Location awareness in wireless networks is essential for emergency services,navigation,gaming,and many other applications.This article presents a method for source localization based on measuring the amplitude-phase d...Location awareness in wireless networks is essential for emergency services,navigation,gaming,and many other applications.This article presents a method for source localization based on measuring the amplitude-phase distribution of the field at the base station.The existing scatterers in the target area create unique scattered field interference at each source location.The unique field interference at each source location results in a unique field signature at the base station which is used for source localization.In the proposed method,the target area is divided into a grid with a step of less than half the wavelength.Each grid node is characterized by its field signature at the base station.Field signatures corresponding to all nodes are normalized and stored in the base station as fingerprints for source localization.The normalization of the field signatures avoids the need for time synchronization between the base station and the source.When a source transmits signals,the generated field signature at the base station is normalized and then correlated with the stored fingerprints.The maximum correlation value is given by the node to which the source is the closest.Numerical simulations and results of experiments on ultrasonic waves in the air show that the ultrasonic source is correctly localized using broadband field signatures with one base station and without time synchronization.The proposed method is potentially applicable for indoor localization and navigation of mobile robots.展开更多
Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both ...Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF.展开更多
The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivi...The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.展开更多
Rydberg atoms have been widely investigated due to their large size,long radiative lifetime,huge polarizability and strong dipole-dipole interactions.The position information of Rydberg atoms provides more possibiliti...Rydberg atoms have been widely investigated due to their large size,long radiative lifetime,huge polarizability and strong dipole-dipole interactions.The position information of Rydberg atoms provides more possibilities for quantum optics research,which can be obtained under the localization method.We study the behavior of three-dimensional(3D)Rydberg atom localization in a four-level configuration with the measurement of the spatial optical absorption.The atomic localization precision depends strongly on the detuning and Rabi frequency of the involved laser fields.A 100%probability of finding the Rydberg atom at a specific 3D position is achieved with precision of~0.031λ.This work demonstrates the possibility for achieving the 3D atom localization of the Rydberg atom in the experiment.展开更多
A scheme is used to explore the behavior of three-dimensional(3D)atom localization in a Y-type hot atomic system.We can obtain the position information of the atom due to the position-dependent atom–field interaction...A scheme is used to explore the behavior of three-dimensional(3D)atom localization in a Y-type hot atomic system.We can obtain the position information of the atom due to the position-dependent atom–field interaction.We study the influences of the system parameters and the temperature on the atom localization.More interestingly,the atom can be localized in a subspace when the temperature is equal to 323 K.Moreover,a method is proposed to tune multiparameter for localizing the atom in a subspace.The result is helpful to achieve atom nanolithography,photonic crystal and measure the center-of-mass wave function of moving atoms.展开更多
An accurate low-cost ultrasonic localization system is de- veloped for automated mobile robots in indoor environments, which is essential for automatic navigation of mobile robots with various tasks. Although ultrasen...An accurate low-cost ultrasonic localization system is de- veloped for automated mobile robots in indoor environments, which is essential for automatic navigation of mobile robots with various tasks. Although ultrasenic sensors are more cost-effective than other sensors such as Laser Range Finder (LRF) and vision, but they are inaccurate and directionally ambiguons. First, the matched filter is used to measure the distance accurately. For resolving the computational complexity of the matched filter, a new matched filter algorithm with simple compution is proposed. Then, an ultrasonic localization system is proposed which consists of three ultrasonic receivers and two or mote transmitters for improving position and orientation accuracy was developed. Finally, an extended Kalman filter is designed to estimate both the static and dynamic positions and orientations. Various simu lations and experimental results show that the proposed system is effective.展开更多
This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with u...This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with unique 5-element configuration</span></span><span style="white-space:normal;"><span style="font-family:;" "="">, with all five elements acting as transmitters and four elements as receivers. The receivers are designed to reduce the amount of uncertainty. As the fluid moves through this setup, four Doppler frequencies are obtained. The multi-dimensional velocity information along the measurement line can be reconstructed. The transducer has a compact geometry suitable for a wide range of applications, including narrow flow areas. The transducer’s basic frequency and sound pressure are selected and evaluated to be compatible with the application. First, to confirm the measurement ability, the measurement of the developed system in two-dimensional flow is validated by comparing it to the theoretical data. The uncertainty of measurement was within 15%. Second, the three-dimensional measurement in turbulent and swirling flow is proved experimentally to check the applicability of the proposed technique.</span></span>展开更多
