Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean...Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.展开更多
The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sens...The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.展开更多
Accurate estimation of biomass is necessary for evaluating crop growth and predicting crop yield.Biomass is also a key trait in increasing grain yield by crop breeding.The aims of this study were(i)to identify the bes...Accurate estimation of biomass is necessary for evaluating crop growth and predicting crop yield.Biomass is also a key trait in increasing grain yield by crop breeding.The aims of this study were(i)to identify the best vegetation indices for estimating maize biomass,(ii)to investigate the relationship between biomass and leaf area index(LAI)at several growth stages,and(iii)to evaluate a biomass model using measured vegetation indices or simulated vegetation indices of Sentinel 2A and LAI using a deep neural network(DNN)algorithm.The results showed that biomass was associated with all vegetation indices.The three-band water index(TBWI)was the best vegetation index for estimating biomass and the corresponding R2,RMSE,and RRMSE were 0.76,2.84 t ha−1,and 38.22%respectively.LAI was highly correlated with biomass(R2=0.89,RMSE=2.27 t ha−1,and RRMSE=30.55%).Estimated biomass based on 15 hyperspectral vegetation indices was in a high agreement with measured biomass using the DNN algorithm(R2=0.83,RMSE=1.96 t ha−1,and RRMSE=26.43%).Biomass estimation accuracy was further increased when LAI was combined with the 15 vegetation indices(R2=0.91,RMSE=1.49 t ha−1,and RRMSE=20.05%).Relationships between the hyperspectral vegetation indices and biomass differed from relationships between simulated Sentinel 2A vegetation indices and biomass.Biomass estimation from the hyperspectral vegetation indices was more accurate than that from the simulated Sentinel 2A vegetation indices(R2=0.87,RMSE=1.84 t ha−1,and RRMSE=24.76%).The DNN algorithm was effective in improving the estimation accuracy of biomass.It provides a guideline for estimating biomass of maize using remote sensing technology and the DNN algorithm in this region.展开更多
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st...Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.展开更多
The fraction of photosynthetically active radiation (FPAR) is a key variable in the assessment of vegetation productivity and land ecosystem carbon cycles. Based on ground-measured corn hyperspectral reflectance and...The fraction of photosynthetically active radiation (FPAR) is a key variable in the assessment of vegetation productivity and land ecosystem carbon cycles. Based on ground-measured corn hyperspectral reflectance and FPAR data over Northeast China, the correlations between corn-canopy FPAR and hyperspectral reflectance were analyzed, and the FPAR estimation performances using vegetation index (VI) and neural network (NN) methods with different two-band-combination hyperspectral reflectance were investigated. The results indicated that the corn-canopy FPAR retained almost a constant value in an entire day. The negative correlations between FPAR and visible and shortwave infrared reflectance (SWIR) bands are stronger than the positive correlations between FPAR and near-infrared band re- flectance (NIR). For the six VIs, the normalized difference vegetation index (NDVI) and simple ratio (SR) performed best for estimating corn FPAR (the maximum R2 of 0.8849 and 0.8852, respectively). However, the NN method esti- mated results (the maximum Rz is 0.9417) were obviously better than all of the VIs. For NN method, the two-band combinations showing the best corn FPAR estimation performances were from the NIR and visible bands; for VIs, however, they were from the SWIR and NIR bands. As for both the methods, the SWIR band performed exceptionally well for corn FPAR estimation. This may be attributable to the fact that the reflectance of the SWIR band were strongly controlled by leaf water content, which is a key component of corn photosynthesis and greatly affects the absorption of photosynthetically active radiation (APAR), and makes further impact on corn-canopy FPAR.展开更多
Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices ...Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices (VIs) were used to predict the rice agronomic parameters including Leaf Area Index (LAI, m2 green leaf/m2 soil) and Green Leaf Chlorophyll Density (GLCD, mg chlorophyll/m2 soil) by the traditional regression models and Radial Basis Function Neural Network (RBF). RBF emerged as a variant of Artificial Neural Networks (ANNs) in the late 1980’s. A large variety of training algorithms has been tested for training RBF networks. In this study, Original RBF (ORBF), Gradient Descent RBF (GDRBF), and Generalized Regression Neural Network (GRNN) were employed. Results showed that green waveband Normalized Difference Vegetation Index (NDVIgreen) and TCARI/OSAVI have the best prediction power for LAI by exponent model and ORBF respectively, and that TCARI/OSAVI has the best prediction power for GLCD by exponent model and GDRBF. The best performances of RBF are compared with the traditional models, showing that the relationship between VIs and agronomic variables are further improved when RBF is used. Compared with the best traditional models, ORBF using TCARI/OSAVI improves the prediction power for LAI by lowering the Root Mean Square Error (RMSE) for 0.1119, and GDRBF using TCARI/OSAVI improves the prediction power for GLCD by lowering the RMSE for 26.7853. It is concluded that RBF provides a useful exploratory and predictive tool when applied to the sensitive VIs.展开更多
The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivi...The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.展开更多
In order to study the behavior and interconnection of network devices,graphs structures are used to formulate the properties in terms of mathematical models.Mesh network(meshnet)is a LAN topology in which devices are ...In order to study the behavior and interconnection of network devices,graphs structures are used to formulate the properties in terms of mathematical models.Mesh network(meshnet)is a LAN topology in which devices are connected either directly or through some intermediate devices.These terminating and intermediate devices are considered as vertices of graph whereas wired or wireless connections among these devices are shown as edges of graph.Topological indices are used to reflect structural property of graphs in form of one real number.This structural invariant has revolutionized the field of chemistry to identify molecular descriptors of chemical compounds.These indices are extensively used for establishing relationships between the structure of nanotubes and their physico-chemical properties.In this paper a representation of sodium chloride(NaCl)is studied,because structure of NaCl is same as the Cartesian product of three paths of length exactly like a mesh network.In this way the general formula obtained in this paper can be used in chemistry as well as for any degree-based topological polynomials of three-dimensional mesh networks.展开更多
A novel complex, (H 3O) 2[Ni(2,6-pydc) 2]·2H 2O was synthesized in an aqueous solution and characterized by means of single-crystal X-ray diffraction, elemental analyses and IR spectra. The X-ray structural a...A novel complex, (H 3O) 2[Ni(2,6-pydc) 2]·2H 2O was synthesized in an aqueous solution and characterized by means of single-crystal X-ray diffraction, elemental analyses and IR spectra. The X-ray structural analysis revealed that the novel compound forms three-dimensional(3D) networks by both π-π stacking and hydrogen-bonding interactions. The crystal data for the complex are a=13.853(3) nm, b=9.6892(19) nm, c=13.732(3) nm, α=90.00°, β=115.52(3)°, γ=90.00°, Z=3, R 1=0.0786, wR 2=0.1522.展开更多
The crystal structure of the title compound [Na2(OH2)5]2+[C6H12N4H2]2-2+ [Mo7O24]6 ?4H2O, prepared from an aqueous solution of Na2MoO4 ?2H2O in the presence of MoCl3 and hexamethylene tetramine, has been determined by...The crystal structure of the title compound [Na2(OH2)5]2+[C6H12N4H2]2-2+ [Mo7O24]6 ?4H2O, prepared from an aqueous solution of Na2MoO4 ?2H2O in the presence of MoCl3 and hexamethylene tetramine, has been determined by single-crystal X-ray diffraction. The crystal is of orthorhombic, space group Pnma with a = 14.6113(2), b = 18.6833(1), c = 15.3712(2), V = 4196.14(8)3, Z = 4, Mr = 1548.13, F(000) = 3016, = 2.157 mm-1 and Dc = 2.451 g/cm3. The final R factor is 0.0526 for 3818 unique observed reflections (I > 2(I)). The structural analysis reveals that heptamolybdate anions in the title compound consist of seven edge-sharing MoO6 octahedra, and are linked into a three-dimensional framework by sodium ions and hydrogen bonds.展开更多
