期刊文献+
共找到11,098篇文章
< 1 2 250 >
每页显示 20 50 100
Real-time Rescue Target Detection Based on UAV Imagery for Flood Emergency Response 被引量:1
1
作者 ZHAO Bofei SUI Haigang +2 位作者 ZHU Yihao LIU Chang WANG Wentao 《Journal of Geodesy and Geoinformation Science》 CSCD 2024年第1期74-89,共16页
Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including hig... Timely acquisition of rescue target information is critical for emergency response after a flood disaster.Unmanned Aerial Vehicles(UAVs)equipped with remote sensing capabilities offer distinct advantages,including high-resolution imagery and exceptional mobility,making them well suited for monitoring flood extent and identifying rescue targets during floods.However,there are some challenges in interpreting rescue information in real time from flood images captured by UAVs,such as the complexity of the scenarios of UAV images,the lack of flood rescue target detection datasets and the limited real-time processing capabilities of the airborne on-board platform.Thus,we propose a real-time rescue target detection method for UAVs that is capable of efficiently delineating flood extent and identifying rescue targets(i.e.,pedestrians and vehicles trapped by floods).The proposed method achieves real-time rescue information extraction for UAV platforms by lightweight processing and fusion of flood extent extraction model and target detection model.The flood inundation range is extracted by the proposed method in real time and detects targets such as people and vehicles to be rescued based on this layer.Our experimental results demonstrate that the Intersection over Union(IoU)for flood water extraction reaches an impressive 80%,and the IoU for real-time flood water extraction stands at a commendable 76.4%.The information on flood stricken targets extracted by this method in real time can be used for flood emergency rescue. 展开更多
关键词 UAV flood extraction target rescue detection real time
下载PDF
Target Detection Algorithm in Foggy Scenes Based on Dual Subnets
2
作者 Yuecheng Yu Liming Cai +3 位作者 Anqi Ning Jinlong Shi Xudong Chen Shixin Huang 《Computers, Materials & Continua》 SCIE EI 2024年第2期1915-1931,共17页
Under the influence of air humidity,dust,aerosols,etc.,in real scenes,haze presents an uneven state.In this way,the image quality and contrast will decrease.In this case,It is difficult to detect the target in the ima... Under the influence of air humidity,dust,aerosols,etc.,in real scenes,haze presents an uneven state.In this way,the image quality and contrast will decrease.In this case,It is difficult to detect the target in the image by the universal detection network.Thus,a dual subnet based on multi-task collaborative training(DSMCT)is proposed in this paper.Firstly,in the training phase,the Gated Context Aggregation Network(GCANet)is used as the supervisory network of YOLOX to promote the extraction of clean information in foggy scenes.In the test phase,only the YOLOX branch needs to be activated to ensure the detection speed of the model.Secondly,the deformable convolution module is used to improve GCANet to enhance the model’s ability to capture details of non-homogeneous fog.Finally,the Coordinate Attention mechanism is introduced into the Vision Transformer and the backbone network of YOLOX is redesigned.In this way,the feature extraction ability of the network for deep-level information can be enhanced.The experimental results on artificial fog data set FOG_VOC and real fog data set RTTS show that the map value of DSMCT reached 86.56%and 62.39%,respectively,which was 2.27%and 4.41%higher than the current most advanced detection model.The DSMCT network has high practicality and effectiveness for target detection in real foggy scenes. 展开更多
关键词 target detection fog target detection YOLOX twin network multi-task learning
下载PDF
Ghost-YOLO v8:An Attention-Guided Enhanced Small Target Detection Algorithm for Floating Litter on Water Surfaces
3
作者 Zhongmin Huangfu Shuqing Li Luoheng Yan 《Computers, Materials & Continua》 SCIE EI 2024年第9期3713-3731,共19页
Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightwe... Addressing the challenges in detecting surface floating litter in artificial lakes,including complex environments,uneven illumination,and susceptibility to noise andweather,this paper proposes an efficient and lightweight Ghost-YOLO(You Only Look Once)v8 algorithm.The algorithmintegrates advanced attention mechanisms and a smalltarget detection head to significantly enhance detection performance and efficiency.Firstly,an SE(Squeeze-and-Excitation)mechanism is incorporated into the backbone network to fortify the extraction of resilient features and precise target localization.This mechanism models feature channel dependencies,enabling adaptive adjustment of channel importance,thereby improving recognition of floating litter targets.Secondly,a 160×160 small-target detection layer is designed in the feature fusion neck to mitigate semantic information loss due to varying target scales.This design enhances the fusion of deep and shallow semantic information,improving small target feature representation and enabling better capture and identification of tiny floating litter.Thirdly,to balance performance and efficiency,the GhostConv module replaces part of the conventional convolutions in the feature fusion neck.Additionally,a novel C2fGhost(CSPDarknet53 to 2-Stage Feature Pyramid Networks Ghost)module is introduced to further reduce network parameters.Lastly,to address the challenge of occlusion,a newloss function,WIoU(Wise Intersection over Union)v3 incorporating a flexible and non-monotonic concentration approach,is adopted to improve detection rates for surface floating litter.The outcomes of the experiments demonstrate that the Ghost-YOLO v8 model proposed in this paper performs well in the dataset Marine,significantly enhances precision and recall by 3.3 and 7.6 percentage points,respectively,in contrast with the base model,mAP@0.5 and mAP 0.5:0.95 improve by 5.3 and 4.4 percentage points and reduces the computational volume by 1.88MB,the FPS value hardly decreases,and the efficient real-time identification of floating debris on the water’s surface can be achieved costeffectively. 展开更多
关键词 YOLO v8 surface floating litter target detection attention mechanism small target detection head ghostnet loss function
下载PDF
Overview of radar detection methods for low altitude targets in marine environments
4
作者 YANG Yong YANG Boyu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期1-13,共13页
In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance... In this paper,a comprehensive overview of radar detection methods for low-altitude targets in maritime environments is presented,focusing on the challenges posed by sea clutter and multipath scattering.The performance of the radar detection methods under sea clutter,multipath,and combined conditions is categorized and summarized,and future research directions are outlined to enhance radar detection performance for low-altitude targets in maritime environments. 展开更多
关键词 RADAR sea clutter multipath scattering detection low altitude target
下载PDF
Highly Differentiated Target Detection under Extremely Low-Light Conditions Based on Improved YOLOX Model
5
作者 Haijian Shao Suqin Lei +2 位作者 Chenxu Yan Xing Deng Yunsong Qi 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第8期1507-1537,共31页
This paper expounds upon a novel target detection methodology distinguished by its elevated discriminatory efficacy,specifically tailored for environments characterized by markedly low luminance levels.Conventional me... This paper expounds upon a novel target detection methodology distinguished by its elevated discriminatory efficacy,specifically tailored for environments characterized by markedly low luminance levels.Conventional methodologies struggle with the challenges posed by luminosity fluctuations,especially in settings characterized by diminished radiance,further exacerbated by the utilization of suboptimal imaging instrumentation.The envisioned approach mandates a departure from the conventional YOLOX model,which exhibits inadequacies in mitigating these challenges.To enhance the efficacy of this approach in low-light conditions,the dehazing algorithm undergoes refinement,effecting a discerning regulation of the transmission rate at the pixel level,reducing it to values below 0.5,thereby resulting in an augmentation of image contrast.Subsequently,the coiflet wavelet transform is employed to discern and isolate high-discriminatory attributes by dismantling low-frequency image attributes and extracting high-frequency attributes across divergent axes.The utilization of CycleGAN serves to elevate the features of low-light imagery across an array of stylistic variances.Advanced computational methodologies are then employed to amalgamate and conflate intricate attributes originating from images characterized by distinct stylistic orientations,thereby augmenting the model’s erudition potential.Empirical validation conducted on the PASCAL VOC and MS COCO 2017 datasets substantiates pronounced advancements.The refined low-light enhancement algorithm yields a discernible 5.9%augmentation in the target detection evaluation index when compared to the original imagery.Mean Average Precision(mAP)undergoes enhancements of 9.45%and 0.052%in low-light visual renditions relative to conventional YOLOX outcomes.The envisaged approach presents a myriad of advantages over prevailing benchmark methodologies in the realm of target detection within environments marked by an acute scarcity of luminosity. 展开更多
