Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regressio...Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regression(SMR) technique,the liner relationships between gas-chromatographic relative retention time(RRT),298 K supercooled liquid pressures(logPL),n-octanol/air partition coefficient(logKOA),n-octanol/water partition coefficient(logKOW),aqueous solubilities(logSW),relative in vitro potency values(-logEROD) of PCNs and 3D-HoVAIF descriptors have been established by partial least-square(PLS) regression.The result shows that the 3D-HoVAIF descriptors can be well used to express the quantitative structure-property(activity) relationships of PCNs.Predictive capability of the models has also been demonstrated by leave-one-out cross-validation.Moreover,the predicted values have been presented for those PCNs which are lack of experimentally physico-chemical properties and biological activity by the optimum models.展开更多
Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our prop...Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our proposed method consists of mainly three steps. First, a brain parenchymal region was segmented based on brain model matching. Second, a 3D fuzzy membership map for a cerebral cortical region was created by applying a fuzzy c-means (FCM) clustering algorithm to T1-weighted MR images. Third, cerebral cortical thickness was three- dimensionally measured on each cortical surface voxel by using a localized gradient vector trajectory in a fuzzy membership map. Spherical models with 3 mm artificial cortical regions, which were produced using three noise levels of 2%, 5%, and 10%, were employed to evaluate the proposed method. We also applied the proposed method to T1-weighted images obtained from 20 cases, i.e., 10 clinically diagnosed AD cases and 10 clinically normal (CN) subjects. The thicknesses of the 3 mm artificial cortical regions for spherical models with noise levels of 2%, 5%, and 10% were measured by the proposed method as 2.953 ± 0.342, 2.953 ± 0.342 and 2.952 ± 0.343 mm, respectively. Thus the mean thicknesses for the entire cerebral lobar region were 3.1 ± 0.4 mm for AD patients and 3.3 ± 0.4 mm for CN subjects, respectively (p < 0.05). The proposed method could be feasible for measuring the 3D cerebral cortical thickness on individual cortical surface voxels as an atrophy feature in AD.展开更多
Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotrop...Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotropic conditions when surveying anisotropic structures, which may cause discrepancies between reality and electromagnetic data interpretation. Moreover, the anisotropic interpretation of the time-domain airborne electromagnetic (TDAEM) method is still confined to one dimensional (1D) cases, and the corresponding three-dimensional (3D) numerical simulations are still in development. In this study, we expanded the 3D TDAEM modeling of arbitrarily anisotropic media. First, through coordinate rotation of isotropic conductivity, we obtained the conductivity tensor of an arbitrary anisotropic rock. Next, we incorporated this into Maxwell's equations, using a regular hexahedral grid of vector finite elements to subdivide the solution area. A direct solver software package provided the solution for the sparse linear equations that resulted. Analytical solutions were used to verify the accuracy and feasibility of the algorithm. The proven model was then applied to analyze the effects of arbitrary anisotropy in 3D TDAEM via the distribution of responses and amplitude changes, which revealed that different anisotropy situations strongly affected the responses of TDAEM.展开更多
Using the twin shear stress yield criterion, the surface integral of the co-line vectors, and the integration depending on upper limit, Kobayashi's three-dimensional velocity field of rolling was analyzed and an anal...Using the twin shear stress yield criterion, the surface integral of the co-line vectors, and the integration depending on upper limit, Kobayashi's three-dimensional velocity field of rolling was analyzed and an analytical expression of rolling torque and single force was obtained. Through redoing the same experiment of rolling pure lead as Sims, the calculated results by the above expression were compared with those of Kobayashi and Sims formulae. The results show that the twin shear stress yield criterion is available for rolling analysis and the calculated results by the new formula are a little higher than those by Kobayashi and Sims ones if the reduction ratio is less than 30%.展开更多
