Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV...Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.展开更多
Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad appli...Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.展开更多
In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite trea...In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite treatment involving ultrasonic vibration and HEA coating on interfacial microstructure and mechanical properties of Al/Mg bimetal were studied.Results demonstrate that the interface thickness of the Al/Mg bimetal with composite treatment significantly decreases to only 26.99%of the thickness observed in the untreated Al/Mg bimetal.The HEA coating hinders the diffusion between Al and Mg,resulting the significant reduction in Al/Mg intermetallic compounds in the interface.The Al/Mg bimetal interface with composite treatment is composed of Al_(3)Mg_(2)and Mg_(2)Si/AlxFeCoNiCrCu+FeCoNiCrCu/δ-Mg+Al_(12)Mg_(17)eutectic structures.The interface resulting from the composite treatment has a lower hardness than that without treatment.The acoustic cavitation and acoustic streaming effects generated by ultrasonic vibration promote the diffusion of Al elements within the HEA coating,resulting in a significant improvement in the metallurgical bonding quality on the Mg side.The fracture position shifts from the Mg side of the Al/Mg bimetal only with HEA coating to the Al side with composite treatment.The shear strength of the Al/Mg bimetal increases from 32.16 MPa without treatment to 63.44 MPa with ultrasonic vibration and HEA coating,increasing by 97.26%.展开更多
The application of ultrasonic vibration during the casting process has been proven to refine the microstructure and enhance the properties of the casting.By using the direct inserting method,wherein the ultrasonic hor...The application of ultrasonic vibration during the casting process has been proven to refine the microstructure and enhance the properties of the casting.By using the direct inserting method,wherein the ultrasonic horn is inserted directly into the melt,ultrasonic treatment can be utilized in the semi-continuous casting process to produce aluminum ingots with simple shapes.However,due to the attenuation of ultrasound,it is challenging to apply the direct inserting method in the die casting process to produce complex castings.Thus,in this study,the impact of ultrasonic vibration on the microstructure of a gravity die-cast AlSi9Cu3end cap was investigated by applying ultrasonic vibration on the core(indirect method).It is found that the effect of ultrasonic vibration relies greatly on the resonance mode of the core.Selection of ultrasonic vibration schemes mainly depends on the core structure,and only a strong vibration can significantly refine the microstructure of the casting.For castings with complex structures,an elaborated ultrasonic vibration design is necessary to refine the microstructure of the specified casting.In addition,strong vibration applied on the feeding channel can promote the feeding ability of casting by breaking the dendrites during solidification,and consequently reduce the shrinkage porosity.展开更多
The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing...The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing compounds in the alloys produced by conventional casting process are detrimental to the strength of matrix. The effect of ultrasonic vibration (USV) on the morphology change of Fe-containing intermetallic compounds in the hypereutectic Al-17Si-xFe (x=2, 3, 4, 5) alloys was systematically studied. The results show that, the Fe-containing intermetallic compounds are mainly composed of long needle-like β-Al5FeSi phase with a small amount of plate-like δ-Al4FeSi2 phase in Al-17Si-2Fe alloy produced by conventional casting process. With the increase of Fe content from 2% to 5% in the alloys, the amount of plate-like or coarse needle-like δ-Al4FeSi2 phase increases while the amount of long needle-like β-Al5FeSi phases decreases. In Al-17Si-5Fe alloy, the Fe-containing intermetallic compounds exist mainly as coarse needle-like δ-Al4FeSi2 phase. After USV treatment, the Fe-containing compounds in the Al-17Si-xFe alloys are refined and exist mainly as δ-Al4FeSi2 particles, with average grain size ranging from 26 μm to 37 μm, and only a small amount of β-Al5FeSi phases remain. The mechanism of USV on the morphology of Fe-containing intermetallic compounds was also discussed.展开更多
Ultrasonic vibration was introduced into the Mg-8Li-3A1 alloy melt during its solidification process. The microstructure, corrosion resistance and mechanical properties of the Mg-8Li-3A1 alloy under ultrasonic vibrati...Ultrasonic vibration was introduced into the Mg-8Li-3A1 alloy melt during its solidification process. The microstructure, corrosion resistance and mechanical properties of the Mg-8Li-3A1 alloy under ultrasonic vibration were investigated. The experiment results show that the morphology of a phase is modified from coarse rosette-like structure to fine globular one with the application of ultrasonic vibration. The fine globular structure is obtained especially when the power is 170 W, and the refining effect also gets better with prolonging the ultrasonic treatment time. The corrosion resistance of the alloy with 170 W of ultrasonic vibration for 90 s is improved apparently compared with the alloy without ultrasonic vibration. The mechanical properties of alloys with ultrasonic vibration are also both improved apparently. The tensile strength and elongation of alloy improve by 9.5% and 45.7%, respectively, with 170 W of ultrasonic treatment for 90 s.展开更多
