In this paper, we present an algorithm for reconstruction of B-spline surface such that it interpolates the four given bound- ary curves and simultaneously approximates some given inner points. The main idea of our me...In this paper, we present an algorithm for reconstruction of B-spline surface such that it interpolates the four given bound- ary curves and simultaneously approximates some given inner points. The main idea of our method is: first, we construct an initial surface which interpolates the four given boundary curves; then, while keeping the boundary control points of the initial surface un- changed, we reposition the inner control points of the surface with energy optimization method. Examples show that our algorithm is practicable and effective.展开更多
High resolution data have become an important source of data, before they can be integrating into a GIS database. It requires processing for ortho-rectification to generate image map with high accuracy and low cost. U...High resolution data have become an important source of data, before they can be integrating into a GIS database. It requires processing for ortho-rectification to generate image map with high accuracy and low cost. Using surface splines interpolation for rectification is quite different with traditional grid method in photogrammetric. To introduce surface splines is important. In fact the actual name is mechanical surface splines because it must add mechanical conditions to form the formula. The main advantages of the surface splines are that the coordinate of the known points are not located in a rectangular array and the function may be differentiated in find slopes. Surface splines are a mathematical tool to interpolate a function of two variables. It bases upon small deflection equation of an infinite plate, it originally developed for interpolation wing deflection of aircraft 1972 by Harderaed and Desmarais contributed. An example map size is beyond the custom. Only five control points for rectification (60 cm × 200 cm) if the number of control points is increasing also the map size increasing large and operating easy. The other UAV in Civilian world gives low cost. Obvious aerial imaging using surface splines in cartographic is a tool for supporting geospatial decisions.展开更多
We used data from 1960.0,1970.0,1980.0,1990.0,and 2000.0 to study the geomagnetic anomaly field over the Chinese mainland by using the three-dimensional Taylor polynomial(3DTP) and the surface spline(SS) models.To...We used data from 1960.0,1970.0,1980.0,1990.0,and 2000.0 to study the geomagnetic anomaly field over the Chinese mainland by using the three-dimensional Taylor polynomial(3DTP) and the surface spline(SS) models.To obtain the pure anomaly field,the main field and the induced field of the ionospheric and magnetospheric fields were removed from measured data.We also compared the SS model anomalies and the data obtained with Kriging interpolation(KI).The geomagnetic anomaly distribution over the mainland was analyzed based on the SS and 3DTP models by transferring all points from 1960.0-1990.0 to 2000.0.The results suggest that the total intensity F anomalies estimated based on the SS and KI for each year are basically consistent in distribution and intensity.The anomalous distributions in the X-,Y-,and Z-direction and F are mainly negative.The 3DTP model anomalies suggest that the intensity in the X-direction increases from-100 nT to 0 nT with longitude,whereas the intensity in the Y-direction decreases from 400 nT to 20 nT with longitude and over the eastern mainland is almost negative.The intensity in the Z-direction and F are very similar and in most areas it is about-50 nT and higher in western Tibet.The SS model anomalies overall reflect the actual distribution of the magnetic field anomalies;however,because of the uneven distribution of measurements,it yields several big anomalies.Owing to the added altitude term,the 3DTP model offers higher precision and is consistent with KI.展开更多
Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface te...Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM.展开更多
Surface observations and CHAMP measurement data are employed to develop a three-dimensional surface spline(3DSS)model of China's Mainland.The magnetic field distribution at the satellite level is then demonstrated...Surface observations and CHAMP measurement data are employed to develop a three-dimensional surface spline(3DSS)model of China's Mainland.The magnetic field distribution at the satellite level is then demonstrated using the model obtained.The results of this model are compared and verifi ed by deriving the corresponding two(2DTY)and threedimensional(3DTY)Taylor polynomial models.Issues such as the removal of disruptive geomagnetic fi elds,the data gap between the surface and satellite levels,and boundary eff ects are carefully considered during modeling.We then focus on evaluating the modeling eff ect of the satellite data.Ten satellite points not involved in the modeling procedure are selected,and the residuals,absolute change rates,and RMSEs of these points are calculated.Results show that the distribution of the magnetic fi eld determined by the 3DSS model is highly consistent with that obtained from the IGRF12 model.Expect for component Y,the absolute change rates of other components are less than 0.5%.Specifi cally,the RMSE of Y of 3DSS is nearly 60%lower than those of 3DTY and 2DTY;the RMSE of other components of the former are also over 90%lower than those of the latter.This fi nding implies that the 3DSS model has good performance for modeling satellite data and its results are reliable.Moreover,the modeling eff ect of 3DTY is better than that of 2DTY.展开更多
