A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow t...A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow theory of 3D rigid-plastic mechanics. For the treatments of essential boundary conditions and incompressibility constraint, the boundary singular kernel method and the modified penalty method are utilized, respectively. The arc-tangential friction model is employed to treat the contact conditions. The compression of rectangular blocks, a typical 3D upsetting operation, is analyzed for different friction conditions and the numerical results are compared with those obtained using commercial rigid-plastic FEM (finite element method) software Deform^3D. As results show, when handling 3D plastic deformations, the proposed approach eliminates the need of expensive meshing and remeshing procedures which are unavoidable in conventional FEM and can provide results that are in good agreement with finite element predictions.展开更多
Three-dimensional integrated circuits(3D ICs)have entered into the mainstream due to their high performance,high integration,and low power consumption.When used in atmospheric environments,3D ICs are irradiated inevit...Three-dimensional integrated circuits(3D ICs)have entered into the mainstream due to their high performance,high integration,and low power consumption.When used in atmospheric environments,3D ICs are irradiated inevitably by neutrons.In this paper,a 3D die-stacked SRAM device is constructed based on a real planar SRAM device.Then,the single event upsets(SEUs)caused by neutrons with different energies are studied by the Monte Carlo method.The SEU cross-sections for each die and for the whole three-layer die-stacked SRAM device is obtained for neutrons with energy ranging from 1 MeV to 1000 MeV.The results indicate that the variation trend of the SEU cross-section for every single die and for the entire die-stacked device is consistent,but the specific values are different.The SEU cross-section is shown to be dependent on the threshold of linear energy transfer(LETth)and thickness of the sensitive volume(Tsv).The secondary particle distribution and energy deposition are analyzed,and the internal mechanism that is responsible for this difference is illustrated.Besides,the ratio and patterns of multiple bit upset(MBU)caused by neutrons with different energies are also presented.This work is helpful for the aerospace IC designers to understand the SEU mechanism of 3D ICs caused by neutrons irradiation.展开更多
This paper proposes optimal stator skewed slot analytical method for cogging torque reduction in surface-interior permanent magnet synchronous motor(SIPMSM)and analyzes the characteristics of SIPMSM.The series-paralle...This paper proposes optimal stator skewed slot analytical method for cogging torque reduction in surface-interior permanent magnet synchronous motor(SIPMSM)and analyzes the characteristics of SIPMSM.The series-parallel equivalent magnetic circuit models(EMCMs)of SIPMSM is built based on the characteristics of magnetic circuits,which is used to design the basic electromagnetic parameters of SIPMSM.Analytical expressions of cogging torque are derived from applying analytical techniques.Stator skewed slot for cogging torque minimum is adopted,and the stator skewed slot pitch is confirmed based on the analytical expressions of the resultant cogging torque.The cogging torque,torque ripple,back electromotive force(back-EMF),power-angle characteristics,efficiency and power factor of SIPMSM are analyzed by establishing 3-dimensional finite element model(3-D-FED)of SIPMSM with stator skewed slot and straight slot.It is shown that the comprehensive performance of optimized SIPMSM is improved as confirmed by finite element analysis and analytical calculation results.展开更多
Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not ac...Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not accurate for design aspects. This paper describes an accurate electromagnetic analysis of a surface mounted, 28 pole AFPM with concentrated stator winding. The AFPM is modeled with three-dimensional finite-element method. This model in-cludes all geometrical and physical characteristics of the machine components. Using this accurate modeling makes it possible to obtain demanded signals for a very high precision analysis. Magnetic flux density, back-EMF, magnetic axial force and cogging torque of the motor are simulated using FLUX-3D V10.3.2. Meanwhile, the model is paramet-ric and can be used for design process and sensitivity analysis.展开更多
We propose a novel kind of compound permanent magnet synchronous machine (CPMSM), which is applicable in low-speed and high-torque situations. We first explain the structure of the CPMSM. Based on theoretically deduci...We propose a novel kind of compound permanent magnet synchronous machine (CPMSM), which is applicable in low-speed and high-torque situations. We first explain the structure of the CPMSM. Based on theoretically deducing the calculation formulae of the CPMSM electromagnetic parameters, we analyze the operating characteristics of the CPMSM, and obtain the power-angle curves and working curves. The no-load magnetic field distribution and the cogging torque are analyzed by applying the finite element method of three-dimensional (3D) magnetic fields, to determine the no-load leakage coefficient and the waveform of the cogging torque. Furthermore, the optimal parameters of the permanent magnet for reducing the cogging torque are determined. An important application target of the CPMSM is in directdrive pumping units. We have installed and tested a direct- drive pumping unit in an existing oil well. Test results show that the power consumption of the direct-drive pumping unit driven by CPMSM is 61.1% of that of the beam-pumping unit, and that the floor space and weight are only 50% of those of a beam-pumping unit. The noise output does not exceed 58 dB in a range of 1 m around the machine when the machine is 1.5 m from the ground.展开更多
基金This work was supported by the National Natural Science Foundation of China (No. 50275094).