The effects of cooling conditions on the microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process were investigated. AZ91 melts were subjected to ultrasonic vibration in different temperature...The effects of cooling conditions on the microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process were investigated. AZ91 melts were subjected to ultrasonic vibration in different temperature ranges under different cooling rates. The results show that fine and spherical α-Mg particles are obtained under ultrasonic vibration at the nucleation stage, which is mainly attributed to the cavitation and acoustic streaming induced by the ultrasonic vibration. The reduction of lower limit of ultrasonic vibration temperature between the liquidus and solidus increases the solid volume fraction and average particle size. Increasing cooling rate increases the solid volume fraction and reduces the average shape factor of particles. The appropriate temperature range for ultrasonic vibration is from 605 °C to 595 °C or 590 °C, and the suitable cooling rate is 2-3 °C/min.展开更多
To study the mechanism of ultrasonic vibration assisted forming,the static and vibration assisted compression tests of aluminum 1050 were carried out via a 25 kHz high-frequency ultrasonic vibration device.It is found...To study the mechanism of ultrasonic vibration assisted forming,the static and vibration assisted compression tests of aluminum 1050 were carried out via a 25 kHz high-frequency ultrasonic vibration device.It is found that vibration reduces the flow resistance and improves the surface topography.The force reduction level is proportional to the ultrasonic vibration amplitude.By using numerical simulation of static and vibration assisted compression tests,the deformation characteristics of material were investigated.Throughout the vibration,the friction between the materials and tools reduces.The stress superposition and friction effects are found to be two major reasons for reducing the force.However,the force reduction because of stress superposition and friction effects is still less than the actual force reduction from the tests,which suggests that softening effect may be one of the other reasons to reduce the force.展开更多
The operating principle of a lead screw linear ultrasonic motor using bending vibration modes is analyzed. The simplified beam bending vibration model is used to analyze the dynamics characteristics of the motor. Moti...The operating principle of a lead screw linear ultrasonic motor using bending vibration modes is analyzed. The simplified beam bending vibration model is used to analyze the dynamics characteristics of the motor. Motion trajectory equations are derived for driving points of the stator. The motor operation and driving mechanisms are investigated. The vibration modes and the construction of the motor are analyzed by using the finite element method (FEM). A prototype motor is built and its stator dimension is 13 mm × 13 mm× 30 mm. The motor is experimentally characterized and the maximum output force of 5- 2 N is obtained.展开更多
A swash plate for air conditioning compressor of cars was formed by rheo-squeeze casting with semi-solid Al-Si alloy slurry prepared by ultrasonic vibration process, and the microstructure of this alloy was investigat...A swash plate for air conditioning compressor of cars was formed by rheo-squeeze casting with semi-solid Al-Si alloy slurry prepared by ultrasonic vibration process, and the microstructure of this alloy was investigated. Besides the microstructures of primary Si particles and α(Al)+β-Si eutectic phases, non-equilibrium α(Al) particles or dendrites are discovered in the microstructure of the Al-20Si-2Cu-0.4Mg-1Ni alloy. Rapid cooling generated by squeeze casting process rather than the pressure is considered as the main reason for the formation of non-equilibrium α(Al) phase. The sound pressurizing effect of ultrasonic vibration also enables the non-equilibrium α(Al) phases to form above eutectic temperature and grow into non-dendritic spheroids in the process of semi-solid slurry preparation. Non-equilibrium α(Al) phases formed in the hypereutectic Al-Si alloy with ultrasonic vibration treatment, consist of round α(Al) grains formed above the eutectic temperature and a small amount of fine α(Al) dendrites formed under the eutectic temperature. The volume fraction of primary Si particles is decreased significantly by the effect of ultrasonic vibration through increasing the solid solubility of Si atoms in α(Al) matrix and decreasing the forming temperature range of primary Si particles. The average particle diameter and the volume fraction of primary Si particles in microstructure of the swash-plate by rheo-squeeze casting are 24.3 μm and 11.1%, respectively.展开更多
A linear ultrasonic motor using longitudinal vibration of bar with varying section is proposed. The lin- ear ultrasonic motor has two varying section bars connected by semi-circumferential structure. Elliptical trajec...A linear ultrasonic motor using longitudinal vibration of bar with varying section is proposed. The lin- ear ultrasonic motor has two varying section bars connected by semi-circumferential structure. Elliptical trajecto- ries of particles are formed on top of the semi-circumferential structure outer surface where a driving foot is locat- ed. And a mover is pushed to move linearly when the driving foot is pressed onto it. Finite element model of sta- tor is built and results of harmonic analysis verify its principle. Moreover, design requirements of the motor are analyzed through finite element analysis and the results of sensitive analysis provide an efficient way to design the type of linear ultrasonic motor. Prototype test shows that the motor can afford load of 10 N at the speed of 100 mm/s.展开更多
Combining solid granule medium forming technology with ultrasonic vibration plastic forming technology, ultrasonic vibration granule medium forming (UGMF) technology was proposed. To reveal the effect of ultrasonic ...Combining solid granule medium forming technology with ultrasonic vibration plastic forming technology, ultrasonic vibration granule medium forming (UGMF) technology was proposed. To reveal the effect of ultrasonic vibration on flexible-die deep drawing, an ultrasonic vibration with a frequency of 20 kHz and a maximum output of 1.5 kW was on the solid granule medium deep drawing of AZ31B magnesium alloy sheet. The results revealed that ultrasonic vibration promotes the pressure transmission performance of the granule medium and the formability of the sheet. The forming load declines with the ultrasonic amplitude during the drawing process as a result of the combined influence of the "surface effect" and the "softening" of the "volume effect".展开更多
