Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression rec...Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression reconstruction method,in combination with domestic autonomous sea surface height and sea surface temperature observations from the Haiyang-2(HY-2)satellite fusion data,to establish an operational quasi-realtime three-dimensional(3D)temperature and salinity products over the Maritime Silk Road.These products feature a daily temporal resolution and a spatial resolution of 0.25°×0.25°and exhibit stability and continuity.We have demonstrated the accuracy of the reconstructed thermohaline fields in capturing the 3D thermohaline variations through comprehensive statistical evaluations,after comparing them against Argo observations and ocean analysis data from 2022.The results illustrate that the reconstructed fields effectively represent seasonal variations in oceanic subsurface structures,along with structural changes resulting from mesoscale processes,and the upper ocean’s responses to tropical cyclones.Furthermore,the incorporation of HY-2 satellite observations notably enhances the accuracy of temperature and salinity reconstructions in the Northwest Pacific Ocean and marginally improves salinity reconstruction accuracy in the North Indian Ocean when compared to the World Ocean Atlas 2018 monthly climatology thermohaline fields.As a result,the reconstructed product holds promise for providing quasi-real-time 3D temperature and salinity field information to facilitate fast decisionmaking during emergencies,and also offers foundational thermohaline fields for operational ocean reanalysis and forecasting systems.These contributions enhance the safety and stability of ocean subsurface activities and navigation.展开更多
With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,...With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.展开更多
Using AVISO satellite altimeter observations during 1993–2015 and a manual eddy detection method, a total of 276 anticyclonic rings and 242 cyclonic rings shed from the Kuroshio Extension(KE) were identified, and the...Using AVISO satellite altimeter observations during 1993–2015 and a manual eddy detection method, a total of 276 anticyclonic rings and 242 cyclonic rings shed from the Kuroshio Extension(KE) were identified, and their three-dimensional(3D) anomaly structures were further reconstructd based on the Argo float data and the Japan Agency for Marine-Earth Science and Technology(JAMSTEC) cruise and buoy data through an interpolation method. It is found that the cyclonic(anticyclonic) rings presented consistent negative(positive) anomalies of potential temperature;meanwhile the relevant maximum anomaly center became increasingly shallow for the cyclonic rings whereas it went deeper for the anticyclonic rings as the potential temperature anomaly decreased from the west to the east. The above deepening or shoaling trend is associated with the zonal change of the depth of the main thermocline. Moreover, the composite cold ring between 140° and 150°E was found to exhibit a double-core vertical structure due to the existence of mode water with low potential vorticity. Specifically, a relatively large negative(positive) salinity anomaly and a small positive(negative) one appeared for the composite cyclonic(anticyclonic) ring at the depth above and below 600 m, respectively. The underlying driving force for the temperature and salinity anomaly of the composite rings was also attempted, which varies depending on the intensity of the background current and the temperature and salinity fields in different areas of the KE region, and the rings’ influences on the temperature and salinity could reach deeper than 1 000 m on average.展开更多
This study explores the spatial structure and transport characteristics of eddies in the Arabian Sea(AS)using Argo profiles and satellite measurements.The majority of eddies occur in the northern AS,especially along i...This study explores the spatial structure and transport characteristics of eddies in the Arabian Sea(AS)using Argo profiles and satellite measurements.The majority of eddies occur in the northern AS,especially along its northeastern boundary.In contrast,the western AS had a relatively higher eddy kinetic energy compared to the eastern part.Particularly,the strongest energetic eddies were present in the Somali Current system.The composite results revealed the evident thermohaline anomalies caused by cyclonic eddies(CEs)and anticyclonic eddies(AEs)in the upper 300m layers.The anomalous temperature structure within CEs and AEs showed a dominant dipole structure in the near-surface layer and a monopole structure below,with maximum temperature anomalies of approximately−0.8℃and+1.0℃located at depths of 100–150m,respectively.The composited salinity structures for CEs and AEs exhibited monopole vertical structures and sandwich-like patterns.For AEs,large positive salinity anomalies occurred at subsurface layers of 60–180 m with a peak value of about 0.07,and weak negative values were observed above 60m and below 180 m.A similar vertical structure but with an opposite sign operates for CEs.The composited CE and AE caused an equatorward salt flux with values of−8.1×10^(4)and−2.2×10^(4)kg s^(−1),respectively.CEs caused an equatorward heat flux of−7.7×10^(11)W,and AEs induced a poleward flux of 1.5×1011 W.展开更多
BACKGROUND Esophageal cancer is one of the most common malignant tumors.The three-dimensional quality structure model is a quality assessment theory that includes three dimensions:Structure,process,and results.AIM To ...BACKGROUND Esophageal cancer is one of the most common malignant tumors.The three-dimensional quality structure model is a quality assessment theory that includes three dimensions:Structure,process,and results.AIM To investigate the effects of nursing interventions with three-dimensional quality assessment on the efficacy and disease management ability of patients undergoing esophageal cancer surgery.METHODS In this prospective study,the control group received routine nursing,and the intervention group additionally received a three-dimensional quality assessment intervention based on the above routine care.Self-efficacy and patient disease management abilities were evaluated using the General Self-Efficacy Scale(GSES)and Exercise of Self-Care Agency scale,respectively.IBM SPSS Statistics for Windows,version 17.0,was used for the data processing.RESULTS This study recruited 112 patients who were assigned to the control and experi-mental groups(n=56 per group).Before the intervention,there was no significant difference in GSES scores between the two groups(P>0.05).After the inter-vention,the GSES scores of both groups increased,with the experimental group showing higher values(P<0.05).At the time of discharge and three months after discharge,the scores for positive attitudes,self-stress reduction,and total score of health promotion in the experimental group were higher than those in the control group(P<0.05).CONCLUSION The implementation of a three-dimensional quality structure model for postoperative patients with esophageal cancer can effectively improve their self-management ability and self-efficacy of postoperative patients.展开更多
This article aims to develop a head pursuit (HP) guidance law for three-dimensional hypervelocity interception, so that the effect of the perturbation induced by seeker detection can be reduced. On the basis of a no...This article aims to develop a head pursuit (HP) guidance law for three-dimensional hypervelocity interception, so that the effect of the perturbation induced by seeker detection can be reduced. On the basis of a novel HP three-dimensional guidance model, a nonlinear variable structure guidance law is presented by using Lyapunov stability theory. The guidance law positions the interceptor ahead of the target on its tlight trajectory, and the speed of the interceptor is required to be lower than that of the target, A numerical example of maneuvering ballistic target interception verifies the rightness of the guidance model and the effectiveness of the proposed method.展开更多