Fractal geometry provides a new insight to the approximation and modelling of experimental data. We give the construction of complete cubic fractal splines from a suitable basis and their error bounds with the origina...Fractal geometry provides a new insight to the approximation and modelling of experimental data. We give the construction of complete cubic fractal splines from a suitable basis and their error bounds with the original function. These univariate properties are then used to investigate complete bicubic fractal splines over a rectangle Bicubic fractal splines are invariant in all scales and they generalize classical bicubic splines. Finally, for an original function , upper bounds of the error for the complete bicubic fractal splines and derivatives are deduced. The effect of equal and non-equal scaling vectors on complete bicubic fractal splines were illustrated with suitably chosen examples.展开更多
Free-formed or sculptured surfaces in engineering products are frequently constructed from a set of measured 3D data points. C2- (C3-) continuity approach is important in this field. This paper presents a method of re...Free-formed or sculptured surfaces in engineering products are frequently constructed from a set of measured 3D data points. C2- (C3-) continuity approach is important in this field. This paper presents a method of rectangular interpolation of given 3D data array which is regularly arranged. The interpolation surface which is constructed by tensor product has desirable properties (second-order or third-order continuity locality) and is implemented and adjusted easily. Higher order continuity methods are also briefly discussed.展开更多
This paper discusses the problem of constructing C2 quartic spline surface interpolation. Decreasing the continuity of the quartic spline to C2 offers additional freedom degrees that can be used to adjust the precisio...This paper discusses the problem of constructing C2 quartic spline surface interpolation. Decreasing the continuity of the quartic spline to C2 offers additional freedom degrees that can be used to adjust the precision and the shape of the interpolation surface. An approach to determining the freedom degrees is given, the continuity equations for constructing C2 quartic spline curve are discussed, and a new method for constructing C2 quartic spline surface is presented. The advantages of the new method are that the equations that the surface has to satisfy are strictly row diagonally dominant, and the discontinuous points of the surface are at the given data points. The constructed surface has the precision of quartic polynomial. The comparison of the interpolation precision of the new method with cubic and quartic spline methods is included.展开更多
基金Supported by the Natural Science Foundation of Hebei Province
文摘In this paper, we present an algorithm for reconstruction of B-spline surface such that it interpolates the four given bound- ary curves and simultaneously approximates some given inner points. The main idea of our method is: first, we construct an initial surface which interpolates the four given boundary curves; then, while keeping the boundary control points of the initial surface un- changed, we reposition the inner control points of the surface with energy optimization method. Examples show that our algorithm is practicable and effective.
文摘High resolution data have become an important source of data, before they can be integrating into a GIS database. It requires processing for ortho-rectification to generate image map with high accuracy and low cost. Using surface splines interpolation for rectification is quite different with traditional grid method in photogrammetric. To introduce surface splines is important. In fact the actual name is mechanical surface splines because it must add mechanical conditions to form the formula. The main advantages of the surface splines are that the coordinate of the known points are not located in a rectangular array and the function may be differentiated in find slopes. Surface splines are a mathematical tool to interpolate a function of two variables. It bases upon small deflection equation of an infinite plate, it originally developed for interpolation wing deflection of aircraft 1972 by Harderaed and Desmarais contributed. An example map size is beyond the custom. Only five control points for rectification (60 cm × 200 cm) if the number of control points is increasing also the map size increasing large and operating easy. The other UAV in Civilian world gives low cost. Obvious aerial imaging using surface splines in cartographic is a tool for supporting geospatial decisions.
基金supported by the National Natural Science Foundation of China(No.41404053)Special Project for MeteoScientific Research in the Public Interest(No.GYHY201306073)+1 种基金Natural Science Foundation of Jiangsu Province(No.BK20140994),Natural Science Foundation of Higher Education Institutions of Jiangsu Province(No.14KJB170012)Training Program of Innovation and Entrepreneurship for Undergraduates of NUIST(No.201510300178)
文摘We used data from 1960.0,1970.0,1980.0,1990.0,and 2000.0 to study the geomagnetic anomaly field over the Chinese mainland by using the three-dimensional Taylor polynomial(3DTP) and the surface spline(SS) models.To obtain the pure anomaly field,the main field and the induced field of the ionospheric and magnetospheric fields were removed from measured data.We also compared the SS model anomalies and the data obtained with Kriging interpolation(KI).The geomagnetic anomaly distribution over the mainland was analyzed based on the SS and 3DTP models by transferring all points from 1960.0-1990.0 to 2000.0.The results suggest that the total intensity F anomalies estimated based on the SS and KI for each year are basically consistent in distribution and intensity.The anomalous distributions in the X-,Y-,and Z-direction and F are mainly negative.The 3DTP model anomalies suggest that the intensity in the X-direction increases from-100 nT to 0 nT with longitude,whereas the intensity in the Y-direction decreases from 400 nT to 20 nT with longitude and over the eastern mainland is almost negative.The intensity in the Z-direction and F are very similar and in most areas it is about-50 nT and higher in western Tibet.The SS model anomalies overall reflect the actual distribution of the magnetic field anomalies;however,because of the uneven distribution of measurements,it yields several big anomalies.Owing to the added altitude term,the 3DTP model offers higher precision and is consistent with KI.