One interesting coordination polymer, [Zn2(1,2,4-BTC)(OH)(H2O)2]2·2H2O 1, has been synthesized from 1,2,4-BTC (1,2,4-BTC = 1,2,4-bentricarboxylate) under hydrothermal conditions and characterized by eleme...One interesting coordination polymer, [Zn2(1,2,4-BTC)(OH)(H2O)2]2·2H2O 1, has been synthesized from 1,2,4-BTC (1,2,4-BTC = 1,2,4-bentricarboxylate) under hydrothermal conditions and characterized by elemental analyses, IR, TG and single-crystal X-ray diffraction. Complex I crystallizes in triclinic, space group P^-1, with a = 6.5200(13), b = 9,0600(18), c = 10.968(2) A^°, α = 111.55(3), β = 92.07(3),γ= 95.03(3)°, C9H10O10Zn2, Mr = 408.91, V= 598.7(2) A^°^3, Dc = 2.268 g/cm^3, F(000) = 408 and Z = 2. X-ray diffraction analysis reveals that complex 1 is a three-dimensional network built from tetranuclear Zn(Ⅱ) building unit. In this complex, the Zn4 unit is an eight-connected knot, while 1,2,4-BTC a four-connected knot. This results in a CaF2 topology. To the best of our knowledge, such Zn4 unit is the first 8-connected building block built from asymmetry ligand.展开更多
The Metropolitan Area Network (MAN) has faced serious problems after years of rapid development. The model of three-dimensional IP-based MAN, proposed by ZTE, is a next-generation MAN solution, which not only solves t...The Metropolitan Area Network (MAN) has faced serious problems after years of rapid development. The model of three-dimensional IP-based MAN, proposed by ZTE, is a next-generation MAN solution, which not only solves the existing problems but also brings new ideas for the development of next-generation MAN.展开更多
The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series ...The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series at boundaries, river geometry, and adjusted coefficients. Therefore, an artificial neural network (ANN) technique using a back-propagation neural network (BPNN) and a radial basis function neural network (RBFNN) is adopted as an effective alternative in salinity simulation studies. The present study focuses on comparing the performance of BPNN, RBFNN, and three-dimensional hydrodynamic models as applied to a tidal estuarine system. The observed salinity data sets collected from 18 to 22 May, 16 to 22 October, and 26 to 30 October 2002 (totaling 4320 data points) were used for BPNN and RBFNN model training and for hydrodynamic model calibration. The data sets collected from 30 May to 2 June and 11 to 15 November 2002 (totaling 2592 data points) were adopted for BPNN and RBFNN model verification and for hydrodynamic model verification. The results revealed that the ANN (BPNN and RBFNN) models were capable of predicting the nonlinear time series behavior of salinity to the multiple forcing signals of water stages at different stations and freshwater input at upstream boundaries. The salinity predicted by the ANN models was better than that predicted by the physically based hydrodynamic model. This study suggests that BPNN and RBFNN models are easy-to-use modeling tools for simulating the salinity variation in a tidal estuarine system.展开更多
To solve the volume expansion and poor electrical conductivity of germanium-based anode materials,Ge/rGO/CNTs nanocomposites with three-dimensional network structure are fabricated through the dispersion of polyethyle...To solve the volume expansion and poor electrical conductivity of germanium-based anode materials,Ge/rGO/CNTs nanocomposites with three-dimensional network structure are fabricated through the dispersion of polyethylene-polypropylene glycol(F127)and reduction of hydrogen.An interesting phenomenon is discovered that F127 can break GeO_(2)polycrystalline microparticles into 100 nm nanoparticles by only physical interaction,which promotes the uniform dispersion of GeO_(2)in a carbon network structure composed of graphene(rGO)and carbon nanotubes(CNTs).As evaluated as anode material of Lithium-ion batteries,Ge/rGO/CNTs nanocomposites exhibit excellent lithium storage performance.The initial specific capacity is high to 1549.7 mAh/g at 0.2 A/g,and the reversible capacity still retains972.4 mAh/g after 100 cycles.The improved lithium storage performance is attributed to that Ge nanoparticles can effectively slow down the volume expansion during charge and discharge processes,and threedimensional carbon networks can improve electrical conductivity and accelerate lithium-ion transfer of anode materials.展开更多