We use the U.S. Navy's Master Oceanographic Observation Data Set (MOODS) forthe Yellow Sea/ East China Sea (YES) to investigate the climatological water mass features and theseasonal and non-seasonal variabilities...We use the U.S. Navy's Master Oceanographic Observation Data Set (MOODS) forthe Yellow Sea/ East China Sea (YES) to investigate the climatological water mass features and theseasonal and non-seasonal variabilities of the thermohaline structure, and use the ComprehensiveOcean-Atmosphere Data Set (COADS) from 1945 to 1989 to investigate the linkage between the fluxes(momentum, heat, and moisture) across the air-ocean interface and the formation of the water massfeatures. After examining the major current systems and considering the local bathymetry and watermass properties, we divide YES into five regions: East China Sea (ECS) shelf, Yellow Sea (YS) Basin,Cheju bifurcation (CB) zone, Taiwan Warm Current (TWC) region, Kuroshio Current (KC) region. Thelong term mean surface heat balance corresponds to a heat loss of 30 W m^(-2) in the ESC and CBregions, a heat loss of 65 W m^(-2) in the KC and TWC regions, and a heat gain of 15 W m^(-2) in theYS region. The surface freshwater balance is defined by precipitation minus evaporation. The annualwater loss from the surface for the five subareas ranges from 1.8 to 4 cm month^(-1). The freshwater loss from the surface should be compensated for from the river run-off. The entire watercolumn of the shelf region (ECS, YS, and CB) undergoes an evident seasonal thermal cycle withmaximum values of temperature during summer and maximum mixed layer depths during winter. However,only the surface waters of the TWC and KC regions exhibit a seasonal thermal cycle.. We also foundtwo different relations between surface salinity and the Yangtze River run-off, namely, out-of-phasein the East China Sea shelf and in-phase in the Yellow Sea. This may confirm an earlier study thatthe summer fresh water discharge from the Yangtze River forms a relatively shallow, low salinityplume-like structure extending offshore on average towards the northeast.展开更多
The seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea are investigated using the latest eddy dataset and ARMOR3D data. Eddy-centric composites reve...The seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea are investigated using the latest eddy dataset and ARMOR3D data. Eddy-centric composites reveal that the horizontal distribution of temperature anomaly associated with eddy in winter is more of a dipole pattern in upper 50 m and tends to be centrosymmetric below 50 m, while in summer the distribution pattern is centrosymmetric in the entire water column. The horizontal distribution of eddy-induced salinity anomaly exhibits similar seasonal characteristics, except that the asymmetry of the salinity anomaly is weaker. The vertical distribution of temperature anomaly associated with eddy shows a monolayer structure, while the salinity anomaly demonstrates a triple-layer structure. Further analysis indicates that the vertical distribution of the anomalies is related to the vertical structure of background temperature and salinity fields, and the asymmetry of the anomalies in upper 50 m is mainly caused by the horizontal advection of background temperature and salinity.展开更多
The major feature, interannual variability and variation cause of the Mindanao Eddy and its im- pact on the thermohaline structure are analyzed based on the Argo profiling float data, the history observed data and the...The major feature, interannual variability and variation cause of the Mindanao Eddy and its im- pact on the thermohaline structure are analyzed based on the Argo profiling float data, the history observed data and the SODA data. The analysis results show that the Mindanao Eddy is a per- manent cyclonic meso-scale eddy and spreads vertically from about 500 m depth upward do about 50 m depth. In addition to its strong seasonal variability, the Mindanao Eddy displays a remark- able interannual variability associated with ENSO. It strengthens and expands eastward during E1 Nifio while it weakens and retreats westward during La Nifia. The interannual variability in the Mindanao Eddy may be caused by the North Equatorial Counter Current, the North Equatorial Current, the Mindanao Current and the Indonesian Through Flow. The eddy variability can have a great influence on the thermohaline structure pattern in the local upper ocean. When the eddy is strong, the cold and low salinity water inside the eddy moves violently upward from deep layer, the thermoeline depth greatly shoals, and the subsurface high salinity water largely decreases ,with the upper mixed layer becoming thinner, and vice versa.展开更多
Microseismic/acoustic emission(MS/AE)source localization method is crucial for predicting and controlling of potentially dangerous sources of complex structures.However,the locating errors induced by both the irregula...Microseismic/acoustic emission(MS/AE)source localization method is crucial for predicting and controlling of potentially dangerous sources of complex structures.However,the locating errors induced by both the irregular structure and pre-measured velocity are poorly understood in existing methods.To meet the high-accuracy locating requirements in complex three-dimensional hole-containing structures,a velocity-free MS/AE source location method is developed in this paper.It avoids manual repetitive training by using equidistant grid points to search the path,which introduces A*search algorithm and uses grid points to accommodate complex structures with irregular holes.It also takes advantage of the velocity-free source location method.To verify the validity of the proposed method,lead-breaking tests were performed on a cubic concrete test specimen with a size of 10 cm10 cm10 cm.It was cut out into a cylindrical empty space with a size of/6cm10 cm.Based on the arrivals,the classical Geiger method and the proposed method are used to locate lead-breaking sources.Results show that the locating error of the proposed method is 1.20 cm,which is less than 2.02 cm of the Geiger method.Hence,the proposed method can effectively locate sources in the complex three-dimensional structure with holes and achieve higher precision requirements.展开更多