In 1982, Professor Fang Guoliang found the "Non full resonance" phenomenon in a tool system while he use the thin-long tool ultrasonically machining deep-small hole. He called it as "local resonance&quo...In 1982, Professor Fang Guoliang found the "Non full resonance" phenomenon in a tool system while he use the thin-long tool ultrasonically machining deep-small hole. He called it as "local resonance". Also this "Non full resonance" phenomenon was discovered in the ultrasonic drilling and the ultrasonic honing system later. To its mechanism, professor Fang thought that the coupling of long-thin tool bar and driving system is weak, so the tool bar can vibrate independently, but the quantitative relation between the coupling factor and diameter ratio is not made certain. Then several theories come forth to interpret it but still haven’t a common conclusion. Through the systematic experimental and theoretical research, this paper reveals that the "local resonance" phenomenon of ultrasonic honing system has the same essence with the "local resonance" phenomenon in deep hole machining system: when the section area ratio of tool bar and driving system is small enough, some resonance frequencies of combined system are close to the resonance frequencies of "fixed-free" state tool bar, the combined system is still resonant. According to the given depth of hole and structure size, we can use the transfer matrix deduced in this paper to design flexible bar and oilstone seat not only satisfying mechanical structure size but also achieving enough magnitude. It greatly simplified the design. This new method can be named as "local resonance" design method for ultrasonic honing system. The experiment, deduction and design method have a certain common meaning to the study and design of other ultrasonic system.展开更多
Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our prop...Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our proposed method consists of mainly three steps. First, a brain parenchymal region was segmented based on brain model matching. Second, a 3D fuzzy membership map for a cerebral cortical region was created by applying a fuzzy c-means (FCM) clustering algorithm to T1-weighted MR images. Third, cerebral cortical thickness was three- dimensionally measured on each cortical surface voxel by using a localized gradient vector trajectory in a fuzzy membership map. Spherical models with 3 mm artificial cortical regions, which were produced using three noise levels of 2%, 5%, and 10%, were employed to evaluate the proposed method. We also applied the proposed method to T1-weighted images obtained from 20 cases, i.e., 10 clinically diagnosed AD cases and 10 clinically normal (CN) subjects. The thicknesses of the 3 mm artificial cortical regions for spherical models with noise levels of 2%, 5%, and 10% were measured by the proposed method as 2.953 ± 0.342, 2.953 ± 0.342 and 2.952 ± 0.343 mm, respectively. Thus the mean thicknesses for the entire cerebral lobar region were 3.1 ± 0.4 mm for AD patients and 3.3 ± 0.4 mm for CN subjects, respectively (p < 0.05). The proposed method could be feasible for measuring the 3D cerebral cortical thickness on individual cortical surface voxels as an atrophy feature in AD.展开更多
It can be seen that it is of great practical signi? cance to evaluate practice teaching of tourism management specialty. Tourism management professional ability training objectives that is mainly refers to develop th...It can be seen that it is of great practical signi? cance to evaluate practice teaching of tourism management specialty. Tourism management professional ability training objectives that is mainly refers to develop the tourism, ecology, tourism economics, tourism planning and development, management of travel agencies, tour guides, hotel management and tourism scenic spot management expertise, has complete professional ability has a skilled job skills in tourism industry to cultivate specialized personnel with high quality. The new local colleges and universities as an important role in higher education, entrepreneurship education in the process of exploring the important role of the gradually emerging and to explore the development of the entrepreneurship education in new local colleges and universities will help to cultivate pioneering talents extensively. This paper analyzes the issue from the essential perspective that will improve the general quality of the education.展开更多
Beam focusing is one of the unique characteristics of ultrasonic phased array compared with conventional ultrasound.On the basis of two-dimensional radiated sound field of phased array,the three-dimensional radiated s...Beam focusing is one of the unique characteristics of ultrasonic phased array compared with conventional ultrasound.On the basis of two-dimensional radiated sound field of phased array,the three-dimensional radiated sound field was simulated in the paper,and then the effect of different frequencies,different number of array elements and different element spacings on focal spot,the depth of focus and the effect on horizontal and vertical resolution were analyzed.The optimal results of transducer parameters have certain reference value for the design of phased array probe.展开更多
The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sens...The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.展开更多
The dynamic characteristics of the area of the atrial septal defect(ASD) were evaluated using the technique of real-time three-dimensional echocardiography(RT 3DE), the potential factors responsible for the dynami...The dynamic characteristics of the area of the atrial septal defect(ASD) were evaluated using the technique of real-time three-dimensional echocardiography(RT 3DE), the potential factors responsible for the dynamic characteristics of the area of ASD were observed, and the overall and local volume and functions of the patients with ASD were measured. RT 3DE was performed on the 27 normal controls and 28 patients with ASD. Based on the three-dimensional data workstations, the area of ASD was measured at P wave vertex, R wave vertex, T wave starting point, and T wave terminal point and in the T-P section. The right atrial volume in the same time phase of the cardiac cycle and the motion displacement distance of the tricuspid annulus in the corresponding period were measured. The measured value