Currently, for some complex plastic deformations, the analytical solution can not be obtained by using Mises yield criterion, because Mises yield criterion is nine dimensions, the velocity field is complex, and the so...Currently, for some complex plastic deformations, the analytical solution can not be obtained by using Mises yield criterion, because Mises yield criterion is nine dimensions, the velocity field is complex, and the solving methods are not innovative. Corresponding solutions of these problems are that yield criterion is linearized to reduce the variable numbers, and the velocity field and the solving methods are reasonably simplified, respectively. In this paper, a new linear yield criterion--mean yield(MY) criterion and inner-product of strain rate vector are used to analytically solve 3D forging taking into account bugling of sides. The velocity field is expressed as a vector in three dimensions, and rotation and divergence are applied to confirm that the velocity field is kinematically admissible. Then, the corresponding strain rate tensor of the velocity field is transformed into principal one by making the determinant of coefficients of the tensor cubic equation be zero. By using MY criterion, the plastic power is term by term integrated and summed according to inner-product of strain rate vector. An upper bound analytical solution is obtained for the forging, and verified by a pure lead press test. The test result turns out that the total pressure calculated by MY criterion is higher by 2.5%-15% than measuring value. In addition, a measuring formula of bulging parameter (a) is proposed, but the values of a measured by the formula are lower than those optimized by the golden section search. The total pressure calculated by MY criterion is compared with the ones by twin shear, Trasca yield, and Mises yield criterion. The comparing result shows that the total pressure calculated by MY criterion is slightly higher than the mean value of that by twin shear and Trasca yield criterion, and lower than that by Mises yield criterion, but more close to that by Mises yield criterion compared with that by other two. The proposed analytical solving methods can be effectively used to other complex plastic deformation, simplifying the solving process and obtaining the reasonable results.展开更多
In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision sca...In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision scanning platform is designed to achieve fast servo through moving probe and sample simultaneously,and several combined nanopositioning stages are used to guarantee linearity and orthogonality of displacement.To eliminate the signal deviation caused by AFM-head movement,a traceable optical lever system is designed for cantilever deformation detection.In addition,a method of tailoring the cantilever of commercial probe with flared tip is proposed to reduce the lateral force applied on the tip in measurement.The tailored probe is mounted on the 3D-AFM,and 3D imaging experiments are conducted on different samples by use of adaptive-angle scanning strategy.The results show the roob-mean-square value of the vertical displacement noise(RMS)of the prototype is less than 0.1 nm and the high/width measurement repeatability(peak-to-peak)is less than 2.5 nm.展开更多
A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure ...A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure activity relationship(QSAR) model was built by partial least-squares(PLS) regression.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The correlation coefficients of established PLS model,leave-one-out(LOO) cross-validation,and predicted values versus experimental ones of external samples were R2=0.899,RCV2=0.854 and Qext2=0.868,respectively.These values indicated that the built PLS model had both favorable estimation stability and good prediction capabilities.Furthermore,the satisfactory results showed that 3D-HoVAIF could preferably express the information related to the biological activity of benzoxazinone derivatives.展开更多
The ability to characterize three-dimensional(3D)magnetization distributions in nanoscale magnetic materials and devices is essential to fully understand their static and dynamic magnetic properties.Phase contrast tec...The ability to characterize three-dimensional(3D)magnetization distributions in nanoscale magnetic materials and devices is essential to fully understand their static and dynamic magnetic properties.Phase contrast techniques in the transmission electron microscope(TEM),such as electron holography and electron ptychography,can be used to record two-dimensional(2D)projections of the in-plane magnetic induction of 3D nanoscale objects.Although the 3D magnetic induction can in principle be reconstructed from one or more tilt series of such 2D projections,conventional tomographic reconstruction algorithms do not recover the 3D magnetization within a sample directly.Here,we use simulations to describe the basis of an improved model-based algorithm for the tomographic reconstruction of a 3D magnetization distribution from one or more tilt series of electron optical phase images recorded in the TEM.The algorithm allows a wide range of physical constraints,including a priori information about the sample geometry and magnetic parameters,to be specified.It also makes use of minimization of the micromagnetic energy in the loss function.We demonstrate the reconstruction of the 3D magnetization of a localized magnetic soliton—a hopfion ring—and discuss the influence of noise,choice of magnetic constants,maximum tilt angle and number of tilt axes on the result.The algorithm can in principle be adapted for other magnetic contrast imaging techniques in the TEM,as well as for other magnetic characterization techniques,such as those based on X-rays or neutrons.展开更多