Using the 28℃ isotherm to define the Western Pacific Warm Pool (WPWP), this study analyzes the seasonal variability of the WPWP thermohaline structure on the basis of the monthly-averaged sea temperature and salini...Using the 28℃ isotherm to define the Western Pacific Warm Pool (WPWP), this study analyzes the seasonal variability of the WPWP thermohaline structure on the basis of the monthly-averaged sea temperature and salinity data from 1950 to 2011, and the dynamic and thermodynamic mechanisms based on the monthly-averaged wind, precipitation, net heat fluxes and current velocity data. A△T=-0.4℃ is more suitable than other temperature criterion for determining the mixed layer (ML) and barrier layer (BL) over the WPWP using monthly-averaged temperature and salinity data. The WPWP has a particular thermohaline structure and can be vertically divided into three layers, i.e., the ML, BL, and deep layer (DL). The BL thickness (BLT) is the thickest, while the ML thickness (MLT) is the thinnest. The MLT has a similar seasonal variation to the DL thickness (DLT) and BLT. They are all thicker in spring and fall but thinner in summer. The temperatures of the ML and BL are both higher in spring and autumn but lower in winter and summer with an annual amplitude of 0.15℃, while the temperature of the DL is higher in May and lower in August. The averaged salinities at these three layers are all higher in March but lower in September, with annual ranges of 0.41-0.45. Zonal currents, i.e., the South Equatorial Current (SEC) and North Equatorial Counter Current (NECC), and winds may be the main dynamic factors driving the seasonal variability in the WPWP thermohaline structure, while precipitation and net heat fluxes are both important thermodynamic factors. Higher (lower) winds cause both the MLT and BLT to thicken (thin), a stronger (weaker) NECC induces MLT, BLT, and DLT to thin (thicken), and a stronger (weaker) SEC causes both the MLT and BLT to thicken (thin) and the DLT to thin (thicken). An increase (decrease) in the net heat fluxes causes the MLT and BLT to thicken (thin) but the DLT to thin (thicken), while a stronger (weaker) precipitation favors thinner (thicker) MLT but thicker (thinner) BLT and DLT. In addition, a stronger (weaker) NECC and SEC cause the temperature of the three layers to decrease (increase), while the seasonal variability in salinity at the ML, BL, and DL might be controlled by the subtropical cell (STC).展开更多
As in-situ observations are sparse,targeted observations of a specific mesoscale eddy are rare.Therefore,it is difficult to study the three-dimensional structure of moving mesoscale eddies.From April to September 2014...As in-situ observations are sparse,targeted observations of a specific mesoscale eddy are rare.Therefore,it is difficult to study the three-dimensional structure of moving mesoscale eddies.From April to September 2014,an anticyclonic eddy located at 135°E-155°E,26°N-42°N was observed using 17 rapidsampling Argo floats,and the spatiotemporal variations in the three-dimensional structure were studied.The results are as follows:(1)the eddy was identified and tracked using satellite altimeter data.It had a lifetime of 269 days and an average radius of 91.5 km.The lifetime of the eddy can be divided into three phases,i.e.,the initiation,maturity,and termination phases.The depth of its influence reached 1000 m;(2)the Argo profiles were divided into seven periods(approximately 20 days in each)for composite analysis,and the composite Argo profiles and CARS2009(CSIRO Atlas of Regional Seas)climatology data were merged following the data-interpolating variational analysis(DIVA)method to reconstruct the three-dimensional structure.The temperature and salinity anomaly cores of the anticyclonic mesoscale eddy are located from 400 to 600 m.From 800 to 900 m,there is an area of low salinity at the center of the eddy.A high concentration anomaly of dissolved oxygen was located at approximately 250 m;(3)to better understand the features of the eddy and its interaction with the surroundings,we calculated the anomalous velocity of the geostrophic flow and the heat,salt,dissolved oxygen transport anomaly,and discussed the eddy's origin and its adjustments to topography.The maximum heat,salt,and oxygen transport caused by eddy were 9.37×10^11 W,3.08×10^3 kg/s,and 2.70×10^2 kg/s,which all occurred during the termination phase.This study highlights the applicability of using Argo floats to understand the three-dimensional structure thermohaline features of eddies in the North Pacific.展开更多
This paper presents a three-dimensional particle-in-cell (PIC) simulation of a Ka-band relativistic Cherenkov source with a slow wave structure (SWS) consisting of metal photonic band gap (PBG) structures. In th...This paper presents a three-dimensional particle-in-cell (PIC) simulation of a Ka-band relativistic Cherenkov source with a slow wave structure (SWS) consisting of metal photonic band gap (PBG) structures. In the simulation, a perfect match layer boundary is employed to absorb passing band modes supported by the PBG lattice with an artificial metal boundary. The simulated axial field distributions in the cross section and surface of the SWS demonstrate that the device operates in the vicinity of the π point of a TM01-1ike mode. The Fourier transformation spectra of the axial fields as functions of time and space show that only a single frequency appears at 36.27 GHz, which is in good agreement with that of the intersection of the dispersion curve with the slow space charge wave generated on the beam. The simulation results demonstrate that the SWS has good mode selectivity.展开更多
The three-dimensional structure and the seasonal variation of the North Pacific meridional overturning circulation (NPMOC) are analyzed based on the Simple Ocean Data Assimilation data and Argo profiling float data....The three-dimensional structure and the seasonal variation of the North Pacific meridional overturning circulation (NPMOC) are analyzed based on the Simple Ocean Data Assimilation data and Argo profiling float data. The NPMOC displays a multi-cell structure with four cells in the North Pacific altogether. The TC and the STC are a strong clockwise meridional cell in the low latitude ocean and a weaker clockwise meridional cell between 7°N and 18°N, respectively, while the DTC and the subpolar cell are a weaker anticlockwise meridional cell between 3°N and 15°N and a weakest anticlockwise meridional cell between 35°N and 50°N, respectively. The DTC, the TC and the STC are all of very strong seasonal variations. As to the DTC, the southward transport is strongest in fall and weakest in spring. For the TC, the northward transport is strongest in winter and weakest in spring, while the southward transport is strongest in fall and weakest in spring, which is associated with the strong southward fiow of the DTC in fall. As the STC, the northward transport is strongest in winter and weakest in summer, while the southward transport is strongest in summer and weakest in spring. This seasonal difference may be associated with the DTC. The zonal wind stress and the east-west slope of sea level play important roles in the seasonal variations of the TC, the STC and the DTC.展开更多
Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed...Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.展开更多
Based on the hydrographic data in austral summer during the 22nd Antarctic Expedition of China(2005/2006),some features can be found about the northern margin of Emery ice shelf as follows.The heat content in the surf...Based on the hydrographic data in austral summer during the 22nd Antarctic Expedition of China(2005/2006),some features can be found about the northern margin of Emery ice shelf as follows.The heat content in the surface layer(0-50 m) at the eastern end and the western end of the ice-shelf margin is much higher than that at the middle.The upper mixing-layer depth and the seasonal thermocline depth at the middle of the ice-shelf northern margin are much shallower than those at the both ends.However there is much less difference between the middle and the ends in the bottom layer.The remote sensing photos show that the inhomogeneity in the surface-layer water is closely related to the spatial distribution of the floes and polynia in the area.展开更多
The bis(tributyltin) ester of succinic acid was synthesized by the reaction of disodium salt of succinic acid with tributyltin chloride in a molar ratio of 1:2. The crystal structure was determined by X-ray single-cry...The bis(tributyltin) ester of succinic acid was synthesized by the reaction of disodium salt of succinic acid with tributyltin chloride in a molar ratio of 1:2. The crystal structure was determined by X-ray single-crystal diffraction. It belongs to orthorhombic with space group Pccn, a = 20.949(3), b = 17.470(3), c = 20.345(3) Angstrom, V = 7446(2) Angstrom(3), Z = 8, D-c = 1.242 g/cm(3), mu = 1.365 mm(-1), F(000) = 2864, R = 0.0544 and wR = 0.1417. The tin atom is of five-coordination in a trigonal bipyramidal structure by bridging two carboxylate groups in different directions and the resulting structure which contains straight twist large ring channels along the axes of a, b and c is a three-dimensional framework polymer containing two different tin atoms.展开更多