基金Supported by Shandong Provincial Natural Science Foundation of China(Grant No.ZR2023QE041)China Postdoctoral Science Foundation(Grant No.2023M731862)National Natural Science Foundation of China(Grant No.51975112).
文摘Textured surfaces with certain micro/nano structures have been proven to possess some advanced functions,such as reducing friction,improving wear and increasing wettability.Accurate prediction of micro/nano surface textures is of great significance for the design,fabrication and application of functional textured surfaces.In this paper,based on the kinematic analysis of cutter teeth,the discretization of ultrasonic machining process,transformation method of coordinate systems and the cubic spline data interpolation,an integrated theoretical model was established to characterize the distribution and geometric features of micro textures on the surfaces machined by different types of ultrasonic vibration-assisted milling(UVAM).Based on the theoretical model,the effect of key process parameters(vibration directions,vibration dimensions,cutting parameters and vibration parameters)on tool trajectories and microtextured surface morphology in UVAM is investigated.Besides,the effect of phase difference on the elliptical shape in 2D/3D ultrasonic elliptical vibration-assisted milling(UEVAM)was analyzed.Compared to conventional numerical models,the method of the cubic spline data interpolation is applied to the simulation of microtextured surface morphology in UVAM,which is more suitable for characterizing the morphological features of microtextured surfaces than traditional methods due to the presence of numerous micro textures.The prediction of surface roughness indicates that the magnitude of ultrasonic amplitude in z-direction should be strictly limited in 1D rotary UVAM,2D and 3D UEVAM due to the unfavorable effect of axial ultrasonic vibration on the surface quality.This study can provide theoretical guidance for the design and fabrication of microtextured surfaces in UVAM.
基金This work was supported by the National Natural Science Foundation of China(Nos.41974073,41404053)Special Project for Meteo-Scientifi c Research in the Public Interest(No.GYHY201306073)。
文摘Surface observations and CHAMP measurement data are employed to develop a three-dimensional surface spline(3DSS)model of China's Mainland.The magnetic field distribution at the satellite level is then demonstrated using the model obtained.The results of this model are compared and verifi ed by deriving the corresponding two(2DTY)and threedimensional(3DTY)Taylor polynomial models.Issues such as the removal of disruptive geomagnetic fi elds,the data gap between the surface and satellite levels,and boundary eff ects are carefully considered during modeling.We then focus on evaluating the modeling eff ect of the satellite data.Ten satellite points not involved in the modeling procedure are selected,and the residuals,absolute change rates,and RMSEs of these points are calculated.Results show that the distribution of the magnetic fi eld determined by the 3DSS model is highly consistent with that obtained from the IGRF12 model.Expect for component Y,the absolute change rates of other components are less than 0.5%.Specifi cally,the RMSE of Y of 3DSS is nearly 60%lower than those of 3DTY and 2DTY;the RMSE of other components of the former are also over 90%lower than those of the latter.This fi nding implies that the 3DSS model has good performance for modeling satellite data and its results are reliable.Moreover,the modeling eff ect of 3DTY is better than that of 2DTY.
文摘Fractal geometry provides a new insight to the approximation and modelling of experimental data. We give the construction of complete cubic fractal splines from a suitable basis and their error bounds with the original function. These univariate properties are then used to investigate complete bicubic fractal splines over a rectangle Bicubic fractal splines are invariant in all scales and they generalize classical bicubic splines. Finally, for an original function , upper bounds of the error for the complete bicubic fractal splines and derivatives are deduced. The effect of equal and non-equal scaling vectors on complete bicubic fractal splines were illustrated with suitably chosen examples.
文摘Free-formed or sculptured surfaces in engineering products are frequently constructed from a set of measured 3D data points. C2- (C3-) continuity approach is important in this field. This paper presents a method of rectangular interpolation of given 3D data array which is regularly arranged. The interpolation surface which is constructed by tensor product has desirable properties (second-order or third-order continuity locality) and is implemented and adjusted easily. Higher order continuity methods are also briefly discussed.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 60173052)Shandong Province Key Natural Science Foundation (Grant No. Z2001G01).
文摘This paper discusses the problem of constructing C2 quartic spline surface interpolation. Decreasing the continuity of the quartic spline to C2 offers additional freedom degrees that can be used to adjust the precision and the shape of the interpolation surface. An approach to determining the freedom degrees is given, the continuity equations for constructing C2 quartic spline curve are discussed, and a new method for constructing C2 quartic spline surface is presented. The advantages of the new method are that the equations that the surface has to satisfy are strictly row diagonally dominant, and the discontinuous points of the surface are at the given data points. The constructed surface has the precision of quartic polynomial. The comparison of the interpolation precision of the new method with cubic and quartic spline methods is included.