Drought is one of the major environmental threats in the world. In recent years, the damage from droughts to the environment and economies of some countries has been extensive, and drought monitoring has caused widesp...Drought is one of the major environmental threats in the world. In recent years, the damage from droughts to the environment and economies of some countries has been extensive, and drought monitoring has caused widespread concerns. Remote sensing has a proven ability to provide spatial and temporal measurements of surface properties, and it offers an opportunity for the quantitative assessment of drought indicators such as the vegetation water content at different levels. In this study, sites of cotton field in Shihezi, Xinjiang, Northwest China were sampled. Four classical water content parameters, namely the leaf equivalent water thickness (EWT^e,f), the fuel moisture content (FMC), the canopy equivalent water thickness (EVVmcanopy) and vegetation water content (VWC) were evaluated against seven widely-used water-related vegetation indices, namely the NDII (normalized difference infrared index), NDWI2130 (normalized difference water index), NDVI (normalized difference vegetation index), MSI (moisture stress index), SRWI (simple ratio water index), NOWI1240 (normalized difference water index) and WI (water index), respectively. The results proved that the relationships between the water-related vegetation indices and EWTleaf were much better than that with FMC, and the relationships between vegetation indices and EWTcanopy were better than that with VWC. Furthermore, comparing the significance of all seven water-related vegetation in- dices, WI and NDII proved to be the best candidates for EWT detecting at leaf and canopy levels, with R2 of 0.262 and 0.306 for EWTlear-WI and EWTcanopy-NDII linear models, respectively. Besides, the prediction power of linear regression technique (LR) and artificial neural network (ANN) were compared using calibration and validation dataset, respectively. The results indicated that the performance of ANN as a predictive tool for water status meas- uring was as good as LR. The study should further our understanding of the relationships between water-related vegetation indices and water parameters.展开更多
Several challenging issues,such as the poor conductivity of sulfur,shuttle effects,large volume change of cathode,and the dendritic lithium in anode,have led to the low utilization of sulfur and hampered the commercia...Several challenging issues,such as the poor conductivity of sulfur,shuttle effects,large volume change of cathode,and the dendritic lithium in anode,have led to the low utilization of sulfur and hampered the commercialization of lithium–sulfur batteries.In this study,a novel three-dimensionally interconnected network structure comprising Co9 S8 and multiwalled carbon nanotubes(MWCNTs)was synthesized by a solvothermal route and used as the sulfur host.The assembled batteries delivered a specific capacity of1154 m Ah g-1 at 0.1 C,and the retention was 64%after 400 cycles at 0.5 C.The polar and catalytic Co9 S8 nanoparticles have a strong adsorbent effect for polysulfide,which can effectively reduce the shuttling effect.Meanwhile,the three-dimensionally interconnected CNT networks improve the overall conductivity and increase the contact with the electrolyte,thus enhancing the transport of electrons and Li ions.Polysulfide adsorption is greatly increased with the synergistic effect of polar Co9 S8 and MWCNTs in the three-dimensionally interconnected composites,which contributes to their promising performance for the lithium–sulfur batteries.展开更多
This paper focuses on the effects of precipitation and vegetation coverage on runoff and sediment yield in the Jinsha River Basin. Results of regression analysis were taken as input variables to investigate the applic...This paper focuses on the effects of precipitation and vegetation coverage on runoff and sediment yield in the Jinsha River Basin. Results of regression analysis were taken as input variables to investigate the applicability of the adaptive network-based fuzzy inference system (ANFIS) to simulating annual runoff and sediment yield. Correlation analysis indicates that runoff and sediment yield are positively correlated with the precipitation indices, while negatively correlated with the vegetation indices. Furthermore, the results of stepwise regression show that annual precipitation is the most important factor influencing the variation of runoff, followed by forest coverage, and their contributions to the variation ofrunoffare 69.8% and 17.3%, respectively. For sediment yield, rainfall erosivity is the most important factor, followed by forest coverage, and their contributions to the variation of sediment yield are 49.3% and 24.2%, respectively. The ANFIS model is of high precision in runoff forecasting, with a relative error of less than 5%, but of poor precision in sediment yield forecasting, indicating that precipitation and vegetation coverage can explain only part of the variation of sediment yield, and that other impact factors, such as human activities, should be sufficiently considered as well.展开更多
Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm ...Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm and neural work.Taking mushrooms as an example,the parameters of the model are analyzed through experiment.In the end,the results of genetic algorithm and BP neural network are compared.The results show that the absolute error of prediction data is in the scale of 10%;in the scope that the absolute error in the prediction data is in the scope of 20% and 15%.The accuracy of genetic algorithm based on neutral network is higher than the BP neutral network model,especially the absolute error of prediction data is within the scope of 20%.The accuracy of genetic algorithm based on neural network is obviously better than BP neural network model,which represents the favorable generalization capability of the model.展开更多
The title complex Mn(H2O)2(HNic)2 (C22H12MnN2O8, Mr = 367.18) crystallizes in monoclinic, space group P21/c with a = 7.5735(8), b = 12.5295(13), c = 7.6466(8)A.β = 101.2790(10)°, Z = 2, V= 711.59...The title complex Mn(H2O)2(HNic)2 (C22H12MnN2O8, Mr = 367.18) crystallizes in monoclinic, space group P21/c with a = 7.5735(8), b = 12.5295(13), c = 7.6466(8)A.β = 101.2790(10)°, Z = 2, V= 711.59(13) A^3, D, = 1.714 g/cm^3,μ(MoKa) = 0.974 mm^-1, F(000) = 374, R1 (1255 observed reflections (Ⅰ 〉 2σ(Ⅰ)) = 0.0250) and wR2 = 0.0662 (all data). In this paper, we report the complexation of Mn(Ⅱ) by the bidentate ligand 2-hydroxynicotinic acid (HNic). In the crystal the Mn(Ⅱ) ion exhibits a deformed octahedron structure. The title complex Mn(H2O)2(HNic)2 has a three-dimensional (3D) network structure extended by hydrogen bonds, which are formed by two typical eight-membered hydrogen-bonded rings.展开更多
基金The National Key R&D Program of China under contract No.2021YFC3101603.
文摘Ocean temperature is an important physical variable in marine ecosystems,and ocean temperature prediction is an important research objective in ocean-related fields.Currently,one of the commonly used methods for ocean temperature prediction is based on data-driven,but research on this method is mostly limited to the sea surface,with few studies on the prediction of internal ocean temperature.Existing graph neural network-based methods usually use predefined graphs or learned static graphs,which cannot capture the dynamic associations among data.In this study,we propose a novel dynamic spatiotemporal graph neural network(DSTGN)to predict threedimensional ocean temperature(3D-OT),which combines static graph learning and dynamic graph learning to automatically mine two unknown dependencies between sequences based on the original 3D-OT data without prior knowledge.Temporal and spatial dependencies in the time series were then captured using temporal and graph convolutions.We also integrated dynamic graph learning,static graph learning,graph convolution,and temporal convolution into an end-to-end framework for 3D-OT prediction using time-series grid data.In this study,we conducted prediction experiments using high-resolution 3D-OT from the Copernicus global ocean physical reanalysis,with data covering the vertical variation of temperature from the sea surface to 1000 m below the sea surface.We compared five mainstream models that are commonly used for ocean temperature prediction,and the results showed that the method achieved the best prediction results at all prediction scales.
基金Y. Wang was supported in part by the US National Science Foundation (NSF) under Grant Nos.CNS-0721666,CNS-0915331,and CNS-1050398Y. Liu was partially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61074092+1 种基金by the Shandong Provincial Natural Science Foundation,China under Grant No.Q2008E01Z. Guo was partially supported by the NSFC under Grant Nos. 61170258 and 6093301
文摘The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.
