method (FEM), the size influence of micro-cavities in cement assuming the junction cup-bone, and the effect of cavity-cavity interaction on the stress level and distribution in cement according to the human stance defined by the implant position axis compared to that of the cup.展开更多
In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimension...In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimensional high stressed red sandstone subjected to unloading and impact loads,impact compression tests were conducted on red sandstone under confining pressure unloading conditions using a modified split Hopkinson pressure bar.Impact disturbance tests of uniaxial pre-stressed rock were also conducted(without considering confining pressure unloading effect).The results demonstrate that the impact compression strength of red sandstone shows an obvious strain rate effect.With an approximately equal strain rate,the dynamic strength of red sandstone under confining unloading conditions is less than that in the uniaxial pre-stressed impact compression test.Confining pressure unloading produces a strength-weakening effect,and the dynamic strength weakening factor(DSWF)is also defined.The results also indicate that the strain rate of the rock and the incident energy change in a logarithmic relation.With similar incident energies,unloading results in a higher strain rate in pre-stressed rock.According to the experimental analysis,unloading does not affect the failure mode,but reduces the dynamic strength of pre-stressed rock.The influence of confining pressure unloading on the shear strength parameters(cohesion and friction angle)is discussed.Under the same external energy impact compression,prestressed rock subjected to unloading is more likely to be destroyed.Thus,the effect of unloading on the rock mechanical characteristics should be considered in deep rock project excavation design.展开更多
The methods of complex function, multi-polar coordinate system, and conformal mapping are used to solve dynamic stress concentration factor. The surface elasticity theory is applied to obtain the stress boundary condi...The methods of complex function, multi-polar coordinate system, and conformal mapping are used to solve dynamic stress concentration factor. The surface elasticity theory is applied to obtain the stress boundary conditions on the surface. The effects of frequency and the ration of the major and minor axis of the ellipse on the dynamic stress concentration factor around the elliptical nano-hole are discussed in detail. When the size of elliptical hole shrinks to nanometers, the numerical results show that the surface effect has a significant effect on the scattering of SH-wave.展开更多
This paper presents the effects of surface effects in the cavity of variable curvature. The wave function expansion method and the conformal mapping method are used in the solution of dynamic stress concentration fact...This paper presents the effects of surface effects in the cavity of variable curvature. The wave function expansion method and the conformal mapping method are used in the solution of dynamic stress concentration factor around an irregularly shaped cavity at nano-scale. The stress boundary conditions on the surface are obtained by using the generalized Young-Laplace equation. The results show that the degree of stress concentration becomes more obvious with curvature increasing. Taking the elliptical cavity as an example, the influence of the ration of the major and minor axis of the ellipse, the numbers of the incident wave and the surface effects on the dynamic stress concentration factor are analyzed. The ration of the major and minor axis, the incident wave frequency and the surface effects show the pronounced effects on the dynamic stress concentration distributions.展开更多
Stress raisers such as holes are inevitable in structures at which stress concentration occurs and the static as well as fatigue strength of the structures can be significantly weakened. Therefore, to accurately evalu...Stress raisers such as holes are inevitable in structures at which stress concentration occurs and the static as well as fatigue strength of the structures can be significantly weakened. Therefore, to accurately evaluate the stress concentration factor and stress fields at holes is of essential importance for structure design and service life prediction. Although stress and strain concentration and fields at holes in finite thickness plates strongly change with and along the thickness, manuals of stress concentration for engineering design are mainly based on twodimensional theory and no explicit formula is available even for circular holes in finite thickness plates. Here we obtain for the first time a complete set of explicit formulae for stress and strain concentration factors and the out-of-plane constraint factor at circular as well as elliptical holes in finite thickness plates by integrating comprehensive three-dimensional finite element analyses and available theoretical solutions. The three-dimensional stress distributions ahead of holes can also be predicted by the obtained formulae. With their accuracy and the corresponding applicable range being analyzed and outlined in detail, the formulae can serve as an important fundamental solution for three-dimensional engineering structure design and guideline for developing threedimensional analytical methods.展开更多
In this study, the (SCF) in cross-and-angle-ply stress concentration factors laminated composite plates as well as in isotropic plates with single circular holes subjected to uniaxial loading is studied. A quadrilat...In this study, the (SCF) in cross-and-angle-ply stress concentration factors laminated composite plates as well as in isotropic plates with single circular holes subjected to uniaxial loading is studied. A quadrilateral finite element of four-node with 32 degrees of freedom at each node, previously developed for the bending and mechanical buckling of laminated composite plates, is used to evaluate the stress distribution in laminated composite plates with central circular holes. Based up on the classical plate theory, the present finite element is a combination of a linear isoparametric membrane element and a high precision rectangular Hermitian element. The numerical results obtained by the present element compare favorably with those obtained by the analytic approaches published in literature. It is observed that the obtained results are very close to the reference results, which demonstrates the accuracy of the present element. Additionally, to determine the first ply failure (FPF) of laminated plate, several failure criterions are employed. Finally, to show the effect of E1/E2 ratio on the failure of plates, a number of figures are given for different fiber orientation angles.展开更多