The microstructure and mechanical properties of rheocasting AZ91 magnesium alloy were investigated. The semisolid slurry of this alloy was prepared by ultrasonic vibration (USV) process and then shaped by high press...The microstructure and mechanical properties of rheocasting AZ91 magnesium alloy were investigated. The semisolid slurry of this alloy was prepared by ultrasonic vibration (USV) process and then shaped by high pressure diecasting (HPDC). The results show that fine and spherical a-Mg particles were obtained by USV at the nucleation stage, which was mainly attributed to the cavitation and acoustic streaming induced by the USV. Extending USV treatment time increased the solid volume fraction and average particle size, the shape factors were nearly the same, about 0.7. Excellent semisolid slurry of AZ91 magnesium alloy could be obtained within 6 rain by USV near its liquidus temperature. The rheo-HPDC samples treated by USV for 6 min had the maximum ultimate tensile strength and elongation, which were 248 MPa and 7.4%, respectively. It was also found that the ductile fracture mode prevailed in the rheocasting AZ91 magnesium alloy.展开更多
In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical mod...In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical model is constructed,which is mainly composed of electromechanical equivalent circuit models to analyze the frequency response function and the frequency response curves of the admittance.Bragg band gaps exist in the fusiform PnCs owing to the periodic constraint,which can suppress the corresponding vibrational modes.The vibration characteristics(vibration mode,frequency,and displacement distribution)of the ultrasonic scalpel are analyzed,and the validity of the electromechanical equivalent circuit method is verified.The results indicate that other vibration modes near the working frequency can be isolated.In addition,blades based on fusiform PnCs have a function akin to that of the horn,which enables displacement amplification.展开更多
Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physi...Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physical mechanisms responsible for the individual discharges and the craters that they form need to be explored.This work examines features of craters formed by single discharges at various parameter values in both conventional and ultrasonic-assistedEDM of Ti6Al4V.High-speed imaging of the plasma channel is performed,and data on the individual discharges are captured in real-time.A 2D axisymmetric model using finite element software is established to model crater formation.On the basis of simulation and experimental results,a comparative study is then carried out to examine the effects of ultrasonic vibrational assistance on crater geometry.For every set ofEDM parameters,the crater diameter and depth from a single discharge are found to be higher in ultrasonic-assistedEDM than in conventionalEDM.The improved crater geometry and the reduced bulge formation at the crater edges are attributed to the increased melt pool velocity and temperature predicted by the model.展开更多
A new method is proposed to suppress chatter, in which the ultrasonic elliptical vibration is added on the cutting tool edge. It results in the fact that the rake face of tool is separated from the chip and the direct...A new method is proposed to suppress chatter, in which the ultrasonic elliptical vibration is added on the cutting tool edge. It results in the fact that the rake face of tool is separated from the chip and the direction of the frictional force between the rake face and the chip is reversed in each cycle of elliptical vibration cutting. The experimental investigations show that the chatter can be suppressed effectively by adding ultrasonic elliptical vibration on the cutting tool edge. In order to make clear the reason of chatter suppression, the mechanism of chatter suppression is analyzed theoretically from the viewpoint of energy.展开更多
The microstructure and properties of Al-20Si-2Cu-1Ni-0.4Mg alloy fabricated with semi-solid rheo-diecasting process were studied.A newly developed direct ultrasonic vibration process(DUV process) was used in the prepa...The microstructure and properties of Al-20Si-2Cu-1Ni-0.4Mg alloy fabricated with semi-solid rheo-diecasting process were studied.A newly developed direct ultrasonic vibration process(DUV process) was used in the preparation of the semi-solid slurry of this alloy.The results show that the primary Si particles in this alloy is about 20 μm in size under DUV for 90 s in the semi-solid temperature range,compared to about 30 μm in the alloy without DUV.It is discovered that the primary Si particles distribute more homogeneously and have regular shape,but have lower volume fraction after DUV.The tensile strength at room temperature is about 310 MPa,and the tensile strength and elongation of the semi-solid die castings are increased by 34% and 45%,respectively,compared with the traditional liquid die castings.The high-temperature tensile strength at 300 ℃ of this high Si aluminum alloy reaches 167 MPa,and the coefficient of thermal expansion is 17.37×10-6/℃ between 25 and 300 ℃.This indicates that this high Si content Al-Si alloy produced with the DUV process is suitable to be used in the manufacture of pistons or other heat-resistant parts.展开更多