The quantitative structure-activity relationship (QSAR) of 30 acylthiourea analogues was studied by using a three-dimensional holographic vector of atomic interaction field (3D-HoVAIF) to describe their chemical s...The quantitative structure-activity relationship (QSAR) of 30 acylthiourea analogues was studied by using a three-dimensional holographic vector of atomic interaction field (3D-HoVAIF) to describe their chemical structures. The descriptors obtained were screened by stepwise multiple regression (SMR) and a partial least-squares (PLS) regression model was built. The correlation coefficient r^2 of the established model and Leave-One-Out (LOO) Cross-Validation (CV) correlation coefficient q^2 are 0.624 and 0.409, respectively. The model has favorable stability and good prediction capability, and further QSAR analysis showed that hydrophobic interaction has the most important effect on the activity of acylthiourea analogue and 3D-HoVAIF was applicable to the molecular structural characterization and biologicalactivity prediction.展开更多
We derive for crystal optics in coordinate-invariant way the cone approximation of refraction vectors in the neighborhood of optic axes and determine its invariants and eigenvectors. It proved to describe an elliptic ...We derive for crystal optics in coordinate-invariant way the cone approximation of refraction vectors in the neighborhood of optic axes and determine its invariants and eigenvectors. It proved to describe an elliptic cone. The second invariant of the operator of the wave equation with respect to similarity transformations determines the special cases of degeneration including the optic axes where the polarization of the waves due to self-intersection of the dispersion surface is not uniquely determined. This second invariant is included in all investigations and it is taken into account in the illustrations. It is biquadratic in the refraction vectors and the corresponding forth-order surface in three-dimensional space splits in two separate shells and a non-rational product decomposition describing this is found. We give also a more general classification of all possible solutions of an equation with an arbitrary three-dimensional operator.展开更多
By introducing state payoff vector to every state node on the connected graph in this paper,dynamic game is researched on finite graphs.The concept of simple strategy about games on graph defined by Berge is introduce...By introducing state payoff vector to every state node on the connected graph in this paper,dynamic game is researched on finite graphs.The concept of simple strategy about games on graph defined by Berge is introduced to prove the existence theorem of absolute equilibrium about games on the connected graph with state payoff vector.The complete algorithm and an example in the three-dimensional connected mesh-like graph are given in this paper.展开更多
A new three-dimensional missile guidance law to control the impact vector against a stationary target is proposed.The composite guidance law has two well-known components:Apollo descent guidance and trajectory shaping...A new three-dimensional missile guidance law to control the impact vector against a stationary target is proposed.The composite guidance law has two well-known components:Apollo descent guidance and trajectory shaping guidance.These respectively linear and planar guidance laws are combined to achieve a specified impact direction.The main idea is to define an impact plane and to steer the missile onto this plane using Apollo descent guidance while concurrently performing trajectory shaping with reference to the impact plane.The resulting guidance law is expressed by a single equation in vector form,which is straightforward to implement.Because it originates from an optimal formulation,the performance of the proposed technique is expected to be satisfactory.This is confirmed by comparative simulation runs,which also involve the method known as generalized explicit guidance.展开更多
基金supported by the Ministry of Science and Technology of China (2010DFA32680)the National Natural Science Foundation of China (21005062)the Fundamental Research Funds for the Central Universities (CDJRC10220010)
文摘Three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) is used to describe the chemical structures of polychlorinated naphthalenes(PCNs).After variable screening by stepwise multiple regression(SMR) technique,the liner relationships between gas-chromatographic relative retention time(RRT),298 K supercooled liquid pressures(logPL),n-octanol/air partition coefficient(logKOA),n-octanol/water partition coefficient(logKOW),aqueous solubilities(logSW),relative in vitro potency values(-logEROD) of PCNs and 3D-HoVAIF descriptors have been established by partial least-square(PLS) regression.The result shows that the 3D-HoVAIF descriptors can be well used to express the quantitative structure-property(activity) relationships of PCNs.Predictive capability of the models has also been demonstrated by leave-one-out cross-validation.Moreover,the predicted values have been presented for those PCNs which are lack of experimentally physico-chemical properties and biological activity by the optimum models.