By using the finite element method,three-dimensional models of a number of periodic blunt and sharp notches subjected to tension loading are investigated.The aim of this research is to investigate the thickness effect...By using the finite element method,three-dimensional models of a number of periodic blunt and sharp notches subjected to tension loading are investigated.The aim of this research is to investigate the thickness effect on the location of maximum stress and notch stress intensity factor(NSIF)of corresponding blunt and sharp periodic notches respectively.With this aim,different number of periodic notches as well as different notch opening angles are examined.While for two-dimensional plates weakened by periodic notches some results are available in the literature,this paper first faces the problem of three-dimensional cases.A total of about 100 geometrical configurations are investigated.It is found that,the effect of plate thickness of periodic notched components can be characterized by the relative value with respect to the depth of the notch(H/t).For the blunt periodic notches with relatively higher values of H/t ratio,the value of the maximum tensile stress is located near the free surface.On the contrary for lower values of H/t,it is placed at the middle plane.The same behaviour is observed for sharp periodic notches in terms of notch stress intensity factors.展开更多
文摘The effect of varying the temperature and the concentration of ammonium nitrate solution on the stress corrosion cracking (SCC) susceptibility of mild steel is studied. An increase in the temperature causes a decrease in the stress corrosion life. It appears that the susceptibility in the range 368 K to 380 K was greater than at other temperatures. Near the boiling point corrosion and stress corrosion occurs, at the boiling point, the cracking was associated with a high rate of general corrosion. Microscopic examination after stress corrosion testing in 10Wt%, 20Wt%, and 52Wt% NH4NO3 solution revealed that in all cases there was severe intergranular attack, especially at the high concentration.
文摘Objective: To analyze the biomechanical elements of Nitinol Patellar Concentrator (NT-PC) in heating commi nuted patellar fractures. Methods: The epoxy resin three dimensional photoelasticity pobal model was loaded with Nitinol Patellar Connector and frozen. After dividing layer, photographing and tracing, iterative method was used to calculate the stress value of every tuteed node. Rasults: Stress values of 1 262 nodes scattered in 12 layers were obtained The stress distribution indicated that an overall stress field was yield when the NT-PC fixated the patellar model, and there existed fixative stress in the facies articularis and distal pole of the patellar model. Conclusion: The NT-PC has evident therapeutic effect for the comminuted patellar fractures. The existing stress is helpful in maintaining anatomical reduction and enhancing fracture healing.
基金Supported by the National Natural Science Foundation of China(11372269,10902057)
文摘The theoretical solutions are obtained for the three-dimensional(3-D)stress field in an infinite isotropic elastic plate with a through-the-thickness circular hole subjected to shear load at far field by using Kane and Mindlin′s assumption based on the stress function method.Based on the present solutions,the characteristics of 3-D stress field are analyzed and the emphasis is placed on the effects of the plate thickness and Poisson′s ratio on the deviation of the present 3-D in-plane stress from the related plane stress solutions,the stress concentration and the out-of-plane constraint.The present solutions show that the stress concentration factor reaches its peak value of about 8.9% which is higher than that of the plane stress solutions.As expected,the out-of-plane stress constraint factor can reach 1on the surface of the hole when the plate is a very thick one.
文摘The presence of porosities in bone cement (polymethylmethacrylate) in total hip prosthesis (THP) cemented is necessary for the diffusion of antibiotics, but it is a critical characteristic of weakening by the effect of stress concentration and the interconnecting pores. The aim of this study was to analyse by the finite element method (FEM), the size influence of micro-cavities in cement assuming the junction cup-bone, and the effect of cavity-cavity interaction on the stress level and distribution in cement according to the human stance defined by the implant position axis compared to that of the cup.
基金Projects(42077244,41877272)supported by the National Natural Science Foundation of ChinaProject(2020-05)supported by the Open Research Fund of Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization,China。
文摘In the process of deep projects excavation,deep rock often experiences a full stress process from high stress to unloading and then to impact disturbance failure.To study the dynamic characteristics of three-dimensional high stressed red sandstone subjected to unloading and impact loads,impact compression tests were conducted on red sandstone under confining pressure unloading conditions using a modified split Hopkinson pressure bar.Impact disturbance tests of uniaxial pre-stressed rock were also conducted(without considering confining pressure unloading effect).The results demonstrate that the impact compression strength of red sandstone shows an obvious strain rate effect.With an approximately equal strain rate,the dynamic strength of red sandstone under confining unloading conditions is less than that in the uniaxial pre-stressed impact compression test.Confining pressure unloading produces a strength-weakening effect,and the dynamic strength weakening factor(DSWF)is also defined.The results also indicate that the strain rate of the rock and the incident energy change in a logarithmic relation.With similar incident energies,unloading results in a higher strain rate in pre-stressed rock.According to the experimental analysis,unloading does not affect the failure mode,but reduces the dynamic strength of pre-stressed rock.The influence of confining pressure unloading on the shear strength parameters(cohesion and friction angle)is discussed.Under the same external energy impact compression,prestressed rock subjected to unloading is more likely to be destroyed.Thus,the effect of unloading on the rock mechanical characteristics should be considered in deep rock project excavation design.