Ultrasonic vibration enhanced friction stir welding (UVeFSW) is a recent modification of conventional friction stir welding (FSW), which transmits ultrasonic vibration directly into the localized area of the workp...Ultrasonic vibration enhanced friction stir welding (UVeFSW) is a recent modification of conventional friction stir welding (FSW), which transmits ultrasonic vibration directly into the localized area of the workpiece near and ahead of the rotating tool. In this study, a high strength aluminium alloy (2024-T4) was welded by this process and conventional FSW, respectively. Then tensile tests, microhardness tests and fracture surface analysis were performed successively on the welding samples. The tests results reveal that ultrasonic vibration can improve the tensile strength and the elongation of welded joints. The microhardness of the stir zone also increases.展开更多
In the process of semi-solid slurry preparation with direct ultrasonic vibration (UV) by dipping the horn into the melt, one of the questions is whether the gas content in the melt would be increased or not by the cav...In the process of semi-solid slurry preparation with direct ultrasonic vibration (UV) by dipping the horn into the melt, one of the questions is whether the gas content in the melt would be increased or not by the cavitation effect of ultrasonic vibration. By application of quantitative gas content measurement technique, this paper investigated the effect of the ultrasonic vibration on the gas content of both the melt and the semi-solid slurry of Al-Si alloys, and the variations of the gas contents in two kinds of aluminum alloys, i.e., A356 alloy and Al-20Si-2Cu-1Ni-0.6RE alloy (Al-20Si for short). The results show that ultrasonic vibration has an obvious degassing effect on the molten melt, especially on the semi-solid slurry of Al-Si alloy which is below the liquidus temperature by less than 20 ℃. The ultrasonic degassing efficiency of the A356 alloy decreases with the reduction of the initial gas content in the melt, and it is nearly unchanged for the Al-20Si alloy. The gas content of both alloys decreases when the ultrasonic vibration time is increased. The best vibration time for Al-20Si alloy at the liquid temperature of 710 ℃ and semi-solid temperature of 680 ℃ is 60 s and 90 s, respectively; and the degassing efficiency is 48% and 35%, respectively. The mechanism of ultrasonic degassing effect is discussed.展开更多
Ultrasonic vibration feeding(UVF) method which can quantitatively feed and precisely deposit fine powder is a potential technique for micro feeding.The excitation sources transmit vibration to capillary though the t...Ultrasonic vibration feeding(UVF) method which can quantitatively feed and precisely deposit fine powder is a potential technique for micro feeding.The excitation sources transmit vibration to capillary though the third medium for most UVF devices.The vibrator is directly touched with the capillary can transmit mechanical energy on the capillary as much as possible,and the powder feeding can be controlled more precise.However,there are few reports about it.A direct UVF system which integrates the function of micro feeding,process observing,and powder forming was developed in this work.In order to analyze the effect of the system factors on feeding,a group of L9(3^3) orthogonal experiments are selected to confirm the effect of level change of factors.The three factors are capillary nozzle diameter,amplitude and signal.The flow rate was stable for each combined factors,and the optimum combination for the minimum flow rate are choosing small capillary,small amplitude,and triangular wave orderly.The whole process of feeding includes start point,middle stage and stop stage.Starting of feeding was synchronized to vibration when the amplitude of capillary nozzle is larger than critical amplitude.Then,the feeding process enters the middle stage,the feeding state is observed by the CCD,and it is very stable in the middle stage.Overflow of feeding can't be eliminated during the stop stage.The features of the deposited powder lines are analyzed; the overflow can be diminished by choosing small capillary and appropriate ratio of the capillary nozzle diameter to the particle size.Chinese characters lattices were deposited to validate the ability of quantitatively feeding and fixed feeding of UVF.Diameters of all powder dots show normal distribution,and more than 60% dots are concentrated from 550 μm to 650 μm,and the average diameter for all the dots is 597 μm.Most dots positions are well approached to their scheduled positions,and the maximum deviation is 0.27 mm.The new direct UVF system is used to implement experiments,which confirms the precise controllable of feeding.According improve the feeding technique,it suits well for rapid prototyping,chemistry,pharmaceutics and many other fields,which require precise measurement and feed minim powder.展开更多
基金the National Natural Science Foundation of China(No.52265043)Science and Technology Plan,Guizhou Province,China(No.ZK2021(267))+2 种基金Technology Achievements Application and Industrialization Project,Guizhou Province,China(No.2021(067))Cultivation Project of Guizhou University,China(No.2019(23))Lastly,we thank the Shanghai Synchrotron Radiation Facility(SSRF)for providing the synchrotron radiation beamtime.
文摘Effects of ultrasonic vibration(UV)and mechanical vibration(MV)on the Mn-rich phase modification and mechanical properties of Al−12Si−4Cu−1Ni−1Mg−2Mn piston alloys were investigated.The results show that the UV and UV+MV treatments can significantly refine and fragmentize the microstructures.In addition,UV treatment can significantly passivate the primary Mn-rich Al15Mn3Si2 intermetallics.The formation mechanisms of refinement and passivation of the grains and non-dendrite particles were discussed.Compared with the gravity die-cast alloys,the UV and UV+MV treated alloys exhibit improved tensile and creep resistance at room and elevated temperatures.These results can be attributed to the refinement of theα(Al)grains and the secondary intermetallics,the increased proportion of refined heat-resistant precipitates,and the formation of nano-sized Si particles.The ultimate tensile strength of the UV treated alloys at 350℃ exceeds that of commercial piston alloys.This indicates the high application potential of the developed piston alloys in density diesel engines.