基金supported by the National Natural Science Foundation of China(41601369)the Young Talents Program of Institute of Crop Sciences,Chinese Academy of Agricultural Sciences(S2019YC04)
文摘Accurate estimation of biomass is necessary for evaluating crop growth and predicting crop yield.Biomass is also a key trait in increasing grain yield by crop breeding.The aims of this study were(i)to identify the best vegetation indices for estimating maize biomass,(ii)to investigate the relationship between biomass and leaf area index(LAI)at several growth stages,and(iii)to evaluate a biomass model using measured vegetation indices or simulated vegetation indices of Sentinel 2A and LAI using a deep neural network(DNN)algorithm.The results showed that biomass was associated with all vegetation indices.The three-band water index(TBWI)was the best vegetation index for estimating biomass and the corresponding R2,RMSE,and RRMSE were 0.76,2.84 t ha−1,and 38.22%respectively.LAI was highly correlated with biomass(R2=0.89,RMSE=2.27 t ha−1,and RRMSE=30.55%).Estimated biomass based on 15 hyperspectral vegetation indices was in a high agreement with measured biomass using the DNN algorithm(R2=0.83,RMSE=1.96 t ha−1,and RRMSE=26.43%).Biomass estimation accuracy was further increased when LAI was combined with the 15 vegetation indices(R2=0.91,RMSE=1.49 t ha−1,and RRMSE=20.05%).Relationships between the hyperspectral vegetation indices and biomass differed from relationships between simulated Sentinel 2A vegetation indices and biomass.Biomass estimation from the hyperspectral vegetation indices was more accurate than that from the simulated Sentinel 2A vegetation indices(R2=0.87,RMSE=1.84 t ha−1,and RRMSE=24.76%).The DNN algorithm was effective in improving the estimation accuracy of biomass.It provides a guideline for estimating biomass of maize using remote sensing technology and the DNN algorithm in this region.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3080200)the National Natural Science Foundation of China(Grant No.42022053)the China Postdoctoral Science Foundation(Grant No.2023M731264).
文摘Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.
基金Under the auspices of National Key Research Program of Global Change Research (No.2010CB951302)National Natural Science Fundation of China (No.40771146)China Postdoctoral Science Foundation Funded Project (No.07Z7601MZ1)
文摘The fraction of photosynthetically active radiation (FPAR) is a key variable in the assessment of vegetation productivity and land ecosystem carbon cycles. Based on ground-measured corn hyperspectral reflectance and FPAR data over Northeast China, the correlations between corn-canopy FPAR and hyperspectral reflectance were analyzed, and the FPAR estimation performances using vegetation index (VI) and neural network (NN) methods with different two-band-combination hyperspectral reflectance were investigated. The results indicated that the corn-canopy FPAR retained almost a constant value in an entire day. The negative correlations between FPAR and visible and shortwave infrared reflectance (SWIR) bands are stronger than the positive correlations between FPAR and near-infrared band re- flectance (NIR). For the six VIs, the normalized difference vegetation index (NDVI) and simple ratio (SR) performed best for estimating corn FPAR (the maximum R2 of 0.8849 and 0.8852, respectively). However, the NN method esti- mated results (the maximum Rz is 0.9417) were obviously better than all of the VIs. For NN method, the two-band combinations showing the best corn FPAR estimation performances were from the NIR and visible bands; for VIs, however, they were from the SWIR and NIR bands. As for both the methods, the SWIR band performed exceptionally well for corn FPAR estimation. This may be attributable to the fact that the reflectance of the SWIR band were strongly controlled by leaf water content, which is a key component of corn photosynthesis and greatly affects the absorption of photosynthetically active radiation (APAR), and makes further impact on corn-canopy FPAR.