关键词 target detection extremely low-light wavelet transformation highly differentiated features YOLOX
下载PDF
Improving Transferable Targeted Adversarial Attack for Object Detection Using RCEN Framework and Logit Loss Optimization
6
作者 Zhiyi Ding Lei Sun +2 位作者 Xiuqing Mao Leyu Dai Ruiyang Ding 《Computers, Materials & Continua》 SCIE EI 2024年第9期4387-4412,共26页
Object detection finds wide application in various sectors,including autonomous driving,industry,and healthcare.Recent studies have highlighted the vulnerability of object detection models built using deep neural netw... Object detection finds wide application in various sectors,including autonomous driving,industry,and healthcare.Recent studies have highlighted the vulnerability of object detection models built using deep neural networks when confronted with carefully crafted adversarial examples.This not only reveals their shortcomings in defending against malicious attacks but also raises widespread concerns about the security of existing systems.Most existing adversarial attack strategies focus primarily on image classification problems,failing to fully exploit the unique characteristics of object detectionmodels,thus resulting in widespread deficiencies in their transferability.Furthermore,previous research has predominantly concentrated on the transferability issues of non-targeted attacks,whereas enhancing the transferability of targeted adversarial examples presents even greater challenges.Traditional attack techniques typically employ cross-entropy as a loss measure,iteratively adjusting adversarial examples to match target categories.However,their inherent limitations restrict their broad applicability and transferability across different models.To address the aforementioned challenges,this study proposes a novel targeted adversarial attack method aimed at enhancing the transferability of adversarial samples across object detection models.Within the framework of iterative attacks,we devise a new objective function designed to mitigate consistency issues arising from cumulative noise and to enhance the separation between target and non-target categories(logit margin).Secondly,a data augmentation framework incorporating random erasing and color transformations is introduced into targeted adversarial attacks.This enhances the diversity of gradients,preventing overfitting to white-box models.Lastly,perturbations are applied only within the specified object’s bounding box to reduce the perturbation range,enhancing attack stealthiness.Experiments were conducted on the Microsoft Common Objects in Context(MS COCO)dataset using You Only Look Once version 3(YOLOv3),You Only Look Once version 8(YOLOv8),Faster Region-based Convolutional Neural Networks(Faster R-CNN),and RetinaNet.The results demonstrate a significant advantage of the proposed method in black-box settings.Among these,the success rate of RetinaNet transfer attacks reached a maximum of 82.59%. 展开更多
关键词 Object detection model security targeted attack gradient diversity
下载PDF
Short-time maritime target detection based on polarization scattering characteristics
7
作者 CHEN Shichao LUO Feng +1 位作者 TIAN Min LYU Wanghan 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期55-64,共10页
In this paper,a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed.Firstly,the Cameron decomposition is exploited to fuse the radar ... In this paper,a detection method combining Cameron decomposition based on polarization scattering characteristics in sea clutter background is proposed.Firstly,the Cameron decomposition is exploited to fuse the radar echoes of full polarization channels at the data level.Due to the artificial material structure on the surface of the target,it can be shown that the non-reciprocity of the target cell is stronger than that of the clutter cell.Then,based on the analysis of the decomposition results,a new feature with scattering geometry characteristics in polarization domain,denoted as Cameron polarization decomposition scattering weight(CPD-SW),is extracted as the test statistic,which can achieve more detailed descriptions of the clutter scattering characteristics utilizing the difference between their scattering types.Finally,the superiority of the proposed CPD-SW detector over traditional detectors in improving detection performance is verified by the IPIX measured dataset,which has strong stability under short-time observation in threshold detection and can also improve the separability of feature space zin anomaly detection. 展开更多