基金supported by the National Key R&D Program of China(No.2022YFE0121300)the Introduction Plan for High end Foreign Experts,China(No.G2023105001L)the Young Foreign Talent Program,China(No.QN2023105001L).
文摘Compared with traditional plastic forming,ultrasonic vibration plastic forming has the advantages of reducing the forming force and improving the surface quality of the workpiece.This technology has a very broad application prospect in industrial manufactur-ing.Researchers have conducted extensive research on the ultrasonic vibration plastic forming of metals and laid a deep foundation for the development of this field.In this review,metals were classified according to their crystal structures.The effects of ultrasonic vibration on the microstructure of face-centered cubic,body-centered cubic,and hexagonal close-packed metals during plastic forming and the mech-anism underlying ultrasonic vibration forming were reviewed.The main challenges and future research direction of the ultrasonic vibra-tion plastic forming of metals were also discussed.
基金funded by the National Natural Science Foundation of China(Nos.52271102,52075198 and 52205359)。
文摘In this work,a new treatment method combining ultrasonic vibration with FeCoNiCrCu high entropy alloy(HEA)coating was used to prepared Al/Mg bimetal through the lost foam compound casting.The effects of composite treatment involving ultrasonic vibration and HEA coating on interfacial microstructure and mechanical properties of Al/Mg bimetal were studied.Results demonstrate that the interface thickness of the Al/Mg bimetal with composite treatment significantly decreases to only 26.99%of the thickness observed in the untreated Al/Mg bimetal.The HEA coating hinders the diffusion between Al and Mg,resulting the significant reduction in Al/Mg intermetallic compounds in the interface.The Al/Mg bimetal interface with composite treatment is composed of Al_(3)Mg_(2)and Mg_(2)Si/AlxFeCoNiCrCu+FeCoNiCrCu/δ-Mg+Al_(12)Mg_(17)eutectic structures.The interface resulting from the composite treatment has a lower hardness than that without treatment.The acoustic cavitation and acoustic streaming effects generated by ultrasonic vibration promote the diffusion of Al elements within the HEA coating,resulting in a significant improvement in the metallurgical bonding quality on the Mg side.The fracture position shifts from the Mg side of the Al/Mg bimetal only with HEA coating to the Al side with composite treatment.The shear strength of the Al/Mg bimetal increases from 32.16 MPa without treatment to 63.44 MPa with ultrasonic vibration and HEA coating,increasing by 97.26%.
基金supported by the Natural Science Foundation of Shandong province(Grant No.ZR2021ME023)the Innovation Team Project of Jinan,China(Grant No.2019GXRC035)SQ project[2021370113124591]。
文摘The application of ultrasonic vibration during the casting process has been proven to refine the microstructure and enhance the properties of the casting.By using the direct inserting method,wherein the ultrasonic horn is inserted directly into the melt,ultrasonic treatment can be utilized in the semi-continuous casting process to produce aluminum ingots with simple shapes.However,due to the attenuation of ultrasound,it is challenging to apply the direct inserting method in the die casting process to produce complex castings.Thus,in this study,the impact of ultrasonic vibration on the microstructure of a gravity die-cast AlSi9Cu3end cap was investigated by applying ultrasonic vibration on the core(indirect method).It is found that the effect of ultrasonic vibration relies greatly on the resonance mode of the core.Selection of ultrasonic vibration schemes mainly depends on the core structure,and only a strong vibration can significantly refine the microstructure of the casting.For castings with complex structures,an elaborated ultrasonic vibration design is necessary to refine the microstructure of the specified casting.In addition,strong vibration applied on the feeding channel can promote the feeding ability of casting by breaking the dendrites during solidification,and consequently reduce the shrinkage porosity.
基金Project(2012CB619600)supported by the National Basic Research Program of ChinaProject(50775086)supported by the National Natural Science Foundation of China
文摘The Fe-containing intermetallic compounds with high melting point in hypereutectic Al-Si alloys can improve the heat resistance and wear resistance at elevated temperatures. However, the long needle-like Fe-containing compounds in the alloys produced by conventional casting process are detrimental to the strength of matrix. The effect of ultrasonic vibration (USV) on the morphology change of Fe-containing intermetallic compounds in the hypereutectic Al-17Si-xFe (x=2, 3, 4, 5) alloys was systematically studied. The results show that, the Fe-containing intermetallic compounds are mainly composed of long needle-like β-Al5FeSi phase with a small amount of plate-like δ-Al4FeSi2 phase in Al-17Si-2Fe alloy produced by conventional casting process. With the increase of Fe content from 2% to 5% in the alloys, the amount of plate-like or coarse needle-like δ-Al4FeSi2 phase increases while the amount of long needle-like β-Al5FeSi phases decreases. In Al-17Si-5Fe alloy, the Fe-containing intermetallic compounds exist mainly as coarse needle-like δ-Al4FeSi2 phase. After USV treatment, the Fe-containing compounds in the Al-17Si-xFe alloys are refined and exist mainly as δ-Al4FeSi2 particles, with average grain size ranging from 26 μm to 37 μm, and only a small amount of β-Al5FeSi phases remain. The mechanism of USV on the morphology of Fe-containing intermetallic compounds was also discussed.