A magnitude 5.5 earthquakes occurred in Eryuan County,Dali Bai Autonomous Prefecture,Yunnan Province,China,on March 3.And a magnitude 5.0 earthquake occurred in the same place on April 17,2013,i.e.,45 days later.Then,...A magnitude 5.5 earthquakes occurred in Eryuan County,Dali Bai Autonomous Prefecture,Yunnan Province,China,on March 3.And a magnitude 5.0 earthquake occurred in the same place on April 17,2013,i.e.,45 days later.Then,on May 21,2021,multiple earthquakes,one with magnitude 6.4 and several at 5.0 or above,occurred in Yangbi County,Dali Bai Autonomous Prefecture,Yunnan Province,China.All of these occurred in the Weixi-QiaohouWeishan fault zone.In this study,1,874 seismic events in Yangbi and Eryuan counties were identified by automatic micro-seismic identification technology and the first arrivals were picked up manually.Following this,a total of 11,968 direct P-wave absolute arrivals and 73,987 high-quality Pwave relative arrivals were collected for joint inversion via the double difference tomography method.This was done to obtain the regional three-dimensional fine crustal P-wave velocity structure.The results show that the travel time residuals before and after inversion decreased from the initial–0.1–0.1 s to–0.06–0.06 s.The upper crust in the study area,which exhibited a low-velocity anomaly,corresponded to the basin region;this indicated that the low-velocity anomaly in the shallow part of the study area was affected by the basin.Results also showed some correlation between the distribution of the earthquakes and velocity structure,as there was a lowvelocity body Lv1 with a wide distribution at depths ranging from 15–20 km in the Yangbi and Eryuan earthquake regions.In addition,earthquakes occurred predominantly in the highlow velocity abnormal transition zone.The low-velocity body in the middle and lower crust may be prone to concentrating upper crustal stress,thus leading to the occurrence of earthquakes.展开更多
The geometric and spatial characteristics of pore structures determine the permeability and water retention of soils, which have important effects on soil functional diversity and ecological restoration. Until recentl...The geometric and spatial characteristics of pore structures determine the permeability and water retention of soils, which have important effects on soil functional diversity and ecological restoration. Until recently, there have not been tools and methods to visually and quantitatively describe the characteristics of soil pores. To solve this problem, this research reconstructs the geometry and spatial distribution of soil pores by the marching cubes method, texture mapping method and the ray casting method widely used in literature. The objectives were to explore an optimal method for three-dimensional visualization of soil pore structure by comparing the robustness of the three methods on soil CT images with single pore structure and porosity ranging from low (2–5%) to high (12–18%), and to evaluate the reconstruction performance of the three methods with different geometric features. The results demonstrate that there are aliases (jagged edges) and deficiency at the boundaries of the model reconstructed by the marching cubes method and pore volumes are smaller than the ground truth, whereas the results of the texture mapping method lack the details of pore structures. For all the soil images, the ray casting method is preferable since it better preserves the pore characteristics of the ground truth. Furthermore, the ray casting method produced the best soil pore model with higher rendering speed and lower memory consumption. Therefore, the ray casting method provides a more advanced method for visualization of pore structures and provides an optional technique for the study of the transport of moisture and the exchange of air in soil.展开更多
Point bars are well developed on the Yellow River delta, an~ which theShengli I point bar is the most typical. The point bar, being about 4 km in length and several tensto more than 100 meters in width, is located on ...Point bars are well developed on the Yellow River delta, an~ which theShengli I point bar is the most typical. The point bar, being about 4 km in length and several tensto more than 100 meters in width, is located on the south side of the Shengli Bridge in KenliCounty, Dongying, Shandong. It is a typical fine-grained point bar with silt, which is predominant,some clay and minor plant debris and clay boulders. The Shengli I Point bar has complicated 3-Dstructures. Firstly, in a plane view, it comprises mainly eight sedimentary units, bar edge, baredge, bar platform, bar plain, bar channel, bar gully, bar pond and bar bay, developing side by sideand superimposed one by one m a complex way. Secondly, its vertical structures are very complex dueto the partial superimposition of the 8 sedimentary units. Besides hydatogenesis, very intensivewind erosion, eolian, ice and meltwater actions are also visible on the Shengli I point bar. Thecomplex form is made even more complicated because of the above co-actions.展开更多
基金The China-ASEAN Marine Cooperation Foundationthe Fundamental Research Funds for the Central Universities under contract No.B210203041+1 种基金the Postgraduate Research&Practice Innovation Program of Jiangsu Province under contract No.KYCX23_0657the opening project of the Key Laboratory of Marine Environmental Information Technology of Ministry of Natural Resources under contract No.521037412.
文摘Estimated ocean subsurface fields derived from satellite observations provide potential data sources for operational marine environmental monitoring and prediction systems.This study employs a statistic regression reconstruction method,in combination with domestic autonomous sea surface height and sea surface temperature observations from the Haiyang-2(HY-2)satellite fusion data,to establish an operational quasi-realtime three-dimensional(3D)temperature and salinity products over the Maritime Silk Road.These products feature a daily temporal resolution and a spatial resolution of 0.25°×0.25°and exhibit stability and continuity.We have demonstrated the accuracy of the reconstructed thermohaline fields in capturing the 3D thermohaline variations through comprehensive statistical evaluations,after comparing them against Argo observations and ocean analysis data from 2022.The results illustrate that the reconstructed fields effectively represent seasonal variations in oceanic subsurface structures,along with structural changes resulting from mesoscale processes,and the upper ocean’s responses to tropical cyclones.Furthermore,the incorporation of HY-2 satellite observations notably enhances the accuracy of temperature and salinity reconstructions in the Northwest Pacific Ocean and marginally improves salinity reconstruction accuracy in the North Indian Ocean when compared to the World Ocean Atlas 2018 monthly climatology thermohaline fields.As a result,the reconstructed product holds promise for providing quasi-real-time 3D temperature and salinity field information to facilitate fast decisionmaking during emergencies,and also offers foundational thermohaline fields for operational ocean reanalysis and forecasting systems.These contributions enhance the safety and stability of ocean subsurface activities and navigation.