文摘A meshless approach, called the rigid-plastic reproducing kernel particle method (RKPM), is presented for three-dimensional (3D) bulk metal forming simulation. The approach is a combination of RKPM with the flow theory of 3D rigid-plastic mechanics. For the treatments of essential boundary conditions and incompressibility constraint, the boundary singular kernel method and the modified penalty method are utilized, respectively. The arc-tangential friction model is employed to treat the contact conditions. The compression of rectangular blocks, a typical 3D upsetting operation, is analyzed for different friction conditions and the numerical results are compared with those obtained using commercial rigid-plastic FEM (finite element method) software Deform^3D. As results show, when handling 3D plastic deformations, the proposed approach eliminates the need of expensive meshing and remeshing procedures which are unavoidable in conventional FEM and can provide results that are in good agreement with finite element predictions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12035019,111690041,and 11675233)the Project of Science and Technology on Analog Integrated Circuit Laboratory,China((Grant No.6142802WD201801).
文摘Three-dimensional integrated circuits(3D ICs)have entered into the mainstream due to their high performance,high integration,and low power consumption.When used in atmospheric environments,3D ICs are irradiated inevitably by neutrons.In this paper,a 3D die-stacked SRAM device is constructed based on a real planar SRAM device.Then,the single event upsets(SEUs)caused by neutrons with different energies are studied by the Monte Carlo method.The SEU cross-sections for each die and for the whole three-layer die-stacked SRAM device is obtained for neutrons with energy ranging from 1 MeV to 1000 MeV.The results indicate that the variation trend of the SEU cross-section for every single die and for the entire die-stacked device is consistent,but the specific values are different.The SEU cross-section is shown to be dependent on the threshold of linear energy transfer(LETth)and thickness of the sensitive volume(Tsv).The secondary particle distribution and energy deposition are analyzed,and the internal mechanism that is responsible for this difference is illustrated.Besides,the ratio and patterns of multiple bit upset(MBU)caused by neutrons with different energies are also presented.This work is helpful for the aerospace IC designers to understand the SEU mechanism of 3D ICs caused by neutrons irradiation.
基金Supported by National Natural Science Foundation of China(U1361109,51777060)Natural Science Foundation of Henan province(162300410117)the he innovative research team plan of Henan Polytechnic University(T2015-2).
文摘This paper proposes optimal stator skewed slot analytical method for cogging torque reduction in surface-interior permanent magnet synchronous motor(SIPMSM)and analyzes the characteristics of SIPMSM.The series-parallel equivalent magnetic circuit models(EMCMs)of SIPMSM is built based on the characteristics of magnetic circuits,which is used to design the basic electromagnetic parameters of SIPMSM.Analytical expressions of cogging torque are derived from applying analytical techniques.Stator skewed slot for cogging torque minimum is adopted,and the stator skewed slot pitch is confirmed based on the analytical expressions of the resultant cogging torque.The cogging torque,torque ripple,back electromotive force(back-EMF),power-angle characteristics,efficiency and power factor of SIPMSM are analyzed by establishing 3-dimensional finite element model(3-D-FED)of SIPMSM with stator skewed slot and straight slot.It is shown that the comprehensive performance of optimized SIPMSM is improved as confirmed by finite element analysis and analytical calculation results.
文摘Recently, many optimal designs for axial flux permanent magnet (AFPM) motors were performed based on finite- element (FE) analysis. Most of the models are based on reduction of 3D problem to 2D problem which is not accurate for design aspects. This paper describes an accurate electromagnetic analysis of a surface mounted, 28 pole AFPM with concentrated stator winding. The AFPM is modeled with three-dimensional finite-element method. This model in-cludes all geometrical and physical characteristics of the machine components. Using this accurate modeling makes it possible to obtain demanded signals for a very high precision analysis. Magnetic flux density, back-EMF, magnetic axial force and cogging torque of the motor are simulated using FLUX-3D V10.3.2. Meanwhile, the model is paramet-ric and can be used for design process and sensitivity analysis.
基金Project (No. 50607016) supported by the National Natural ScienceFoundation of China
文摘We propose a novel kind of compound permanent magnet synchronous machine (CPMSM), which is applicable in low-speed and high-torque situations. We first explain the structure of the CPMSM. Based on theoretically deducing the calculation formulae of the CPMSM electromagnetic parameters, we analyze the operating characteristics of the CPMSM, and obtain the power-angle curves and working curves. The no-load magnetic field distribution and the cogging torque are analyzed by applying the finite element method of three-dimensional (3D) magnetic fields, to determine the no-load leakage coefficient and the waveform of the cogging torque. Furthermore, the optimal parameters of the permanent magnet for reducing the cogging torque are determined. An important application target of the CPMSM is in directdrive pumping units. We have installed and tested a direct- drive pumping unit in an existing oil well. Test results show that the power consumption of the direct-drive pumping unit driven by CPMSM is 61.1% of that of the beam-pumping unit, and that the floor space and weight are only 50% of those of a beam-pumping unit. The noise output does not exceed 58 dB in a range of 1 m around the machine when the machine is 1.5 m from the ground.