基金Project(2009AA03Z525)supported by the High-tech Research and Development Program of ChinaProject(NCET-08-0080)supported by the Program of New Century Excellent Talents of the Ministry of Education of China+1 种基金Project(20082172)supported by the Natural Science Fund of Liaoning Province,ChinaProject(2009J21DW003)supported by the Science and Technology Fund of Dalian City,China
文摘Ultrasonic vibration was introduced into the Mg-8Li-3A1 alloy melt during its solidification process. The microstructure, corrosion resistance and mechanical properties of the Mg-8Li-3A1 alloy under ultrasonic vibration were investigated. The experiment results show that the morphology of a phase is modified from coarse rosette-like structure to fine globular one with the application of ultrasonic vibration. The fine globular structure is obtained especially when the power is 170 W, and the refining effect also gets better with prolonging the ultrasonic treatment time. The corrosion resistance of the alloy with 170 W of ultrasonic vibration for 90 s is improved apparently compared with the alloy without ultrasonic vibration. The mechanical properties of alloys with ultrasonic vibration are also both improved apparently. The tensile strength and elongation of alloy improve by 9.5% and 45.7%, respectively, with 170 W of ultrasonic treatment for 90 s.
基金Project(2011M500772)supported by China Postdoctoral Science Foundation of ChinaProject(2007CB613701)supported by the National Basic Research Program of ChinaProject(2009AA033501)supported by the National High-tech R&D Program of China
文摘The effects of cooling conditions on the microstructure of semi-solid AZ91 slurry produced via ultrasonic vibration process were investigated. AZ91 melts were subjected to ultrasonic vibration in different temperature ranges under different cooling rates. The results show that fine and spherical α-Mg particles are obtained under ultrasonic vibration at the nucleation stage, which is mainly attributed to the cavitation and acoustic streaming induced by the ultrasonic vibration. The reduction of lower limit of ultrasonic vibration temperature between the liquidus and solidus increases the solid volume fraction and average particle size. Increasing cooling rate increases the solid volume fraction and reduces the average shape factor of particles. The appropriate temperature range for ultrasonic vibration is from 605 °C to 595 °C or 590 °C, and the suitable cooling rate is 2-3 °C/min.
基金Project(51105250)supported by the National Natural Science Foundation of ChinaProject(P2015-13)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,China
文摘To study the mechanism of ultrasonic vibration assisted forming,the static and vibration assisted compression tests of aluminum 1050 were carried out via a 25 kHz high-frequency ultrasonic vibration device.It is found that vibration reduces the flow resistance and improves the surface topography.The force reduction level is proportional to the ultrasonic vibration amplitude.By using numerical simulation of static and vibration assisted compression tests,the deformation characteristics of material were investigated.Throughout the vibration,the friction between the materials and tools reduces.The stress superposition and friction effects are found to be two major reasons for reducing the force.However,the force reduction because of stress superposition and friction effects is still less than the actual force reduction from the tests,which suggests that softening effect may be one of the other reasons to reduce the force.
基金Supported by the National Natural Science Foundation of China(50575103, 50735002)~~
文摘The operating principle of a lead screw linear ultrasonic motor using bending vibration modes is analyzed. The simplified beam bending vibration model is used to analyze the dynamics characteristics of the motor. Motion trajectory equations are derived for driving points of the stator. The motor operation and driving mechanisms are investigated. The vibration modes and the construction of the motor are analyzed by using the finite element method (FEM). A prototype motor is built and its stator dimension is 13 mm × 13 mm× 30 mm. The motor is experimentally characterized and the maximum output force of 5- 2 N is obtained.
基金Project (2009ZX04013-033) supported by the Major Scientific and Technological Special Project of ChinaProject (50775086) supported by the National Natural Science Foundation of China
文摘A swash plate for air conditioning compressor of cars was formed by rheo-squeeze casting with semi-solid Al-Si alloy slurry prepared by ultrasonic vibration process, and the microstructure of this alloy was investigated. Besides the microstructures of primary Si particles and α(Al)+β-Si eutectic phases, non-equilibrium α(Al) particles or dendrites are discovered in the microstructure of the Al-20Si-2Cu-0.4Mg-1Ni alloy. Rapid cooling generated by squeeze casting process rather than the pressure is considered as the main reason for the formation of non-equilibrium α(Al) phase. The sound pressurizing effect of ultrasonic vibration also enables the non-equilibrium α(Al) phases to form above eutectic temperature and grow into non-dendritic spheroids in the process of semi-solid slurry preparation. Non-equilibrium α(Al) phases formed in the hypereutectic Al-Si alloy with ultrasonic vibration treatment, consist of round α(Al) grains formed above the eutectic temperature and a small amount of fine α(Al) dendrites formed under the eutectic temperature. The volume fraction of primary Si particles is decreased significantly by the effect of ultrasonic vibration through increasing the solid solubility of Si atoms in α(Al) matrix and decreasing the forming temperature range of primary Si particles. The average particle diameter and the volume fraction of primary Si particles in microstructure of the swash-plate by rheo-squeeze casting are 24.3 μm and 11.1%, respectively.