基金Supported by the Key Project of National Natural Science Foundation of China(42330810).
文摘With drilling and seismic data of Transtensional(strike-slip)Fault System in the Ziyang area of the central Sichuan Basin,SW China plane-section integrated structural interpretation,3-D fault framework model building,fault throw analyzing,and balanced profile restoration,it is pointed out that the transtensional fault system in the Ziyang 3-D seismic survey consists of the northeast-trending F_(I)19 and F_(I)20 fault zones dominated by extensional deformation,as well as 3 sets of northwest-trending en echelon normal faults experienced dextral shear deformation.Among them,the F_(I)19 and F_(I)20 fault zones cut through the Neoproterozoic to Lower Triassic Jialingjiang Formation,presenting a 3-D structure of an“S”-shaped ribbon.And before Permian and during the Early Triassic,the F_(I)19 and F_(I)20 fault zones underwent at least two periods of structural superimposition.Besides,the 3 sets of northwest-trending en echelon normal faults are composed of small normal faults arranged in pairs,with opposite dip directions and partially left-stepped arrangement.And before Permian,they had formed almost,restricting the eastward growth and propagation of the F_(I)19 fault zone.The F_(I)19 and F_(I)20 fault zones communicate multiple sets of source rocks and reservoirs from deep to shallow,and the timing of fault activity matches well with oil and gas generation peaks.If there were favorable Cambrian-Triassic sedimentary facies and reservoirs developing on the local anticlinal belts of both sides of the F_(I)19 and F_(I)20 fault zones,the major reservoirs in this area are expected to achieve breakthroughs in oil and gas exploration.
基金The National Key Research and Development Program of China under contract No. 2016YFC1402607Scientific Research Foundation of Third Institude of Oceanography, Ministry of Nature Resources under contract Nos 2017012 and 2018001Global Change and Air-Sea Interaction Program under contract Nos GASI-IPOVAI-02 and GASI-IPOVAI-03.
文摘Using AVISO satellite altimeter observations during 1993–2015 and a manual eddy detection method, a total of 276 anticyclonic rings and 242 cyclonic rings shed from the Kuroshio Extension(KE) were identified, and their three-dimensional(3D) anomaly structures were further reconstructd based on the Argo float data and the Japan Agency for Marine-Earth Science and Technology(JAMSTEC) cruise and buoy data through an interpolation method. It is found that the cyclonic(anticyclonic) rings presented consistent negative(positive) anomalies of potential temperature;meanwhile the relevant maximum anomaly center became increasingly shallow for the cyclonic rings whereas it went deeper for the anticyclonic rings as the potential temperature anomaly decreased from the west to the east. The above deepening or shoaling trend is associated with the zonal change of the depth of the main thermocline. Moreover, the composite cold ring between 140° and 150°E was found to exhibit a double-core vertical structure due to the existence of mode water with low potential vorticity. Specifically, a relatively large negative(positive) salinity anomaly and a small positive(negative) one appeared for the composite cyclonic(anticyclonic) ring at the depth above and below 600 m, respectively. The underlying driving force for the temperature and salinity anomaly of the composite rings was also attempted, which varies depending on the intensity of the background current and the temperature and salinity fields in different areas of the KE region, and the rings’ influences on the temperature and salinity could reach deeper than 1 000 m on average.
基金supported by grants from the National Natural Science Foundation of China(No.42130406)the Scientific Research Foundation of Third Institute of Oceanography,MNR(Nos.2022027 and 2023018)+2 种基金the Deep Sea Habitats Discovery Project of China Deep Ocean Affairs Administration(No.DY-XZ-04)the Asian Countries Maritime Cooperation Fund(No.99950410)the Global Change and Air-Sea Interaction II(Nos.GASI-04-WLHY-01 and GASI-01-SIND-STwin).
文摘This study explores the spatial structure and transport characteristics of eddies in the Arabian Sea(AS)using Argo profiles and satellite measurements.The majority of eddies occur in the northern AS,especially along its northeastern boundary.In contrast,the western AS had a relatively higher eddy kinetic energy compared to the eastern part.Particularly,the strongest energetic eddies were present in the Somali Current system.The composite results revealed the evident thermohaline anomalies caused by cyclonic eddies(CEs)and anticyclonic eddies(AEs)in the upper 300m layers.The anomalous temperature structure within CEs and AEs showed a dominant dipole structure in the near-surface layer and a monopole structure below,with maximum temperature anomalies of approximately−0.8℃and+1.0℃located at depths of 100–150m,respectively.The composited salinity structures for CEs and AEs exhibited monopole vertical structures and sandwich-like patterns.For AEs,large positive salinity anomalies occurred at subsurface layers of 60–180 m with a peak value of about 0.07,and weak negative values were observed above 60m and below 180 m.A similar vertical structure but with an opposite sign operates for CEs.The composited CE and AE caused an equatorward salt flux with values of−8.1×10^(4)and−2.2×10^(4)kg s^(−1),respectively.CEs caused an equatorward heat flux of−7.7×10^(11)W,and AEs induced a poleward flux of 1.5×1011 W.
文摘BACKGROUND Esophageal cancer is one of the most common malignant tumors.The three-dimensional quality structure model is a quality assessment theory that includes three dimensions:Structure,process,and results.AIM To investigate the effects of nursing interventions with three-dimensional quality assessment on the efficacy and disease management ability of patients undergoing esophageal cancer surgery.METHODS In this prospective study,the control group received routine nursing,and the intervention group additionally received a three-dimensional quality assessment intervention based on the above routine care.Self-efficacy and patient disease management abilities were evaluated using the General Self-Efficacy Scale(GSES)and Exercise of Self-Care Agency scale,respectively.IBM SPSS Statistics for Windows,version 17.0,was used for the data processing.RESULTS This study recruited 112 patients who were assigned to the control and experi-mental groups(n=56 per group).Before the intervention,there was no significant difference in GSES scores between the two groups(P>0.05).After the inter-vention,the GSES scores of both groups increased,with the experimental group showing higher values(P<0.05).At the time of discharge and three months after discharge,the scores for positive attitudes,self-stress reduction,and total score of health promotion in the experimental group were higher than those in the control group(P<0.05).CONCLUSION The implementation of a three-dimensional quality structure model for postoperative patients with esophageal cancer can effectively improve their self-management ability and self-efficacy of postoperative patients.