关键词 sea clutter small target radar detection Cameron decomposition characteristics analysis
下载PDF
Improved Weighted Local Contrast Method for Infrared Small Target Detection
8
作者 Pengge Ma Jiangnan Wang +3 位作者 Dongdong Pang Tao Shan Junling Sun Qiuchun Jin 《Journal of Beijing Institute of Technology》 EI CAS 2024年第1期19-27,共9页
In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted... In order to address the problem of high false alarm rate and low probabilities of infrared small target detection in complex low-altitude background,an infrared small target detection method based on improved weighted local contrast is proposed in this paper.First,the ratio information between the target and local background is utilized as an enhancement factor.The local contrast is calculated by incorporating the heterogeneity between the target and local background.Then,a local product weighted method is designed based on the spatial dissimilarity between target and background to further enhance target while suppressing background.Finally,the location of target is obtained by adaptive threshold segmentation.As experimental results demonstrate,the method shows superior performance in several evaluation metrics compared with six existing algorithms on different datasets containing targets such as unmanned aerial vehicles(UAV). 展开更多
关键词 infrared small target unmanned aerial vehicles(UAV) local contrast target detection
下载PDF
A Real-Time Small Target Vehicle Detection Algorithm with an Improved YOLOv5m Network Model
9
作者 Yaoyao Du Xiangkui Jiang 《Computers, Materials & Continua》 SCIE EI 2024年第1期303-327,共25页
To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight arc... To address the challenges of high complexity,poor real-time performance,and low detection rates for small target vehicles in existing vehicle object detection algorithms,this paper proposes a real-time lightweight architecture based on You Only Look Once(YOLO)v5m.Firstly,a lightweight upsampling operator called Content-Aware Reassembly of Features(CARAFE)is introduced in the feature fusion layer of the network to maximize the extraction of deep-level features for small target vehicles,reducing the missed detection rate and false detection rate.Secondly,a new prediction layer for tiny targets is added,and the feature fusion network is redesigned to enhance the detection capability for small targets.Finally,this paper applies L1 regularization to train the improved network,followed by pruning and fine-tuning operations to remove redundant channels,reducing computational and parameter complexity and enhancing the detection efficiency of the network.Training is conducted on the VisDrone2019-DET dataset.The experimental results show that the proposed algorithmreduces parameters and computation by 63.8% and 65.8%,respectively.The average detection accuracy improves by 5.15%,and the detection speed reaches 47 images per second,satisfying real-time requirements.Compared with existing approaches,including YOLOv5m and classical vehicle detection algorithms,our method achieves higher accuracy and faster speed for real-time detection of small target vehicles in edge computing. 展开更多
关键词 Vehicle detection YOLOv5m small target channel pruning CARAFE
下载PDF
A Novel Filtering-Based Detection Method for Small Targets in Infrared Images
10
作者 Sanxia Shi Yinglei Song 《Computers, Materials & Continua》 SCIE EI 2024年第11期2911-2934,共24页
Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing ... Infrared small target detection technology plays a pivotal role in critical military applications,including early warning systems and precision guidance for missiles and other defense mechanisms.Nevertheless,existing traditional methods face several significant challenges,including low background suppression ability,low detection rates,and high false alarm rates when identifying infrared small targets in complex environments.This paper proposes a novel infrared small target detection method based on a transformed Gaussian filter kernel and clustering approach.The method provides improved background suppression and detection accuracy compared to traditional techniques while maintaining simplicity and lower computational