基金Supported by the National Natural Science Foundation of China(50735002)~~
文摘A linear ultrasonic motor using longitudinal vibration of bar with varying section is proposed. The lin- ear ultrasonic motor has two varying section bars connected by semi-circumferential structure. Elliptical trajecto- ries of particles are formed on top of the semi-circumferential structure outer surface where a driving foot is locat- ed. And a mover is pushed to move linearly when the driving foot is pressed onto it. Finite element model of sta- tor is built and results of harmonic analysis verify its principle. Moreover, design requirements of the motor are analyzed through finite element analysis and the results of sensitive analysis provide an efficient way to design the type of linear ultrasonic motor. Prototype test shows that the motor can afford load of 10 N at the speed of 100 mm/s.
基金Projects(51305385,51305386)supported by the National Natural Science Foundation of ChinaProject(QN20131080)supported by the Science Research Youth Foundation of Hebei Province Universities,China
文摘Combining solid granule medium forming technology with ultrasonic vibration plastic forming technology, ultrasonic vibration granule medium forming (UGMF) technology was proposed. To reveal the effect of ultrasonic vibration on flexible-die deep drawing, an ultrasonic vibration with a frequency of 20 kHz and a maximum output of 1.5 kW was on the solid granule medium deep drawing of AZ31B magnesium alloy sheet. The results revealed that ultrasonic vibration promotes the pressure transmission performance of the granule medium and the formability of the sheet. The forming load declines with the ultrasonic amplitude during the drawing process as a result of the combined influence of the "surface effect" and the "softening" of the "volume effect".
文摘The microstructure and mechanical properties of rheocasting AZ91 magnesium alloy were investigated. The semisolid slurry of this alloy was prepared by ultrasonic vibration (USV) process and then shaped by high pressure diecasting (HPDC). The results show that fine and spherical a-Mg particles were obtained by USV at the nucleation stage, which was mainly attributed to the cavitation and acoustic streaming induced by the USV. Extending USV treatment time increased the solid volume fraction and average particle size, the shape factors were nearly the same, about 0.7. Excellent semisolid slurry of AZ91 magnesium alloy could be obtained within 6 rain by USV near its liquidus temperature. The rheo-HPDC samples treated by USV for 6 min had the maximum ultimate tensile strength and elongation, which were 248 MPa and 7.4%, respectively. It was also found that the ductile fracture mode prevailed in the rheocasting AZ91 magnesium alloy.
基金supported by the National Natural Science Foundation of China(Grant Nos.62204112,12174240,and 11874253)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20220774).
文摘In response to the ultrasonic scalpels with the vibrational modal coupling which leads to a decrease in efficiency,an ultrasonic scalpel based on fusiform phononic crystals(PnCs)is proposed.An accurate theoretical model is constructed,which is mainly composed of electromechanical equivalent circuit models to analyze the frequency response function and the frequency response curves of the admittance.Bragg band gaps exist in the fusiform PnCs owing to the periodic constraint,which can suppress the corresponding vibrational modes.The vibration characteristics(vibration mode,frequency,and displacement distribution)of the ultrasonic scalpel are analyzed,and the validity of the electromechanical equivalent circuit method is verified.The results indicate that other vibration modes near the working frequency can be isolated.In addition,blades based on fusiform PnCs have a function akin to that of the horn,which enables displacement amplification.
基金support from the Department of Science and Technology (DST),Government of India (Grant No.ECR/DST/2017/000918)the Indian Institute of Technology Ropar for providing financial support under an ISIRD grant (F.No.9-282/2017IITRPR/705).
文摘Ultrasonic-assisted micro-electro-discharge machining(EDM)has the potential to enhance processing responses such as material removal rate(MRR)and surface finish.To understand the reasons for this enhancement,the physical mechanisms responsible for the individual discharges and the craters that they form need to be explored.This work examines features of craters formed by single discharges at various parameter values in both conventional and ultrasonic-assistedEDM of Ti6Al4V.High-speed imaging of the plasma channel is performed,and data on the individual discharges are captured in real-time.A 2D axisymmetric model using finite element software is established to model crater formation.On the basis of simulation and experimental results,a comparative study is then carried out to examine the effects of ultrasonic vibrational assistance on crater geometry.For every set ofEDM parameters,the crater diameter and depth from a single discharge are found to be higher in ultrasonic-assistedEDM than in conventionalEDM.The improved crater geometry and the reduced bulge formation at the crater edges are attributed to the increased melt pool velocity and temperature predicted by the model.
文摘A new method is proposed to suppress chatter, in which the ultrasonic elliptical vibration is added on the cutting tool edge. It results in the fact that the rake face of tool is separated from the chip and the direction of the frictional force between the rake face and the chip is reversed in each cycle of elliptical vibration cutting. The experimental investigations show that the chatter can be suppressed effectively by adding ultrasonic elliptical vibration on the cutting tool edge. In order to make clear the reason of chatter suppression, the mechanism of chatter suppression is analyzed theoretically from the viewpoint of energy.