of the area of ASD was analyzed. The changes in the right atrial volume and the motion displacement distance of the tricuspid annulus in the normal control group and the ASD group were compared. The right ventricular ejection fractions in the normal control group and the ASD group were compared using the RT 3DE long-axis eight-plane(LA 8-plane) method. Real-time three-dimensional volume imaging was performed in the normal control group and ASD group(n=30). The right ventricular inflow tract, outflow tract, cardiac apex muscular trabecula dilatation, end-systolic volume, overall dilatation, end-systolic volume, and appropriate local and overall ejection fractions in both two groups were measured with the four-dimensional right ventricular quantitative analysis method(4D RVQ) and compared. The overall right ventricular volume and the ejection fraction measured by the LA 8-plane method and 4D RVQ were subjected to a related analysis. Dynamic changes occurred to the area of ASD in the cardiac cycle. The rules for dynamic changes in the area of ASD and the rules for changes in the right atrial volume in the cardiac cycle were consistent. The maximum value of the changes in the right atrial volume occurred in the end-systolic period when the peak of the curve appeared. The minimum value of the changes occurred in the end-systolic period and was located at the lowest point of the volume variation curve. The area variation curve for ASD and the motion variation curve for the tricuspid annulus in the cardiac cycle were the same. The displacement of the tricuspid annulus exhibited directionality. The measured values of the area of ASD at P wave vertex, R wave vertex, T wave starting point, T wave terminal point and in the T-P section were properly correlated with the right atrial volume(P〈0.001). The area of ASD and the motion displacement distance of the tricuspid annulus were negatively correlated(P〈0.05). The right atrial volumes in the ASD group in the cardiac cycle in various time phases increased significantly as compared with those in the normal control group(P=0.0001). The motion displacement distance of the tricuspid annulus decreased significantly in the ASD group as compared with that in the normal control group(P=0.043). The right ventricular ejection fraction in the ASD group was lower than that in the normal control group(P=0.032). The ejection fraction of the cardiac apex trabecula of the ASD patients was significantly lower than the ejection fractions of the right ventricular outflow tract and inflow tract and overall ejection fraction. The difference was statistically significant(P=0.005). The right ventricular local and overall dilatation and end-systolic volumes in the ASD group increased significantly as compared with those in the normal control group(P=0.031). The a RVEF and the overall ejection fraction decreased in the ASD group as compared with those in the normal control group(P=0.0005). The dynamic changes in the area of ASD and the motion curves for the right atrial volume and tricuspid annulus have the same dynamic characteristics. RT 3DE can be used to accurately evaluate the local and overall volume and functions of the right ventricle. The local and overall volume loads of the right ventricle in the ASD patients increase significantly as compared with those of the normal people. The right ventricular cardiac apex and the overall systolic function decrease.展开更多
In order to reduce the cost of indoor localization system for autonomous mobile robots( AMRs) and to enhance the localization efficiency,this paper presents a localization approach using sequential time of flight( STO...In order to reduce the cost of indoor localization system for autonomous mobile robots( AMRs) and to enhance the localization efficiency,this paper presents a localization approach using sequential time of flight( STOF) measurements from a single receiver to localize AMRs in indoor environments. The STOF is a series of TOF measurements that are acquired by the mobile source in sequence. Combined with the pose estimation obtained from the Dead Reckoning( DR) method,the STOF measurements from a single receiver can be adapted and applied to the trilateration localization model to determine the indoor position of the AMRs. Based on the error analysis of the STOF localization,a double-layer Kalman filter( DLKF) is proposed to fuse multiple STOF localization results and further improve the localization accuracy. In the computer simulation experiments,an average ±20 mm positioning accuracy is attained with the presence of simulated noise that is similar to the realistic sensor noise in magnitude. The simulation results indicate the effectiveness and the potential value of the proposed localization scheme in the practical indoor localization application.展开更多
This paper presents quiet zone design using ultrasonic transducers for local active control in pure tone diffuse fields. Most of researches in local active noise control used conventional loudspeakers for the secondar...This paper presents quiet zone design using ultrasonic transducers for local active control in pure tone diffuse fields. Most of researches in local active noise control used conventional loudspeakers for the secondary sources to produce quiet zones. Recently ultrasonic transducers have been used for the secondary sources to control the plane wave in active noise control. However there is no research related to active noise control in diffuse fields using ultrasonic transducers. Therefore this study uses ultrasonic transducers for the secondary sources to control the diffuse fields. The quiet zone produced using ultrasonic transducers in single tone diffuse fields has been analyzed through simulations in this work. The results showed that quiet zones created using ultrasonic transducers were larger than those created using conventional loudspeakers. This is due to the fact that the audible sound pressure produced by the ultrasonic transducers decays slowly with the distance. Therefore the secondary field created by an ultrasonic transducer could fit the primary field better and the larger zone of quiet could be obtained using the ultrasonic transducer. Also the audible sound produced by the ultrasonic transducers is directional;therefore the sound pressure amplification outside the quiet zones was lower.展开更多
Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of ci...Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of civil and mechanical structures.This paper thus presents a robust guided wave-based method for damage detection and localization under complex environmental conditions by singular value decomposition-based feature extraction and one-dimensional convolutional neural network(1D-CNN).After singular value decomposition-based feature extraction processing,a temporal robust damage index(TRDI)is extracted,and the effect of EOCs is well removed.Hence,even for the signals with a very large temperature-varying range and low signal-to-noise ratios(SNRs),the final damage detection and localization accuracy retain perfect 100%.Verifications are conducted on two different experimental datasets.The first dataset consists of guided wave signals collected from a thin aluminum plate with artificial noises,and the second is a publicly available experimental dataset of guided wave signals acquired on a composite plate with a temperature ranging from 20℃to 60℃.It is demonstrated that the proposed method can detect and localize the damage accurately and rapidly,showing great potential for application in complex and unknown EOC.展开更多
To address the challenge of visualizing internal defects within castings, ultrasonic nondestructive testing technology has been introduced for the detection and characterization of internal defects in castings. Ultras...To address the challenge of visualizing internal defects within castings, ultrasonic nondestructive testing technology has been introduced for the detection and characterization of internal defects in castings. Ultrasonic testing is widely utilized for detecting and characterizing internal defects in materials, thanks to its strong penetration ability, wide testing area, and fast scanning speed. However, traditional ultrasonic testing primarily relies on one-dimensional waveforms or two-dimensional images to analyze internal defects in billets, which hinders intuitive characterization of defect quantity, size, spatial distribution, and other relevant information. Consequently, a three-dimensional (3D) layered characterization method of billets internal quality based on scanning acoustic microscope (SAM) is proposed. The method starts with a layered focus scanning of the billet using SAM and pre-processing the obtained sequence of ultrasonic images. Next, the ray casting is employed to reconstruct 3D shape of defects in billets, allowing for characterization of their quality by obtaining characteristic information on defect spatial distributions, quantity, and sizes. To validate the effectiveness of the proposed method, specimens of 42CrMo billets are prepared using five different processes, and the method is employed to evaluate their internal quality. Finally, a comparison between the ultrasonic image and the metallographic image reveals a difference in dimensional accuracy of only 2.94%. The results indicate that the new method enables visualization of internal defect information in billets, serving as a valuable complement to the traditional method of characterizing their internal quality.展开更多
This paper presents the analysis and management system of digital ultrasonic image. The system can manage medical ultrasonic image by collecting, saving and transferring, and realize that section offices of ultrasonic...This paper presents the analysis and management system of digital ultrasonic image. The system can manage medical ultrasonic image by collecting, saving and transferring, and realize that section offices of ultrasonic image in hospital network manage. The system use network technology in transferring image between ultrasonic equipments to share patient data in ultrasonic equipments. And doctors can input patient diagnostic report,saved by text file and case history, digitally managed. The system can be realized by Visual C++ which make windows applied. The system can be brought forward because PACS prevail with various hospitals,but PACS is expensive. In view of this status, we put forward to the analysis and management system of digital ultrasonic image,which is similar to PACS.展开更多
Objective:The purpose of this study was to evaluate the efficacy and safety of concurrent chemoradiotherapy (CCRT) in patients with locally advanced non-small cell lung cancer (LANSCLC). Methods:83 cases of patients w...Objective:The purpose of this study was to evaluate the efficacy and safety of concurrent chemoradiotherapy (CCRT) in patients with locally advanced non-small cell lung cancer (LANSCLC). Methods:83 cases of patients who have been diagnosed for locally advanced NSCLC by determined cytology or pathology were divided into two groups randomly, 42 patients in NP group and 41 patients in EP group. All patients accepted thoracic three-dimensional conformal radiotherapy (3D-CRT) and concurrent either NP chemotherapy in NP group or EP chemotherapy in EP group. 3D-CRT were started on day 1 in the first cycle of chemotherapy. Chemotherapy were carried out for 4 cycles, every cycle was 21 days. Thoracic radiotherapy adopted conventional fractionated irradiation with 15 MeV-X ray, a total dose of 60 Gy. Results: In 83 patients were evaluable, there were 5 cases complete regression to be observed, 29 cases had partial regression (PR), 7 cases with stable disease (SD) and 1 case with progression disease (PD) in NP group. CR 3 cases, PR 27 cases, SD 9 cases and PD 2 cases in EP group. The overall response rate (RR) both NP group and EP group were 80.9%, 73.2%, respectively (P = 0.785).1-, 2-, 3-year survival rate were 90.5%, 69.0%, 28.6% and 82.9%, 51.2%, 21.9%, respectively (P = 0.393). The incidence of leukopenia and thrombocytopenia in NP group was higher than that in the EP group (P < 0.05). Conclusion:CCRT in patients with locally advanced non-small cell lung cancer, 3D-CRT with concurrent NP or EP chemotherapy. 1-, 2-, 3-year overall survival (OS) and average survival time (AST) were not statistically differences, a higher incidence of toxicities were observed in NP group but can be tolerable.展开更多
基金supported by the Tomsk State University Competitiveness Improvement Program under Grant No.2.4.2.23 IG.