costs.In the first step,the infrared image is filtered by a new filter kernel and the results of filtering are normalized.In the second step,an adaptive thresholding method is utilized to determine the pixels in small targets.In the final step,a fuzzy C-mean clustering algorithm is employed to group pixels in the same target,thus yielding the detection results.The results obtained from various real infrared image datasets demonstrate the superiority of the proposed method over traditional approaches.Compared with the traditional method of state of the arts detection method,the detection accuracy of the four sequences is increased by 2.06%,0.95%,1.03%,and 1.01%,respectively,and the false alarm rate is reduced,thus providing a more effective and robust solution. 展开更多
关键词 Gaussian filtering infrared small target detection fuzzy C-means clustering ROBUSTNESS
下载PDF
Target Detection on Water Surfaces Using Fusion of Camera and LiDAR Based Information
11
作者 Yongguo Li Yuanrong Wang +2 位作者 Jia Xie Caiyin Xu Kun Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第7期467-486,共20页
To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and... To address the challenges of missed detections in water surface target detection using solely visual algorithms in unmanned surface vehicle(USV)perception,this paper proposes a method based on the fusion of visual and LiDAR point-cloud projection for water surface target detection.Firstly,the visual recognition component employs an improved YOLOv7 algorithmbased on a self-built dataset for the detection of water surface targets.This algorithm modifies the original YOLOv7 architecture to a Slim-Neck structure,addressing the problemof excessive redundant information during feature extraction in the original YOLOv7 network model.Simultaneously,this modification simplifies the computational burden of the detector,reduces inference time,and maintains accuracy.Secondly,to tackle the issue of sample imbalance in the self-built dataset,slide loss function is introduced.Finally,this paper replaces the original Complete Intersection over Union(CIoU)loss function with the Minimum Point Distance Intersection over Union(MPDIoU)loss function in the YOLOv7 algorithm,which accelerates model learning and enhances robustness.To mitigate the problem of missed recognitions caused by complex water surface conditions in purely visual algorithms,this paper further adopts the fusion of LiDAR and camera data,projecting the threedimensional point-cloud data from LiDAR onto a two-dimensional pixel plane.This significantly reduces the rate of missed detections for water surface targets. 展开更多
关键词 Water surface target detection YOLOv7 joint calibration sensor fusion point-cloud projection
下载PDF
Persymmetric adaptive polarimetric detection of subspace range-spread targets in compound Gaussian sea clutter
12
作者 XU Shuwen HAO Yifan +1 位作者 WANG Zhuo XUE Jian 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期31-42,共12页
This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian mod... This paper focuses on the adaptive detection of range and Doppler dual-spread targets in non-homogeneous and nonGaussian sea clutter.The sea clutter from two polarimetric channels is modeled as a compound-Gaussian model with different parameters,and the target is modeled as a subspace rangespread target model.The persymmetric structure is used to model the clutter covariance matrix,in order to reduce the reliance on secondary data of the designed detectors.Three adaptive polarimetric persymmetric detectors are designed based on the generalized likelihood ratio test(GLRT),Rao test,and Wald test.All the proposed detectors have constant falsealarm rate property with respect to the clutter texture,the speckle covariance matrix.Experimental results on simulated and measured data show that three adaptive detectors outperform the competitors in different clutter environments,and the proposed GLRT detector has the best detection performance under different parameters. 展开更多
关键词 sea clutter adaptive polarimetric detection compound Gaussian model subspace range-spread target persymmetric structure
下载PDF
Improved Small Target Detection Method for SAR Image Based on YOLOv7
13
作者 YANG Ke SI Zhan-jun +1 位作者 ZHANG Ying-xue SHI Jin-yu 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第5期53-62,共10页
