期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Shear behavior of intact granite under thermo-mechanical coupling and three-dimensional morphology of shear-formed fractures 被引量:1
1
作者 Bing Chen Baotang Shen Haiyang Jiang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第3期523-537,共15页
The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear... The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified. 展开更多
关键词 Thermo-mechanical(TM)coupling Peak shear strength three-dimensional(3D)morphological characterization Failure mode Quadrangular pyramid model
下载PDF
An Efficient Three-Dimensional Coupled Normal Mode Model and Its Application to Internal Solitary Wave Problems 被引量:1
2
作者 Ze-Zhong Zhang Wen-Yu Luo Ren-He Zhang 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第8期36-39,共4页
We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forwa... We present an efficient three-dimensional coupled-mode model based on the Fourier synthesis technique. In principle, this model is a one-way model, and hence provides satisfactory accuracy for problems where the forward scattering dominates. At the same time, this model provides an efficiency gain of an order of magnitude or more over two-way coupled-mode models. This model can be applied to three-dimensional range-dependent problems with a slowly varying bathymetry or internal waves. A numerical example of the latter is demonstrated in this work. Comparisons of both accuracy and efficiency between the present model and a benchmark model are also provided. 展开更多
关键词 An Efficient three-dimensional coupled Normal Mode model and Its Application to Internal Solitary Wave Problems
下载PDF
Numerical investigation of radio-frequency negative hydrogen ion sources by a three-dimensional fluid model
3
作者 Ying-Jie Wang Jia-Wei Huang +3 位作者 Quan-Zhi Zhang Yu-Ru Zhang Fei Gao You-Nian Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2021年第9期335-345,共11页
A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber,for neutral beam injecti... A three-dimensional fluid model is developed to investigate the radio-frequency inductively coupled H2 plasma in a reactor with a rectangular expansion chamber and a cylindrical driver chamber,for neutral beam injection system in CFETR.In this model,the electron effective collision frequency and the ion mobility at high E-fields are employed,for accurate simulation of discharges at low pressures(0.3 Pa-2 Pa)and high powers(40 kW-100 kW).The results indicate that when the high E-field ion mobility is taken into account,the electron density is about four times higher than the value in the low E-field case.In addition,the influences of the magnetic field,pressure and power on the electron density and electron temperature are demonstrated.It is found that the electron density and electron temperature in the xz-plane along permanent magnet side become much more asymmetric when magnetic field enhances.However,the plasma parameters in the yz-plane without permanent magnet side are symmetric no matter the magnetic field is applied or not.Besides,the maximum of the electron density first increases and then decreases with magnetic field,while the electron temperature at the bottom of the expansion region first decreases and then almost keeps constant.As the pressure increases from 0.3 Pa to 2 Pa,the electron density becomes higher,with the maximum moving upwards to the driver region,and the symmetry of the electron temperature in the xz-plane becomes much better.As power increases,the electron density rises,whereas the spatial distribution is similar.It can be summarized that the magnetic field and gas pressure have great influence on the symmetry of the plasma parameters,while the power only has little effect. 展开更多
关键词 negative hydrogen ion source inductively coupled plasma three-dimensional fluid model magnetic field effect
下载PDF
3D thermo-hydro-mechanical-migratory coupling model and FEM analyses for dual-porosity medium 被引量:8
4
作者 ZHANG YuJun 1&ZHANG WeiQing 2 1 State Key Laboratory of Geomechanics and Geotechnical Engineering,Institute of Rock and Soil Mechanics, Chinese Academy of Sciences,Wuhan 430071,China 2School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China 《Science China(Technological Sciences)》 SCIE EI CAS 2010年第8期2172-2182,共11页
One kind of 3D coupled thermo-hydro-mechanical-migratory model for saturated-unsaturated dual-porosity medium was established,in which the stress field and the temperature field are single,but the seepage field and th... One kind of 3D coupled thermo-hydro-mechanical-migratory model for saturated-unsaturated dual-porosity medium was established,in which the stress field and the temperature field are single,but the seepage field and the concentration field are double,and the influences of sets,spaces,angles,continuity ratios,stiffness of fractures on the constitutive relationship of the medium can be considered.The relative three-dimensional program of finite element method was also developed.By comparing with the existing computation example,reliability of the model and the program were verified.Taking a hypothetical nuclear waste repository as a calculation example,the radioactive nuclide leak was simulated numerically with both the rock mass and the buffer being unsaturated media,and the temperatures,negative pore pressures,flow velocities,nuclide concentrations and normal stresses in the rock mass were investigated.The results showed that the temperatures,negative pore pressures and nuclide concentrations in the buffer all present nonlinear changes and distributions that even though the saturation degree in porosity is only about 1/9 of that in fracture,the flow velocity of underground water in fracture is about 6 times of that in porosity because the permeability coefficient of fracture is almost four orders higher than that of porosity,and that the regions of stress concentration occur at the vicinity of two sides of the boundary between buffer and disposal pit wall. 展开更多
关键词 DUAL-POROSITY MEDIUM thermo-hydro-mechanical-migratory coupling three-dimensional model FEM analysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部