文摘Location awareness in wireless networks is essential for emergency services,navigation,gaming,and many other applications.This article presents a method for source localization based on measuring the amplitude-phase distribution of the field at the base station.The existing scatterers in the target area create unique scattered field interference at each source location.The unique field interference at each source location results in a unique field signature at the base station which is used for source localization.In the proposed method,the target area is divided into a grid with a step of less than half the wavelength.Each grid node is characterized by its field signature at the base station.Field signatures corresponding to all nodes are normalized and stored in the base station as fingerprints for source localization.The normalization of the field signatures avoids the need for time synchronization between the base station and the source.When a source transmits signals,the generated field signature at the base station is normalized and then correlated with the stored fingerprints.The maximum correlation value is given by the node to which the source is the closest.Numerical simulations and results of experiments on ultrasonic waves in the air show that the ultrasonic source is correctly localized using broadband field signatures with one base station and without time synchronization.The proposed method is potentially applicable for indoor localization and navigation of mobile robots.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52104125, U1765204 and 51739008)
文摘Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF.
文摘The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.
基金the National R&D Program of China(Grant No.2017YFA0304203)the National Natural Science Foundation of China(Grant Nos.61875112,61705122,62075121,and 91736209)+1 种基金the Program for Sanjin Scholars of Shanxi Province,the Key Research and Development Program of Shanxi Province for International Cooperation(Grant No.201803D421034)Shanxi Scholarship Council of China(Grant Nos.2020-073),and 1331KSC.
文摘Rydberg atoms have been widely investigated due to their large size,long radiative lifetime,huge polarizability and strong dipole-dipole interactions.The position information of Rydberg atoms provides more possibilities for quantum optics research,which can be obtained under the localization method.We study the behavior of three-dimensional(3D)Rydberg atom localization in a four-level configuration with the measurement of the spatial optical absorption.The atomic localization precision depends strongly on the detuning and Rabi frequency of the involved laser fields.A 100%probability of finding the Rydberg atom at a specific 3D position is achieved with precision of~0.031λ.This work demonstrates the possibility for achieving the 3D atom localization of the Rydberg atom in the experiment.
文摘A scheme is used to explore the behavior of three-dimensional(3D)atom localization in a Y-type hot atomic system.We can obtain the position information of the atom due to the position-dependent atom–field interaction.We study the influences of the system parameters and the temperature on the atom localization.More interestingly,the atom can be localized in a subspace when the temperature is equal to 323 K.Moreover,a method is proposed to tune multiparameter for localizing the atom in a subspace.The result is helpful to achieve atom nanolithography,photonic crystal and measure the center-of-mass wave function of moving atoms.
基金supported by the MKE(The Ministry of Knowledge Economy,Korea)the ITRC(Information Technology Research Center)support program(ⅡTA-2009-(C1090-0902-0007))
文摘An accurate low-cost ultrasonic localization system is de- veloped for automated mobile robots in indoor environments, which is essential for automatic navigation of mobile robots with various tasks. Although ultrasenic sensors are more cost-effective than other sensors such as Laser Range Finder (LRF) and vision, but they are inaccurate and directionally ambiguons. First, the matched filter is used to measure the distance accurately. For resolving the computational complexity of the matched filter, a new matched filter algorithm with simple compution is proposed. Then, an ultrasonic localization system is proposed which consists of three ultrasonic receivers and two or mote transmitters for improving position and orientation accuracy was developed. Finally, an extended Kalman filter is designed to estimate both the static and dynamic positions and orientations. Various simu lations and experimental results show that the proposed system is effective.
文摘This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with unique 5-element configuration</span></span><span style="white-space:normal;"><span style="font-family:;" "="">, with all five elements acting as transmitters and four elements as receivers. The receivers are designed to reduce the amount of uncertainty. As the fluid moves through this setup, four Doppler frequencies are obtained. The multi-dimensional velocity information along the measurement line can be reconstructed. The transducer has a compact geometry suitable for a wide range of applications, including narrow flow areas. The transducer’s basic frequency and sound pressure are selected and evaluated to be compatible with the application. First, to confirm the measurement ability, the measurement of the developed system in two-dimensional flow is validated by comparing it to the theoretical data. The uncertainty of measurement was within 15%. Second, the three-dimensional measurement in turbulent and swirling flow is proved experimentally to check the applicability of the proposed technique.</span></span>
文摘In 1982, Professor Fang Guoliang found the "Non full resonance" phenomenon in a tool system while he use the thin-long tool ultrasonically machining deep-small hole. He called it as "local resonance". Also this "Non full resonance" phenomenon was discovered in the ultrasonic drilling and the ultrasonic honing system later. To its mechanism, professor Fang thought that the coupling of long-thin tool bar and driving system is weak, so the tool bar can vibrate independently, but the quantitative relation between the coupling factor and diameter ratio is not made certain. Then several theories come forth to interpret it but still haven’t a common conclusion. Through the systematic experimental and theoretical research, this paper reveals that the "local resonance" phenomenon of ultrasonic honing system has the same essence with the "local resonance" phenomenon in deep hole machining system: when the section area ratio of tool bar and driving system is small enough, some resonance frequencies of combined system are close to the resonance frequencies of "fixed-free" state tool bar, the combined system is still resonant. According to the given depth of hole and structure size, we can use the transfer matrix deduced in this paper to design flexible bar and oilstone seat not only satisfying mechanical structure size but also achieving enough magnitude. It greatly simplified the design. This new method can be named as "local resonance" design method for ultrasonic honing system. The experiment, deduction and design method have a certain common meaning to the study and design of other ultrasonic system.