In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an... In order to solve the problems that the current synthetic aperture radar(SAR)image target detection method cannot adapt to targets of different sizes,and the complex image background leads to low detection accuracy,an improved SAR image small target detection method based on YOLOv7 was proposed in this study.The proposed method improved the feature extraction network by using Switchable Around Convolution(SAConv)in the backbone network to help the model capture target information at different scales,thus improving the feature extraction ability for small targets.Based on the attention mechanism,the DyHead module was embedded in the target detection head to reduce the impact of complex background,and better focus on the small targets.In addition,the NWD loss function was introduced and combined with CIoU loss.Compared to the CIoU loss function typically used in YOLOv7,the NWD loss function pays more attention to the processing of small targets,so as to further improve the detection ability of small targets.The experimental results on the HRSID dataset indicate that the proposed method achieved mAP@0.5 and mAP@0.95 scores of 93.5%and 71.5%,respectively.Compared to the baseline model,this represents an increase of 7.2%and 7.6%,respectively.The proposed method can effectively complete the task of SAR image small target detection. 展开更多
关键词 Small target detection Synthetic aperture radar YOLOv7 DyHead module Switchable Around Convolution
下载PDF
Scale effect removal and range migration correction for hypersonic target coherent detection
14
作者 WU Shang SUN Zhi +4 位作者 JIANG Xingtao ZHANG Haonan DENG Jiangyun LI Xiaolong CUI Guolong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2024年第1期14-23,共10页
The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condit... The detection of hypersonic targets usually confronts range migration(RM)issue before coherent integration(CI).The traditional methods aiming at correcting RM to obtain CI mainly considers the narrow-band radar condition.However,with the increasing requirement of far-range detection,the time bandwidth product,which is corresponding to radar’s mean power,should be promoted in actual application.Thus,the echo signal generates the scale effect(SE)at large time bandwidth product situation,influencing the intra and inter pulse integration performance.To eliminate SE and correct RM,this paper proposes an effective algorithm,i.e.,scaled location rotation transform(ScLRT).The ScLRT can remove SE to obtain the matching pulse compression(PC)as well as correct RM to complete CI via the location rotation transform,being implemented by seeking the actual rotation angle.Compared to the traditional coherent detection algorithms,Sc LRT can address the SE problem to achieve better detection/estimation capabilities.At last,this paper gives several simulations to assess the viability of ScLRT. 展开更多
关键词 hypersonic target detection coherent integration(CI) scale effect(SE)removal range migration(RM)correction scaled location rotation transform(ScLRT)
下载PDF
Handwriting Analysis Based on Belief of Targeted Individual Supporting Insider Threat Detection
15
作者 Jason Slaughter Carole E. Chaski Kellep Charles 《Journal of Information Security》 2024年第3期308-319,共12页
The Unintentional Insider Threat (UIT) concept highlights that insider threats might not always stem from malicious intent and can occur across various domains. This research examines how individuals with medical or p... The Unintentional Insider Threat (UIT) concept highlights that insider threats might not always stem from malicious intent and can occur across various domains. This research examines how individuals with medical or psychological issues might unintentionally become insider threats due to their perception of being targeted. Insights from the survey A Survey of Unintentional Medical Insider Threat Category indicate that such perceptions can be linked to underlying health conditions. The study Emotion Analysis Based on Belief of Targeted Individual Supporting Insider Threat Detection reveals that anger is a common emotion among these individuals. The findings suggest that UITs are often linked to medical or psychological issues, with anger being prevalent. To mitigate these risks, it is recommended that Insider Threat programs integrate expertise from medicine, psychology, and cybersecurity. Additionally, handwriting analysis is proposed as a potential tool for detecting insider threats, reflecting the evolving nature of threat assessment methodologies. 展开更多
关键词 INSIDER THREAT detection targetED Medical
下载PDF
A CNN-Based Single-Stage Occlusion Real-Time Target Detection Method
16
作者 Liang Liu Nan Yang +4 位作者 Saifei Liu Yuanyuan Cao Shuowen Tian Tiancheng Liu Xun Zhao 《Journal of Intelligent Learning Systems and Applications》 2024年第1期1-11,共11页
Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The m... Aiming at the problem of low accuracy of traditional target detection methods for target detection in endoscopes in substation environments, a CNN-based real-time detection method for masked targets is proposed. The method adopts the overall design of backbone network, detection network and algorithmic parameter optimisation method, completes the model training on the self-constructed occlusion target dataset, and adopts the multi-scale perception method for target detection. The HNM algorithm is used to screen positive and negative samples during the training process, and the NMS algorithm is used to post-process the prediction results during the detection process to improve the detection efficiency. After experimental validation, the obtained model has the multi-class average predicted value (mAP) of the dataset. It has general advantages over traditional target detection methods. The detection time of a single target on FDDB dataset is 39 ms, which can meet the need of real-time target detection. In addition, the project team has successfully deployed the method into substations and put it into use in many places in Beijing, which is important for achieving the anomaly of occlusion target detection. 展开更多
关键词 Real-Time Mask target CNN (Convolutional Neural Network) Single-Stage detection Multi-Scale Feature Perception
下载PDF
A Hybrid Feature Fusion Traffic Sign Detection Algorithm Based on YOLOv7
17
作者 Bingyi Ren Juwei Zhang Tong Wang 《Computers, Materials & Continua》 SCIE EI 2024年第7期1425-1440,共16页
Autonomous driving technology has entered a period of rapid development,and traffic sign detection is one of the important tasks.Existing target detection networks are difficult to adapt to scenarios where target size... Autonomous driving technology has entered a period of rapid development,and traffic sign detection is one of the important tasks.Existing target detection networks are difficult to adapt to scenarios where target sizes are seriously imbalanced,and traffic sign targets are small and have unclear features,which makes detection more difficult.Therefore,we propose aHybrid Feature Fusion Traffic Sign detection algorithmbased onYOLOv7(HFFTYOLO).First,a self-attention mechanism is incorporated at the end of the backbone network to calculate feature interactions within scales;Secondly,the cross-scale fusion part of the neck introduces a bottom-up multi-path fusion method.Design reuse paths at the end of the neck,paying particular attention to cross-scale fusion of highlevel features.In addition,we found the appropriate channel width through a lot of experiments and reduced the superfluous parameters.In terms of training,a newregression lossCMPDIoUis proposed,which not only considers the problem of loss degradation when the aspect ratio is the same but the width and height are different,but also enables the penalty term to dynamically change at different scales.Finally,our proposed improved method shows excellent results on the TT100K dataset.Compared with the baseline model,without increasing the number of parameters and computational complexity,AP0.5 and AP increased by 2.2%and 2.7%,respectively,reaching 92.9%and 58.1%. 展开更多
关键词 Small target detection YOLOv7 traffic sign detection regression loss
下载PDF
Faster RCNN Target Detection Algorithm Integrating CBAM and FPN 被引量:3
18
作者 Wenshun Sheng Xiongfeng Yu +1 位作者 Jiayan Lin Xin Chen 《Computer Systems Science & Engineering》 SCIE EI 2023年第11期1549-1569,共21页
Small targets and occluded targets will inevitably appear in the image during the shooting process due to the influence of angle,distance,complex scene,illumination intensity,and other factors.These targets have few e... Small targets and occluded targets will inevitably appear in the image during the shooting process due to the influence of angle,distance,complex scene,illumination intensity,and other factors.These targets have few effective pixels,few features,and no apparent features,which makes extracting their efficient features difficult and easily leads to false detection,missed detection,and repeated detection,affecting the performance of target detection models.An improved faster region convolutional neural network(RCNN)algorithm(CF-RCNN)integrating convolutional block attention module(CBAM)and feature pyramid networks(FPN)is proposed to improve the detection and recognition accuracy of small-size objects,occluded or truncated objects in complex scenes.Firstly,the CBAM mechanism is integrated into the feature extraction network to improve the detection ability of occluded or truncated objects.Secondly,the FPN-featured pyramid structure is introduced to obtain high-resolution and vital semantic data to enhance the detection effect of small-size objects.The experimental results show that the mean average precision of target detection of the improved algorithm on PASCAL VOC2012 is improved to 76.1%,which is 13.8 percentage points higher than that of the commonly used Faster RCNN and other algorithms.Furthermore,it is better than the commonly used small sample target detection algorithm. 展开更多