文摘Our purpose in this study was to develop an automated method for measuring three-dimensional (3D) cerebral cortical thicknesses in patients with Alzheimer’s disease (AD) using magnetic resonance (MR) images. Our proposed method consists of mainly three steps. First, a brain parenchymal region was segmented based on brain model matching. Second, a 3D fuzzy membership map for a cerebral cortical region was created by applying a fuzzy c-means (FCM) clustering algorithm to T1-weighted MR images. Third, cerebral cortical thickness was three- dimensionally measured on each cortical surface voxel by using a localized gradient vector trajectory in a fuzzy membership map. Spherical models with 3 mm artificial cortical regions, which were produced using three noise levels of 2%, 5%, and 10%, were employed to evaluate the proposed method. We also applied the proposed method to T1-weighted images obtained from 20 cases, i.e., 10 clinically diagnosed AD cases and 10 clinically normal (CN) subjects. The thicknesses of the 3 mm artificial cortical regions for spherical models with noise levels of 2%, 5%, and 10% were measured by the proposed method as 2.953 ± 0.342, 2.953 ± 0.342 and 2.952 ± 0.343 mm, respectively. Thus the mean thicknesses for the entire cerebral lobar region were 3.1 ± 0.4 mm for AD patients and 3.3 ± 0.4 mm for CN subjects, respectively (p < 0.05). The proposed method could be feasible for measuring the 3D cerebral cortical thickness on individual cortical surface voxels as an atrophy feature in AD.
基金financially supported by National Nonprofit institute Research Grant of IGGE(Nos.AS2017J06,AS2017Y04,and AS2016J10)Survey on coastal area for airborne magnetic method of UNV in Jiangsu(No.DD20160151-03)+3 种基金Key National Research Project of China(No.2017YFC0601900)Key Program of National Natural Science Foundation of China(No.41530320)Natural Science Foundation(No.41274121)China Natural Science Foundation for Young Scientists(No.41404093)
文摘Electrically anisotropic strata are abundant in nature, so their study can help our data interpretation and our understanding of the processes of geodynamics. However, current data processing generally assumes isotropic conditions when surveying anisotropic structures, which may cause discrepancies between reality and electromagnetic data interpretation. Moreover, the anisotropic interpretation of the time-domain airborne electromagnetic (TDAEM) method is still confined to one dimensional (1D) cases, and the corresponding three-dimensional (3D) numerical simulations are still in development. In this study, we expanded the 3D TDAEM modeling of arbitrarily anisotropic media. First, through coordinate rotation of isotropic conductivity, we obtained the conductivity tensor of an arbitrary anisotropic rock. Next, we incorporated this into Maxwell's equations, using a regular hexahedral grid of vector finite elements to subdivide the solution area. A direct solver software package provided the solution for the sparse linear equations that resulted. Analytical solutions were used to verify the accuracy and feasibility of the algorithm. The proven model was then applied to analyze the effects of arbitrary anisotropy in 3D TDAEM via the distribution of responses and amplitude changes, which revealed that different anisotropy situations strongly affected the responses of TDAEM.
基金ItemSponsored by National Natural Science Foundation of China (50474015)
文摘Using the twin shear stress yield criterion, the surface integral of the co-line vectors, and the integration depending on upper limit, Kobayashi's three-dimensional velocity field of rolling was analyzed and an analytical expression of rolling torque and single force was obtained. Through redoing the same experiment of rolling pure lead as Sims, the calculated results by the above expression were compared with those of Kobayashi and Sims formulae. The results show that the twin shear stress yield criterion is available for rolling analysis and the calculated results by the new formula are a little higher than those by Kobayashi and Sims ones if the reduction ratio is less than 30%.