文摘Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our proposed method consists of mainly three steps. First, a brain parenchymal region was segmented based on brain model matching. Second, a 3D fuzzy membership map for a cerebral cortical region was created by applying a fuzzy c-means (FCM) clustering algorithm to T1-weighted MR images. Third, cerebral cortical thickness was three- dimensionally measured on each cortical surface voxel by using a localized gradient vector trajectory in a fuzzy membership map. Spherical models with 3 mm artificial cortical regions, which were produced using three noise levels of 2%, 5%, and 10%, were employed to evaluate the proposed method. We also applied the proposed method to T1-weighted images obtained from 20 cases, i.e., 10 clinically diagnosed AD cases and 10 clinically normal (CN) subjects. The thicknesses of the 3 mm artificial cortical regions for spherical models with noise levels of 2%, 5%, and 10% were measured by the proposed method as 2.953 ± 0.342, 2.953 ± 0.342 and 2.952 ± 0.343 mm, respectively. Thus the mean thicknesses for the entire cerebral lobar region were 3.1 ± 0.4 mm for AD patients and 3.3 ± 0.4 mm for CN subjects, respectively (p < 0.05). The proposed method could be feasible for measuring the 3D cerebral cortical thickness on individual cortical surface voxels as an atrophy feature in AD.
文摘It can be seen that it is of great practical signi? cance to evaluate practice teaching of tourism management specialty. Tourism management professional ability training objectives that is mainly refers to develop the tourism, ecology, tourism economics, tourism planning and development, management of travel agencies, tour guides, hotel management and tourism scenic spot management expertise, has complete professional ability has a skilled job skills in tourism industry to cultivate specialized personnel with high quality. The new local colleges and universities as an important role in higher education, entrepreneurship education in the process of exploring the important role of the gradually emerging and to explore the development of the entrepreneurship education in new local colleges and universities will help to cultivate pioneering talents extensively. This paper analyzes the issue from the essential perspective that will improve the general quality of the education.
基金National Natural Science Foundation of China(No.61201412)Shanxi Province Fundation for Science and Technology Research(No.2012021011-5)Program for Top Young Academic Leaders of Higher Learning Institution in Shanxi Province
文摘Beam focusing is one of the unique characteristics of ultrasonic phased array compared with conventional ultrasound.On the basis of two-dimensional radiated sound field of phased array,the three-dimensional radiated sound field was simulated in the paper,and then the effect of different frequencies,different number of array elements and different element spacings on focal spot,the depth of focus and the effect on horizontal and vertical resolution were analyzed.The optimal results of transducer parameters have certain reference value for the design of phased array probe.
基金Y. Wang was supported in part by the US National Science Foundation (NSF) under Grant Nos.CNS-0721666,CNS-0915331,and CNS-1050398Y. Liu was partially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61074092+1 种基金by the Shandong Provincial Natural Science Foundation,China under Grant No.Q2008E01Z. Guo was partially supported by the NSFC under Grant Nos. 61170258 and 6093301
文摘The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.