关键词 target detection attention mechanism CBAM FPN CF-RCNN
下载PDF
Oriented Bounding Box Object Detection Model Based on Improved YOLOv8
19
作者 ZHAO Xin-kang SI Zhan-jun 《印刷与数字媒体技术研究》 CAS 北大核心 2024年第4期67-75,114,共10页
In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have differ... In the study of oriented bounding boxes(OBB)object detection in high-resolution remote sensing images,the problem of missed and wrong detection of small targets occurs because the targets are too small and have different orientations.Existing OBB object detection for remote sensing images,although making good progress,mainly focuses on directional modeling,while less consideration is given to the size of the object as well as the problem of missed detection.In this study,a method based on improved YOLOv8 was proposed for detecting oriented objects in remote sensing images,which can improve the detection precision of oriented objects in remote sensing images.Firstly,the ResCBAMG module was innovatively designed,which could better extract channel and spatial correlation information.Secondly,the innovative top-down feature fusion layer network structure was proposed in conjunction with the Efficient Channel Attention(ECA)attention module,which helped to capture inter-local cross-channel interaction information appropriately.Finally,we introduced an innovative ResCBAMG module between the different C2f modules and detection heads of the bottom-up feature fusion layer.This innovative structure helped the model to better focus on the target area.The precision and robustness of oriented target detection were also improved.Experimental results on the DOTA-v1.5 dataset showed that the detection Precision,mAP@0.5,and mAP@0.5:0.95 metrics of the improved model are better compared to the original model.This improvement is effective in detecting small targets and complex scenes. 展开更多
关键词 Remote sensing image Oriented bounding boxes object detection Small target detection YOLOv8
下载PDF
A Normalizing Flow-Based Bidirectional Mapping Residual Network for Unsupervised Defect Detection
20
作者 Lanyao Zhang Shichao Kan +3 位作者 Yigang Cen Xiaoling Chen Linna Zhang Yansen Huang 《Computers, Materials & Continua》 SCIE EI 2024年第2期1631-1648,共18页
Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately ... Unsupervised methods based on density representation have shown their abilities in anomaly detection,but detection performance still needs to be improved.Specifically,approaches using normalizing flows can accurately evaluate sample distributions,mapping normal features to the normal distribution and anomalous features outside it.Consequently,this paper proposes a Normalizing Flow-based Bidirectional Mapping Residual Network(NF-BMR).It utilizes pre-trained Convolutional Neural Networks(CNN)and normalizing flows to construct discriminative source and target domain feature spaces.Additionally,to better learn feature information in both domain spaces,we propose the Bidirectional Mapping Residual Network(BMR),which maps sample features to these two spaces for anomaly detection.The two detection spaces effectively complement each other’s deficiencies and provide a comprehensive feature evaluation from two perspectives,which leads to the improvement of detection performance.Comparative experimental results on the MVTec AD and DAGM datasets against the Bidirectional Pre-trained Feature Mapping Network(B-PFM)and other state-of-the-art methods demonstrate that the proposed approach achieves superior performance.On the MVTec AD dataset,NF-BMR achieves an average AUROC of 98.7%for all 15 categories.Especially,it achieves 100%optimal detection performance in five categories.On the DAGM dataset,the average AUROC across ten categories is 98.7%,which is very close to supervised methods. 展开更多
关键词 Anomaly detection normalizing flow source domain feature space target domain feature space bidirectional mapping residual network
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部