基金supported by National Natural Science Foundation of China (Grant No. 50474015)State Key Laboratory of Rolling and Automation(RAL) Self-determination Science Foundation of UK (Grant No. RAL_SD_2008_2)
文摘Currently, for some complex plastic deformations, the analytical solution can not be obtained by using Mises yield criterion, because Mises yield criterion is nine dimensions, the velocity field is complex, and the solving methods are not innovative. Corresponding solutions of these problems are that yield criterion is linearized to reduce the variable numbers, and the velocity field and the solving methods are reasonably simplified, respectively. In this paper, a new linear yield criterion--mean yield(MY) criterion and inner-product of strain rate vector are used to analytically solve 3D forging taking into account bugling of sides. The velocity field is expressed as a vector in three dimensions, and rotation and divergence are applied to confirm that the velocity field is kinematically admissible. Then, the corresponding strain rate tensor of the velocity field is transformed into principal one by making the determinant of coefficients of the tensor cubic equation be zero. By using MY criterion, the plastic power is term by term integrated and summed according to inner-product of strain rate vector. An upper bound analytical solution is obtained for the forging, and verified by a pure lead press test. The test result turns out that the total pressure calculated by MY criterion is higher by 2.5%-15% than measuring value. In addition, a measuring formula of bulging parameter (a) is proposed, but the values of a measured by the formula are lower than those optimized by the golden section search. The total pressure calculated by MY criterion is compared with the ones by twin shear, Trasca yield, and Mises yield criterion. The comparing result shows that the total pressure calculated by MY criterion is slightly higher than the mean value of that by twin shear and Trasca yield criterion, and lower than that by Mises yield criterion, but more close to that by Mises yield criterion compared with that by other two. The proposed analytical solving methods can be effectively used to other complex plastic deformation, simplifying the solving process and obtaining the reasonable results.
基金National Key Research and Development Pragram of China(No.2016YFF0200602)National Natural Science Foundation of China(No.61973233)。
文摘In order to meet the requirements of nondestructive testing of true 3D topography of micro-nano structures,a novel three-dimensional atomic force microscope(3D-AFM)based on flared tip is developed.A high-precision scanning platform is designed to achieve fast servo through moving probe and sample simultaneously,and several combined nanopositioning stages are used to guarantee linearity and orthogonality of displacement.To eliminate the signal deviation caused by AFM-head movement,a traceable optical lever system is designed for cantilever deformation detection.In addition,a method of tailoring the cantilever of commercial probe with flared tip is proposed to reduce the lateral force applied on the tip in measurement.The tailored probe is mounted on the 3D-AFM,and 3D imaging experiments are conducted on different samples by use of adaptive-angle scanning strategy.The results show the roob-mean-square value of the vertical displacement noise(RMS)of the prototype is less than 0.1 nm and the high/width measurement repeatability(peak-to-peak)is less than 2.5 nm.
基金supported by the Natural Science Foundation of Shaanxi Province (2009JQ2005)Foundation of Educational Commission of Shaanxi Province (09JK358) Graduate Innovation Fund of Shaanxi University of Science and Technology
文摘A novel three-dimensional holographic vector of atomic interaction field(3D-HoVAIF) was used to describe the chemical structures of 23 benzoxazinone derivatives as antithrombotic drugs.Here a quantitative structure activity relationship(QSAR) model was built by partial least-squares(PLS) regression.The estimation stability and prediction ability of the model were strictly analyzed by both internal and external validations.The correlation coefficients of established PLS model,leave-one-out(LOO) cross-validation,and predicted values versus experimental ones of external samples were R2=0.899,RCV2=0.854 and Qext2=0.868,respectively.These values indicated that the built PLS model had both favorable estimation stability and good prediction capabilities.Furthermore,the satisfactory results showed that 3D-HoVAIF could preferably express the information related to the biological activity of benzoxazinone derivatives.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1403603)the National Natural Science Funds for Distinguished Young Scholars(Grant No.52325105)+9 种基金the National Natural Science Foundation of China(Grant Nos.12241406,52173215,and 12374098)the CAS Project for Young Scientists in Basic Research(Grant No.YSBR-084)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB33030100)the Chinese Academy of Sciences(Grant No.JZHKYPT-2021-08)supported by the Office of Basic Energy Sciences,Division of Materials Sciences and Engineering,U.S.Department of Energy(Grant No.DESC0020221)financial support from Fundamental Research Funds for the Central Universitiesthe National Natural Science Fund for Excellent Young Scientists Fund Program(Overseas)and the General Program(Grant No.52373226)the Xiaomi Young Talents Programfunding from the European Research Council under the European Union’s Horizon 2020 Research and Innovation Programme(Grant No.856538)the Deutsche Forschungsgemeinschaft(Grant Nos.405553726,and 403502830)。