基金Project (2007AA03Z557) supported by the National High-Tech Research and Development Program of ChinaProject (50775086) supported by the National Natural Science Foundation of China
文摘The microstructure and properties of Al-20Si-2Cu-1Ni-0.4Mg alloy fabricated with semi-solid rheo-diecasting process were studied.A newly developed direct ultrasonic vibration process(DUV process) was used in the preparation of the semi-solid slurry of this alloy.The results show that the primary Si particles in this alloy is about 20 μm in size under DUV for 90 s in the semi-solid temperature range,compared to about 30 μm in the alloy without DUV.It is discovered that the primary Si particles distribute more homogeneously and have regular shape,but have lower volume fraction after DUV.The tensile strength at room temperature is about 310 MPa,and the tensile strength and elongation of the semi-solid die castings are increased by 34% and 45%,respectively,compared with the traditional liquid die castings.The high-temperature tensile strength at 300 ℃ of this high Si aluminum alloy reaches 167 MPa,and the coefficient of thermal expansion is 17.37×10-6/℃ between 25 and 300 ℃.This indicates that this high Si content Al-Si alloy produced with the DUV process is suitable to be used in the manufacture of pistons or other heat-resistant parts.
文摘Ultrasonic vibration enhanced friction stir welding (UVeFSW) is a recent modification of conventional friction stir welding (FSW), which transmits ultrasonic vibration directly into the localized area of the workpiece near and ahead of the rotating tool. In this study, a high strength aluminium alloy (2024-T4) was welded by this process and conventional FSW, respectively. Then tensile tests, microhardness tests and fracture surface analysis were performed successively on the welding samples. The tests results reveal that ultrasonic vibration can improve the tensile strength and the elongation of welded joints. The microhardness of the stir zone also increases.
基金supported by the National Natural Science Foundation of China (No. 50775086)the National Basic Research Program of China (973 Program, No. 2012CB619600)
文摘In the process of semi-solid slurry preparation with direct ultrasonic vibration (UV) by dipping the horn into the melt, one of the questions is whether the gas content in the melt would be increased or not by the cavitation effect of ultrasonic vibration. By application of quantitative gas content measurement technique, this paper investigated the effect of the ultrasonic vibration on the gas content of both the melt and the semi-solid slurry of Al-Si alloys, and the variations of the gas contents in two kinds of aluminum alloys, i.e., A356 alloy and Al-20Si-2Cu-1Ni-0.6RE alloy (Al-20Si for short). The results show that ultrasonic vibration has an obvious degassing effect on the molten melt, especially on the semi-solid slurry of Al-Si alloy which is below the liquidus temperature by less than 20 ℃. The ultrasonic degassing efficiency of the A356 alloy decreases with the reduction of the initial gas content in the melt, and it is nearly unchanged for the Al-20Si alloy. The gas content of both alloys decreases when the ultrasonic vibration time is increased. The best vibration time for Al-20Si alloy at the liquid temperature of 710 ℃ and semi-solid temperature of 680 ℃ is 60 s and 90 s, respectively; and the degassing efficiency is 48% and 35%, respectively. The mechanism of ultrasonic degassing effect is discussed.
基金supported by National Hi-tech Research and Development Program of China (863 Program, Grant No. 2008AA03A238)National Natural Science Foundation of China (Grant No. 51005186)Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 2007B39)
文摘Ultrasonic vibration feeding(UVF) method which can quantitatively feed and precisely deposit fine powder is a potential technique for micro feeding.The excitation sources transmit vibration to capillary though the third medium for most UVF devices.The vibrator is directly touched with the capillary can transmit mechanical energy on the capillary as much as possible,and the powder feeding can be controlled more precise.However,there are few reports about it.A direct UVF system which integrates the function of micro feeding,process observing,and powder forming was developed in this work.In order to analyze the effect of the system factors on feeding,a group of L9(3^3) orthogonal experiments are selected to confirm the effect of level change of factors.The three factors are capillary nozzle diameter,amplitude and signal.The flow rate was stable for each combined factors,and the optimum combination for the minimum flow rate are choosing small capillary,small amplitude,and triangular wave orderly.The whole process of feeding includes start point,middle stage and stop stage.Starting of feeding was synchronized to vibration when the amplitude of capillary nozzle is larger than critical amplitude.Then,the feeding process enters the middle stage,the feeding state is observed by the CCD,and it is very stable in the middle stage.Overflow of feeding can't be eliminated during the stop stage.The features of the deposited powder lines are analyzed; the overflow can be diminished by choosing small capillary and appropriate ratio of the capillary nozzle diameter to the particle size.Chinese characters lattices were deposited to validate the ability of quantitatively feeding and fixed feeding of UVF.Diameters of all powder dots show normal distribution,and more than 60% dots are concentrated from 550 μm to 650 μm,and the average diameter for all the dots is 597 μm.Most dots positions are well approached to their scheduled positions,and the maximum deviation is 0.27 mm.The new direct UVF system is used to implement experiments,which confirms the precise controllable of feeding.According improve the feeding technique,it suits well for rapid prototyping,chemistry,pharmaceutics and many other fields,which require precise measurement and feed minim powder.