文摘This article aims to develop a head pursuit (HP) guidance law for three-dimensional hypervelocity interception, so that the effect of the perturbation induced by seeker detection can be reduced. On the basis of a novel HP three-dimensional guidance model, a nonlinear variable structure guidance law is presented by using Lyapunov stability theory. The guidance law positions the interceptor ahead of the target on its tlight trajectory, and the speed of the interceptor is required to be lower than that of the target, A numerical example of maneuvering ballistic target interception verifies the rightness of the guidance model and the effectiveness of the proposed method.
文摘We use the U.S. Navy's Master Oceanographic Observation Data Set (MOODS) forthe Yellow Sea/ East China Sea (YES) to investigate the climatological water mass features and theseasonal and non-seasonal variabilities of the thermohaline structure, and use the ComprehensiveOcean-Atmosphere Data Set (COADS) from 1945 to 1989 to investigate the linkage between the fluxes(momentum, heat, and moisture) across the air-ocean interface and the formation of the water massfeatures. After examining the major current systems and considering the local bathymetry and watermass properties, we divide YES into five regions: East China Sea (ECS) shelf, Yellow Sea (YS) Basin,Cheju bifurcation (CB) zone, Taiwan Warm Current (TWC) region, Kuroshio Current (KC) region. Thelong term mean surface heat balance corresponds to a heat loss of 30 W m^(-2) in the ESC and CBregions, a heat loss of 65 W m^(-2) in the KC and TWC regions, and a heat gain of 15 W m^(-2) in theYS region. The surface freshwater balance is defined by precipitation minus evaporation. The annualwater loss from the surface for the five subareas ranges from 1.8 to 4 cm month^(-1). The freshwater loss from the surface should be compensated for from the river run-off. The entire watercolumn of the shelf region (ECS, YS, and CB) undergoes an evident seasonal thermal cycle withmaximum values of temperature during summer and maximum mixed layer depths during winter. However,only the surface waters of the TWC and KC regions exhibit a seasonal thermal cycle.. We also foundtwo different relations between surface salinity and the Yangtze River run-off, namely, out-of-phasein the East China Sea shelf and in-phase in the Yellow Sea. This may confirm an earlier study thatthe summer fresh water discharge from the Yangtze River forms a relatively shallow, low salinityplume-like structure extending offshore on average towards the northeast.
基金The National Key R&D Program of China under contract No.2017YFC1405100the National Natural Science Foundation of China under contract Nos 41576028,41306032 and 41876030+1 种基金the NSFC-Shandong Joint Fund for Marine Science Research Centers under contract No.U1606405the research fund from FIO-UM Joint Center of Marine Science and Technology
文摘The seasonal characteristics and formation mechanism of the thermohaline structure of mesoscale eddy in the South China Sea are investigated using the latest eddy dataset and ARMOR3D data. Eddy-centric composites reveal that the horizontal distribution of temperature anomaly associated with eddy in winter is more of a dipole pattern in upper 50 m and tends to be centrosymmetric below 50 m, while in summer the distribution pattern is centrosymmetric in the entire water column. The horizontal distribution of eddy-induced salinity anomaly exhibits similar seasonal characteristics, except that the asymmetry of the salinity anomaly is weaker. The vertical distribution of temperature anomaly associated with eddy shows a monolayer structure, while the salinity anomaly demonstrates a triple-layer structure. Further analysis indicates that the vertical distribution of the anomalies is related to the vertical structure of background temperature and salinity fields, and the asymmetry of the anomalies in upper 50 m is mainly caused by the horizontal advection of background temperature and salinity.
基金The National Basic Research Program of China "973" project under contract No. 2007CB816002the innovative key project of Chinese Academy of Sciences under contract Nos KZCXZ-YW-201 and KZCX2-YW-Q11-02the Fund of Key Laboratory of Global Change and Marine-Atmospheric Chemistry,SOA under contract No.GCMAC2010.
文摘The major feature, interannual variability and variation cause of the Mindanao Eddy and its im- pact on the thermohaline structure are analyzed based on the Argo profiling float data, the history observed data and the SODA data. The analysis results show that the Mindanao Eddy is a per- manent cyclonic meso-scale eddy and spreads vertically from about 500 m depth upward do about 50 m depth. In addition to its strong seasonal variability, the Mindanao Eddy displays a remark- able interannual variability associated with ENSO. It strengthens and expands eastward during E1 Nifio while it weakens and retreats westward during La Nifia. The interannual variability in the Mindanao Eddy may be caused by the North Equatorial Counter Current, the North Equatorial Current, the Mindanao Current and the Indonesian Through Flow. The eddy variability can have a great influence on the thermohaline structure pattern in the local upper ocean. When the eddy is strong, the cold and low salinity water inside the eddy moves violently upward from deep layer, the thermoeline depth greatly shoals, and the subsurface high salinity water largely decreases ,with the upper mixed layer becoming thinner, and vice versa.
基金The authors wish to acknowledge financial support from the National Natural Science Foundation of China(51822407 and 51774327)Natural Science Foundation of Hunan Province in China(2018JJ1037)Innovation Driven project of Central South University(2020CX014).
文摘Microseismic/acoustic emission(MS/AE)source localization method is crucial for predicting and controlling of potentially dangerous sources of complex structures.However,the locating errors induced by both the irregular structure and pre-measured velocity are poorly understood in existing methods.To meet the high-accuracy locating requirements in complex three-dimensional hole-containing structures,a velocity-free MS/AE source location method is developed in this paper.It avoids manual repetitive training by using equidistant grid points to search the path,which introduces A*search algorithm and uses grid points to accommodate complex structures with irregular holes.It also takes advantage of the velocity-free source location method.To verify the validity of the proposed method,lead-breaking tests were performed on a cubic concrete test specimen with a size of 10 cm10 cm10 cm.It was cut out into a cylindrical empty space with a size of/6cm10 cm.Based on the arrivals,the classical Geiger method and the proposed method are used to locate lead-breaking sources.Results show that the locating error of the proposed method is 1.20 cm,which is less than 2.02 cm of the Geiger method.Hence,the proposed method can effectively locate sources in the complex three-dimensional structure with holes and achieve higher precision requirements.