文摘The dynamic characteristics of the area of the atrial septal defect(ASD) were evaluated using the technique of real-time three-dimensional echocardiography(RT 3DE), the potential factors responsible for the dynamic characteristics of the area of ASD were observed, and the overall and local volume and functions of the patients with ASD were measured. RT 3DE was performed on the 27 normal controls and 28 patients with ASD. Based on the three-dimensional data workstations, the area of ASD was measured at P wave vertex, R wave vertex, T wave starting point, and T wave terminal point and in the T-P section. The right atrial volume in the same time phase of the cardiac cycle and the motion displacement distance of the tricuspid annulus in the corresponding period were measured. The measured value of the area of ASD was analyzed. The changes in the right atrial volume and the motion displacement distance of the tricuspid annulus in the normal control group and the ASD group were compared. The right ventricular ejection fractions in the normal control group and the ASD group were compared using the RT 3DE long-axis eight-plane(LA 8-plane) method. Real-time three-dimensional volume imaging was performed in the normal control group and ASD group(n=30). The right ventricular inflow tract, outflow tract, cardiac apex muscular trabecula dilatation, end-systolic volume, overall dilatation, end-systolic volume, and appropriate local and overall ejection fractions in both two groups were measured with the four-dimensional right ventricular quantitative analysis method(4D RVQ) and compared. The overall right ventricular volume and the ejection fraction measured by the LA 8-plane method and 4D RVQ were subjected to a related analysis. Dynamic changes occurred to the area of ASD in the cardiac cycle. The rules for dynamic changes in the area of ASD and the rules for changes in the right atrial volume in the cardiac cycle were consistent. The maximum value of the changes in the right atrial volume occurred in the end-systolic period when the peak of the curve appeared. The minimum value of the changes occurred in the end-systolic period and was located at the lowest point of the volume variation curve. The area variation curve for ASD and the motion variation curve for the tricuspid annulus in the cardiac cycle were the same. The displacement of the tricuspid annulus exhibited directionality. The measured values of the area of ASD at P wave vertex, R wave vertex, T wave starting point, T wave terminal point and in the T-P section were properly correlated with the right atrial volume(P〈0.001). The area of ASD and the motion displacement distance of the tricuspid annulus were negatively correlated(P〈0.05). The right atrial volumes in the ASD group in the cardiac cycle in various time phases increased significantly as compared with those in the normal control group(P=0.0001). The motion displacement distance of the tricuspid annulus decreased significantly in the ASD group as compared with that in the normal control group(P=0.043). The right ventricular ejection fraction in the ASD group was lower than that in the normal control group(P=0.032). The ejection fraction of the cardiac apex trabecula of the ASD patients was significantly lower than the ejection fractions of the right ventricular outflow tract and inflow tract and overall ejection fraction. The difference was statistically significant(P=0.005). The right ventricular local and overall dilatation and end-systolic volumes in the ASD group increased significantly as compared with those in the normal control group(P=0.031). The a RVEF and the overall ejection fraction decreased in the ASD group as compared with those in the normal control group(P=0.0005). The dynamic changes in the area of ASD and the motion curves for the right atrial volume and tricuspid annulus have the same dynamic characteristics. RT 3DE can be used to accurately evaluate the local and overall volume and functions of the right ventricle. The local and overall volume loads of the right ventricle in the ASD patients increase significantly as compared with those of the normal people. The right ventricular cardiac apex and the overall systolic function decrease.
基金Sponsored by the National Science and Technology Support Program(Grant No.012BAI33B04)
文摘In order to reduce the cost of indoor localization system for autonomous mobile robots( AMRs) and to enhance the localization efficiency,this paper presents a localization approach using sequential time of flight( STOF) measurements from a single receiver to localize AMRs in indoor environments. The STOF is a series of TOF measurements that are acquired by the mobile source in sequence. Combined with the pose estimation obtained from the Dead Reckoning( DR) method,the STOF measurements from a single receiver can be adapted and applied to the trilateration localization model to determine the indoor position of the AMRs. Based on the error analysis of the STOF localization,a double-layer Kalman filter( DLKF) is proposed to fuse multiple STOF localization results and further improve the localization accuracy. In the computer simulation experiments,an average ±20 mm positioning accuracy is attained with the presence of simulated noise that is similar to the realistic sensor noise in magnitude. The simulation results indicate the effectiveness and the potential value of the proposed localization scheme in the practical indoor localization application.
文摘This paper presents quiet zone design using ultrasonic transducers for local active control in pure tone diffuse fields. Most of researches in local active noise control used conventional loudspeakers for the secondary sources to produce quiet zones. Recently ultrasonic transducers have been used for the secondary sources to control the plane wave in active noise control. However there is no research related to active noise control in diffuse fields using ultrasonic transducers. Therefore this study uses ultrasonic transducers for the secondary sources to control the diffuse fields. The quiet zone produced using ultrasonic transducers in single tone diffuse fields has been analyzed through simulations in this work. The results showed that quiet zones created using ultrasonic transducers were larger than those created using conventional loudspeakers. This is due to the fact that the audible sound pressure produced by the ultrasonic transducers decays slowly with the distance. Therefore the secondary field created by an ultrasonic transducer could fit the primary field better and the larger zone of quiet could be obtained using the ultrasonic transducer. Also the audible sound produced by the ultrasonic transducers is directional;therefore the sound pressure amplification outside the quiet zones was lower.
基金Supported by National Natural Science Foundation of China(Grant Nos.52272433 and 11874110)Jiangsu Provincial Key R&D Program(Grant No.BE2021084)Technical Support Special Project of State Administration for Market Regulation(Grant No.2022YJ11).