文摘The ability to characterize three-dimensional(3D)magnetization distributions in nanoscale magnetic materials and devices is essential to fully understand their static and dynamic magnetic properties.Phase contrast techniques in the transmission electron microscope(TEM),such as electron holography and electron ptychography,can be used to record two-dimensional(2D)projections of the in-plane magnetic induction of 3D nanoscale objects.Although the 3D magnetic induction can in principle be reconstructed from one or more tilt series of such 2D projections,conventional tomographic reconstruction algorithms do not recover the 3D magnetization within a sample directly.Here,we use simulations to describe the basis of an improved model-based algorithm for the tomographic reconstruction of a 3D magnetization distribution from one or more tilt series of electron optical phase images recorded in the TEM.The algorithm allows a wide range of physical constraints,including a priori information about the sample geometry and magnetic parameters,to be specified.It also makes use of minimization of the micromagnetic energy in the loss function.We demonstrate the reconstruction of the 3D magnetization of a localized magnetic soliton—a hopfion ring—and discuss the influence of noise,choice of magnetic constants,maximum tilt angle and number of tilt axes on the result.The algorithm can in principle be adapted for other magnetic contrast imaging techniques in the TEM,as well as for other magnetic characterization techniques,such as those based on X-rays or neutrons.
基金supported by the National High-tech Research Program (the "863" Program, No. 2006AA02Z312)Innovative Group Program for Graduates of Chongqing University, Science and Innovation Fund (No. 200711C1A0010260)
文摘The quantitative structure-activity relationship (QSAR) of 30 acylthiourea analogues was studied by using a three-dimensional holographic vector of atomic interaction field (3D-HoVAIF) to describe their chemical structures. The descriptors obtained were screened by stepwise multiple regression (SMR) and a partial least-squares (PLS) regression model was built. The correlation coefficient r^2 of the established model and Leave-One-Out (LOO) Cross-Validation (CV) correlation coefficient q^2 are 0.624 and 0.409, respectively. The model has favorable stability and good prediction capability, and further QSAR analysis showed that hydrophobic interaction has the most important effect on the activity of acylthiourea analogue and 3D-HoVAIF was applicable to the molecular structural characterization and biologicalactivity prediction.
文摘We derive for crystal optics in coordinate-invariant way the cone approximation of refraction vectors in the neighborhood of optic axes and determine its invariants and eigenvectors. It proved to describe an elliptic cone. The second invariant of the operator of the wave equation with respect to similarity transformations determines the special cases of degeneration including the optic axes where the polarization of the waves due to self-intersection of the dispersion surface is not uniquely determined. This second invariant is included in all investigations and it is taken into account in the illustrations. It is biquadratic in the refraction vectors and the corresponding forth-order surface in three-dimensional space splits in two separate shells and a non-rational product decomposition describing this is found. We give also a more general classification of all possible solutions of an equation with an arbitrary three-dimensional operator.
基金supported by National Natural Science Foundation of China (Grant Nos.70571040,70871064)the International (Regional) Joint Research Program of China (Grant Nos.70711120204,71011120107)the Innovation Project of Graduate Education in Shandong Province,China (Grant No.SDYC08045)
文摘By introducing state payoff vector to every state node on the connected graph in this paper,dynamic game is researched on finite graphs.The concept of simple strategy about games on graph defined by Berge is introduced to prove the existence theorem of absolute equilibrium about games on the connected graph with state payoff vector.The complete algorithm and an example in the three-dimensional connected mesh-like graph are given in this paper.
文摘A new three-dimensional missile guidance law to control the impact vector against a stationary target is proposed.The composite guidance law has two well-known components:Apollo descent guidance and trajectory shaping guidance.These respectively linear and planar guidance laws are combined to achieve a specified impact direction.The main idea is to define an impact plane and to steer the missile onto this plane using Apollo descent guidance while concurrently performing trajectory shaping with reference to the impact plane.The resulting guidance law is expressed by a single equation in vector form,which is straightforward to implement.Because it originates from an optimal formulation,the performance of the proposed technique is expected to be satisfactory.This is confirmed by comparative simulation runs,which also involve the method known as generalized explicit guidance.