基金The National Basic Research Program(973 Program)of China under contract No.2012CB417402the CAS Strategy Pioneering Program under contract No.XDA10020104+1 种基金the Global Change and Air–Sea Interaction under contract No.GASI-03-01-01-02the National Natural Science Foundation of China under contract No.41406012
文摘Using the 28℃ isotherm to define the Western Pacific Warm Pool (WPWP), this study analyzes the seasonal variability of the WPWP thermohaline structure on the basis of the monthly-averaged sea temperature and salinity data from 1950 to 2011, and the dynamic and thermodynamic mechanisms based on the monthly-averaged wind, precipitation, net heat fluxes and current velocity data. A△T=-0.4℃ is more suitable than other temperature criterion for determining the mixed layer (ML) and barrier layer (BL) over the WPWP using monthly-averaged temperature and salinity data. The WPWP has a particular thermohaline structure and can be vertically divided into three layers, i.e., the ML, BL, and deep layer (DL). The BL thickness (BLT) is the thickest, while the ML thickness (MLT) is the thinnest. The MLT has a similar seasonal variation to the DL thickness (DLT) and BLT. They are all thicker in spring and fall but thinner in summer. The temperatures of the ML and BL are both higher in spring and autumn but lower in winter and summer with an annual amplitude of 0.15℃, while the temperature of the DL is higher in May and lower in August. The averaged salinities at these three layers are all higher in March but lower in September, with annual ranges of 0.41-0.45. Zonal currents, i.e., the South Equatorial Current (SEC) and North Equatorial Counter Current (NECC), and winds may be the main dynamic factors driving the seasonal variability in the WPWP thermohaline structure, while precipitation and net heat fluxes are both important thermodynamic factors. Higher (lower) winds cause both the MLT and BLT to thicken (thin), a stronger (weaker) NECC induces MLT, BLT, and DLT to thin (thicken), and a stronger (weaker) SEC causes both the MLT and BLT to thicken (thin) and the DLT to thin (thicken). An increase (decrease) in the net heat fluxes causes the MLT and BLT to thicken (thin) but the DLT to thin (thicken), while a stronger (weaker) precipitation favors thinner (thicker) MLT but thicker (thinner) BLT and DLT. In addition, a stronger (weaker) NECC and SEC cause the temperature of the three layers to decrease (increase), while the seasonal variability in salinity at the ML, BL, and DL might be controlled by the subtropical cell (STC).
基金Supported by the National Key R&D Program of China(No.2018YFC1406202)the National Natural Science Foundation of China(Nos.41830964,41976188,41605051)。
文摘As in-situ observations are sparse,targeted observations of a specific mesoscale eddy are rare.Therefore,it is difficult to study the three-dimensional structure of moving mesoscale eddies.From April to September 2014,an anticyclonic eddy located at 135°E-155°E,26°N-42°N was observed using 17 rapidsampling Argo floats,and the spatiotemporal variations in the three-dimensional structure were studied.The results are as follows:(1)the eddy was identified and tracked using satellite altimeter data.It had a lifetime of 269 days and an average radius of 91.5 km.The lifetime of the eddy can be divided into three phases,i.e.,the initiation,maturity,and termination phases.The depth of its influence reached 1000 m;(2)the Argo profiles were divided into seven periods(approximately 20 days in each)for composite analysis,and the composite Argo profiles and CARS2009(CSIRO Atlas of Regional Seas)climatology data were merged following the data-interpolating variational analysis(DIVA)method to reconstruct the three-dimensional structure.The temperature and salinity anomaly cores of the anticyclonic mesoscale eddy are located from 400 to 600 m.From 800 to 900 m,there is an area of low salinity at the center of the eddy.A high concentration anomaly of dissolved oxygen was located at approximately 250 m;(3)to better understand the features of the eddy and its interaction with the surroundings,we calculated the anomalous velocity of the geostrophic flow and the heat,salt,dissolved oxygen transport anomaly,and discussed the eddy's origin and its adjustments to topography.The maximum heat,salt,and oxygen transport caused by eddy were 9.37×10^11 W,3.08×10^3 kg/s,and 2.70×10^2 kg/s,which all occurred during the termination phase.This study highlights the applicability of using Argo floats to understand the three-dimensional structure thermohaline features of eddies in the North Pacific.
基金Project supported by the National Key Basic Research Program of China (Grant No 2007CB31040)the National Natural Science Foundation of China (Grant No 60571020)
文摘This paper presents a three-dimensional particle-in-cell (PIC) simulation of a Ka-band relativistic Cherenkov source with a slow wave structure (SWS) consisting of metal photonic band gap (PBG) structures. In the simulation, a perfect match layer boundary is employed to absorb passing band modes supported by the PBG lattice with an artificial metal boundary. The simulated axial field distributions in the cross section and surface of the SWS demonstrate that the device operates in the vicinity of the π point of a TM01-1ike mode. The Fourier transformation spectra of the axial fields as functions of time and space show that only a single frequency appears at 36.27 GHz, which is in good agreement with that of the intersection of the dispersion curve with the slow space charge wave generated on the beam. The simulation results demonstrate that the SWS has good mode selectivity.
基金Supported by the National Basic Research Development Program of China(973 Program)under contract Nos 2007CB816002,2007CB816005the innovative key project of Chinese Academy of Sciences under contract No.KZCXZ-YW-201
文摘The three-dimensional structure and the seasonal variation of the North Pacific meridional overturning circulation (NPMOC) are analyzed based on the Simple Ocean Data Assimilation data and Argo profiling float data. The NPMOC displays a multi-cell structure with four cells in the North Pacific altogether. The TC and the STC are a strong clockwise meridional cell in the low latitude ocean and a weaker clockwise meridional cell between 7°N and 18°N, respectively, while the DTC and the subpolar cell are a weaker anticlockwise meridional cell between 3°N and 15°N and a weakest anticlockwise meridional cell between 35°N and 50°N, respectively. The DTC, the TC and the STC are all of very strong seasonal variations. As to the DTC, the southward transport is strongest in fall and weakest in spring. For the TC, the northward transport is strongest in winter and weakest in spring, while the southward transport is strongest in fall and weakest in spring, which is associated with the strong southward fiow of the DTC in fall. As the STC, the northward transport is strongest in winter and weakest in summer, while the southward transport is strongest in summer and weakest in spring. This seasonal difference may be associated with the DTC. The zonal wind stress and the east-west slope of sea level play important roles in the seasonal variations of the TC, the STC and the DTC.