文摘Ultrasonic guided wave is an attractive monitoring technique for large-scale structures but is vulnerable to changes in environmental and operational conditions(EOC),which are inevitable in the normal inspection of civil and mechanical structures.This paper thus presents a robust guided wave-based method for damage detection and localization under complex environmental conditions by singular value decomposition-based feature extraction and one-dimensional convolutional neural network(1D-CNN).After singular value decomposition-based feature extraction processing,a temporal robust damage index(TRDI)is extracted,and the effect of EOCs is well removed.Hence,even for the signals with a very large temperature-varying range and low signal-to-noise ratios(SNRs),the final damage detection and localization accuracy retain perfect 100%.Verifications are conducted on two different experimental datasets.The first dataset consists of guided wave signals collected from a thin aluminum plate with artificial noises,and the second is a publicly available experimental dataset of guided wave signals acquired on a composite plate with a temperature ranging from 20℃to 60℃.It is demonstrated that the proposed method can detect and localize the damage accurately and rapidly,showing great potential for application in complex and unknown EOC.
基金supported by the joint funds of the National Natural Science Foundation of China (Grant No. U22A20186)the Open Foundation of Key Laboratory of Metallurgical Equipment and Control Technology (Wuhan University of Science and Technology) Ministry of Education (Grant No. MECOF2019804)the Foundation of Key Technologies R&D Program of Guangdong Province (Grant No. 2020B0101130007).
文摘To address the challenge of visualizing internal defects within castings, ultrasonic nondestructive testing technology has been introduced for the detection and characterization of internal defects in castings. Ultrasonic testing is widely utilized for detecting and characterizing internal defects in materials, thanks to its strong penetration ability, wide testing area, and fast scanning speed. However, traditional ultrasonic testing primarily relies on one-dimensional waveforms or two-dimensional images to analyze internal defects in billets, which hinders intuitive characterization of defect quantity, size, spatial distribution, and other relevant information. Consequently, a three-dimensional (3D) layered characterization method of billets internal quality based on scanning acoustic microscope (SAM) is proposed. The method starts with a layered focus scanning of the billet using SAM and pre-processing the obtained sequence of ultrasonic images. Next, the ray casting is employed to reconstruct 3D shape of defects in billets, allowing for characterization of their quality by obtaining characteristic information on defect spatial distributions, quantity, and sizes. To validate the effectiveness of the proposed method, specimens of 42CrMo billets are prepared using five different processes, and the method is employed to evaluate their internal quality. Finally, a comparison between the ultrasonic image and the metallographic image reveals a difference in dimensional accuracy of only 2.94%. The results indicate that the new method enables visualization of internal defect information in billets, serving as a valuable complement to the traditional method of characterizing their internal quality.
文摘This paper presents the analysis and management system of digital ultrasonic image. The system can manage medical ultrasonic image by collecting, saving and transferring, and realize that section offices of ultrasonic image in hospital network manage. The system use network technology in transferring image between ultrasonic equipments to share patient data in ultrasonic equipments. And doctors can input patient diagnostic report,saved by text file and case history, digitally managed. The system can be realized by Visual C++ which make windows applied. The system can be brought forward because PACS prevail with various hospitals,but PACS is expensive. In view of this status, we put forward to the analysis and management system of digital ultrasonic image,which is similar to PACS.
文摘Objective:The purpose of this study was to evaluate the efficacy and safety of concurrent chemoradiotherapy (CCRT) in patients with locally advanced non-small cell lung cancer (LANSCLC). Methods:83 cases of patients who have been diagnosed for locally advanced NSCLC by determined cytology or pathology were divided into two groups randomly, 42 patients in NP group and 41 patients in EP group. All patients accepted thoracic three-dimensional conformal radiotherapy (3D-CRT) and concurrent either NP chemotherapy in NP group or EP chemotherapy in EP group. 3D-CRT were started on day 1 in the first cycle of chemotherapy. Chemotherapy were carried out for 4 cycles, every cycle was 21 days. Thoracic radiotherapy adopted conventional fractionated irradiation with 15 MeV-X ray, a total dose of 60 Gy. Results: In 83 patients were evaluable, there were 5 cases complete regression to be observed, 29 cases had partial regression (PR), 7 cases with stable disease (SD) and 1 case with progression disease (PD) in NP group. CR 3 cases, PR 27 cases, SD 9 cases and PD 2 cases in EP group. The overall response rate (RR) both NP group and EP group were 80.9%, 73.2%, respectively (P = 0.785).1-, 2-, 3-year survival rate were 90.5%, 69.0%, 28.6% and 82.9%, 51.2%, 21.9%, respectively (P = 0.393). The incidence of leukopenia and thrombocytopenia in NP group was higher than that in the EP group (P < 0.05). Conclusion:CCRT in patients with locally advanced non-small cell lung cancer, 3D-CRT with concurrent NP or EP chemotherapy. 1-, 2-, 3-year overall survival (OS) and average survival time (AST) were not statistically differences, a higher incidence of toxicities were observed in NP group but can be tolerable.