文摘The methods of complex function, multi-polar coordinate system, and conformal mapping are used to solve dynamic stress concentration factor. The surface elasticity theory is applied to obtain the stress boundary conditions on the surface. The effects of frequency and the ration of the major and minor axis of the ellipse on the dynamic stress concentration factor around the elliptical nano-hole are discussed in detail. When the size of elliptical hole shrinks to nanometers, the numerical results show that the surface effect has a significant effect on the scattering of SH-wave.
文摘This paper presents the effects of surface effects in the cavity of variable curvature. The wave function expansion method and the conformal mapping method are used in the solution of dynamic stress concentration factor around an irregularly shaped cavity at nano-scale. The stress boundary conditions on the surface are obtained by using the generalized Young-Laplace equation. The results show that the degree of stress concentration becomes more obvious with curvature increasing. Taking the elliptical cavity as an example, the influence of the ration of the major and minor axis of the ellipse, the numbers of the incident wave and the surface effects on the dynamic stress concentration factor are analyzed. The ration of the major and minor axis, the incident wave frequency and the surface effects show the pronounced effects on the dynamic stress concentration distributions.
基金supported by the National Natural Science Foundation of China (51535005,51472117)the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures (MCMS-I-0418K01,MCMS-I-0418Y01,MCMS-0417G02, MCMS-0417G03)+1 种基金the Fundamental Research Funds for the Central Universities (NP2017101, NC2018001)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.The authors would like to thank Dr. Chongmin She for helpful discussions).
文摘Stress raisers such as holes are inevitable in structures at which stress concentration occurs and the static as well as fatigue strength of the structures can be significantly weakened. Therefore, to accurately evaluate the stress concentration factor and stress fields at holes is of essential importance for structure design and service life prediction. Although stress and strain concentration and fields at holes in finite thickness plates strongly change with and along the thickness, manuals of stress concentration for engineering design are mainly based on twodimensional theory and no explicit formula is available even for circular holes in finite thickness plates. Here we obtain for the first time a complete set of explicit formulae for stress and strain concentration factors and the out-of-plane constraint factor at circular as well as elliptical holes in finite thickness plates by integrating comprehensive three-dimensional finite element analyses and available theoretical solutions. The three-dimensional stress distributions ahead of holes can also be predicted by the obtained formulae. With their accuracy and the corresponding applicable range being analyzed and outlined in detail, the formulae can serve as an important fundamental solution for three-dimensional engineering structure design and guideline for developing threedimensional analytical methods.
文摘In this study, the (SCF) in cross-and-angle-ply stress concentration factors laminated composite plates as well as in isotropic plates with single circular holes subjected to uniaxial loading is studied. A quadrilateral finite element of four-node with 32 degrees of freedom at each node, previously developed for the bending and mechanical buckling of laminated composite plates, is used to evaluate the stress distribution in laminated composite plates with central circular holes. Based up on the classical plate theory, the present finite element is a combination of a linear isoparametric membrane element and a high precision rectangular Hermitian element. The numerical results obtained by the present element compare favorably with those obtained by the analytic approaches published in literature. It is observed that the obtained results are very close to the reference results, which demonstrates the accuracy of the present element. Additionally, to determine the first ply failure (FPF) of laminated plate, several failure criterions are employed. Finally, to show the effect of E1/E2 ratio on the failure of plates, a number of figures are given for different fiber orientation angles.
文摘By using the finite element method,three-dimensional models of a number of periodic blunt and sharp notches subjected to tension loading are investigated.The aim of this research is to investigate the thickness effect on the location of maximum stress and notch stress intensity factor(NSIF)of corresponding blunt and sharp periodic notches respectively.With this aim,different number of periodic notches as well as different notch opening angles are examined.While for two-dimensional plates weakened by periodic notches some results are available in the literature,this paper first faces the problem of three-dimensional cases.A total of about 100 geometrical configurations are investigated.It is found that,the effect of plate thickness of periodic notched components can be characterized by the relative value with respect to the depth of the notch(H/t).For the blunt periodic notches with relatively higher values of H/t ratio,the value of the maximum tensile stress is located near the free surface.On the contrary for lower values of H/t,it is placed at the middle plane.The same behaviour is observed for sharp periodic notches in terms of notch stress intensity factors.