基金Supported by the Major State Basic Research Development Program of China(2011CB706501)the National Natural Science Foundation of China(51276157)
文摘Characterizing the complex two-phase hydrodynamics in structured packed columns requires a power- ful modeling tool. The traditional two-dimensional model exhibits limitations when one attempts to model the de- tailed two-phase flow inside the columns. The present paper presents a three-dimensional computational fluid dy- namics (CFD) model to simulate the two-phase flow in a representative unit of the column. The unit consists of an CFD calculations on column packed with Flexipak 1Y were implemented within the volume of fluid (VOF) mathe- matical framework. The CFD model was validated by comparing the calculated thickness of liquid film with the available experimental data. Special attention was given to quantitative analysis of the effects of gravity on the hy- drodynamics. Fluctuations in the liquid mass flow rate and the calculated pressure drop loss were found to be quali- tatively in agreement with the experimental observations.
文摘Based on the hydrographic data in austral summer during the 22nd Antarctic Expedition of China(2005/2006),some features can be found about the northern margin of Emery ice shelf as follows.The heat content in the surface layer(0-50 m) at the eastern end and the western end of the ice-shelf margin is much higher than that at the middle.The upper mixing-layer depth and the seasonal thermocline depth at the middle of the ice-shelf northern margin are much shallower than those at the both ends.However there is much less difference between the middle and the ends in the bottom layer.The remote sensing photos show that the inhomogeneity in the surface-layer water is closely related to the spatial distribution of the floes and polynia in the area.
基金the National Natural Science Foundation of China (No. 20271025)the Natural Science Foundation of Shandong province (No. Z2001B02)the State Key Laboratory of Crystal Materials,Shandong University
文摘The bis(tributyltin) ester of succinic acid was synthesized by the reaction of disodium salt of succinic acid with tributyltin chloride in a molar ratio of 1:2. The crystal structure was determined by X-ray single-crystal diffraction. It belongs to orthorhombic with space group Pccn, a = 20.949(3), b = 17.470(3), c = 20.345(3) Angstrom, V = 7446(2) Angstrom(3), Z = 8, D-c = 1.242 g/cm(3), mu = 1.365 mm(-1), F(000) = 2864, R = 0.0544 and wR = 0.1417. The tin atom is of five-coordination in a trigonal bipyramidal structure by bridging two carboxylate groups in different directions and the resulting structure which contains straight twist large ring channels along the axes of a, b and c is a three-dimensional framework polymer containing two different tin atoms.
基金funded by the general project of National Natural Science Foundation of China(No.41774072).
文摘A magnitude 5.5 earthquakes occurred in Eryuan County,Dali Bai Autonomous Prefecture,Yunnan Province,China,on March 3.And a magnitude 5.0 earthquake occurred in the same place on April 17,2013,i.e.,45 days later.Then,on May 21,2021,multiple earthquakes,one with magnitude 6.4 and several at 5.0 or above,occurred in Yangbi County,Dali Bai Autonomous Prefecture,Yunnan Province,China.All of these occurred in the Weixi-QiaohouWeishan fault zone.In this study,1,874 seismic events in Yangbi and Eryuan counties were identified by automatic micro-seismic identification technology and the first arrivals were picked up manually.Following this,a total of 11,968 direct P-wave absolute arrivals and 73,987 high-quality Pwave relative arrivals were collected for joint inversion via the double difference tomography method.This was done to obtain the regional three-dimensional fine crustal P-wave velocity structure.The results show that the travel time residuals before and after inversion decreased from the initial–0.1–0.1 s to–0.06–0.06 s.The upper crust in the study area,which exhibited a low-velocity anomaly,corresponded to the basin region;this indicated that the low-velocity anomaly in the shallow part of the study area was affected by the basin.Results also showed some correlation between the distribution of the earthquakes and velocity structure,as there was a lowvelocity body Lv1 with a wide distribution at depths ranging from 15–20 km in the Yangbi and Eryuan earthquake regions.In addition,earthquakes occurred predominantly in the highlow velocity abnormal transition zone.The low-velocity body in the middle and lower crust may be prone to concentrating upper crustal stress,thus leading to the occurrence of earthquakes.
基金supported by the National Natural Science Foundation Project(41501283)Beijing Science and Technology Plan Project(Z161100000916012)+2 种基金the National Key Research and Development Program(2017YFD0600901)Special Fund for Beijing Common Construction Projectthe Fundamental Research Funds for the Central Universities(2015ZCQ-GX-04)
文摘The geometric and spatial characteristics of pore structures determine the permeability and water retention of soils, which have important effects on soil functional diversity and ecological restoration. Until recently, there have not been tools and methods to visually and quantitatively describe the characteristics of soil pores. To solve this problem, this research reconstructs the geometry and spatial distribution of soil pores by the marching cubes method, texture mapping method and the ray casting method widely used in literature. The objectives were to explore an optimal method for three-dimensional visualization of soil pore structure by comparing the robustness of the three methods on soil CT images with single pore structure and porosity ranging from low (2–5%) to high (12–18%), and to evaluate the reconstruction performance of the three methods with different geometric features. The results demonstrate that there are aliases (jagged edges) and deficiency at the boundaries of the model reconstructed by the marching cubes method and pore volumes are smaller than the ground truth, whereas the results of the texture mapping method lack the details of pore structures. For all the soil images, the ray casting method is preferable since it better preserves the pore characteristics of the ground truth. Furthermore, the ray casting method produced the best soil pore model with higher rendering speed and lower memory consumption. Therefore, the ray casting method provides a more advanced method for visualization of pore structures and provides an optional technique for the study of the transport of moisture and the exchange of air in soil.
文摘Point bars are well developed on the Yellow River delta, an~ which theShengli I point bar is the most typical. The point bar, being about 4 km in length and several tensto more than 100 meters in width, is located on the south side of the Shengli Bridge in KenliCounty, Dongying, Shandong. It is a typical fine-grained point bar with silt, which is predominant,some clay and minor plant debris and clay boulders. The Shengli I Point bar has complicated 3-Dstructures. Firstly, in a plane view, it comprises mainly eight sedimentary units, bar edge, baredge, bar platform, bar plain, bar channel, bar gully, bar pond and bar bay, developing side by sideand superimposed one by one m a complex way. Secondly, its vertical structures are very complex dueto the partial superimposition of the 8 sedimentary units. Besides hydatogenesis, very intensivewind erosion, eolian, ice and meltwater actions are also visible on the Shengli I point bar. Thecomplex form is made even more complicated because of the above co-actions.