基金Project (Nos. 40571115 and 40271078) supported by the National Natural Science Foundation of China
文摘Hyperspectral reflectance (350~2500 nm) data were recorded at two different sites of rice in two experiment fields including two cultivars, and three levels of nitrogen (N) application. Twenty-five Vegetation Indices (VIs) were used to predict the rice agronomic parameters including Leaf Area Index (LAI, m2 green leaf/m2 soil) and Green Leaf Chlorophyll Density (GLCD, mg chlorophyll/m2 soil) by the traditional regression models and Radial Basis Function Neural Network (RBF). RBF emerged as a variant of Artificial Neural Networks (ANNs) in the late 1980’s. A large variety of training algorithms has been tested for training RBF networks. In this study, Original RBF (ORBF), Gradient Descent RBF (GDRBF), and Generalized Regression Neural Network (GRNN) were employed. Results showed that green waveband Normalized Difference Vegetation Index (NDVIgreen) and TCARI/OSAVI have the best prediction power for LAI by exponent model and ORBF respectively, and that TCARI/OSAVI has the best prediction power for GLCD by exponent model and GDRBF. The best performances of RBF are compared with the traditional models, showing that the relationship between VIs and agronomic variables are further improved when RBF is used. Compared with the best traditional models, ORBF using TCARI/OSAVI improves the prediction power for LAI by lowering the Root Mean Square Error (RMSE) for 0.1119, and GDRBF using TCARI/OSAVI improves the prediction power for GLCD by lowering the RMSE for 26.7853. It is concluded that RBF provides a useful exploratory and predictive tool when applied to the sensitive VIs.
文摘The space-air-ground integrated network(SAGIN)combines the superiority of the satellite,aerial,and ground communications,which is envisioned to provide high-precision positioning ability as well as seamless connectivity in the 5G and Beyond 5G(B5G)systems.In this paper,we propose a three-dimensional SAGIN localization scheme for ground agents utilizing multi-source information from satellites,base stations and unmanned aerial vehicles(UAVs).Based on the designed scheme,we derive the positioning performance bound and establish a distributed maximum likelihood algorithm to jointly estimate the positions and clock offsets of ground agents.Simulation results demonstrate the validity of the SAGIN localization scheme and reveal the effects of the number of satellites,the number of base stations,the number of UAVs and clock noise on positioning performance.
文摘In order to study the behavior and interconnection of network devices,graphs structures are used to formulate the properties in terms of mathematical models.Mesh network(meshnet)is a LAN topology in which devices are connected either directly or through some intermediate devices.These terminating and intermediate devices are considered as vertices of graph whereas wired or wireless connections among these devices are shown as edges of graph.Topological indices are used to reflect structural property of graphs in form of one real number.This structural invariant has revolutionized the field of chemistry to identify molecular descriptors of chemical compounds.These indices are extensively used for establishing relationships between the structure of nanotubes and their physico-chemical properties.In this paper a representation of sodium chloride(NaCl)is studied,because structure of NaCl is same as the Cartesian product of three paths of length exactly like a mesh network.In this way the general formula obtained in this paper can be used in chemistry as well as for any degree-based topological polynomials of three-dimensional mesh networks.
基金Supported by the National Natural Science Foundation of China(No.2 0 1710 10)
文摘A novel complex, (H 3O) 2[Ni(2,6-pydc) 2]·2H 2O was synthesized in an aqueous solution and characterized by means of single-crystal X-ray diffraction, elemental analyses and IR spectra. The X-ray structural analysis revealed that the novel compound forms three-dimensional(3D) networks by both π-π stacking and hydrogen-bonding interactions. The crystal data for the complex are a=13.853(3) nm, b=9.6892(19) nm, c=13.732(3) nm, α=90.00°, β=115.52(3)°, γ=90.00°, Z=3, R 1=0.0786, wR 2=0.1522.
基金This work was supported by Chinese Academy of Sciences the State Education Ministry+1 种基金 the State Personnel Ministry the NSFC (20073048)
文摘The crystal structure of the title compound [Na2(OH2)5]2+[C6H12N4H2]2-2+ [Mo7O24]6 ?4H2O, prepared from an aqueous solution of Na2MoO4 ?2H2O in the presence of MoCl3 and hexamethylene tetramine, has been determined by single-crystal X-ray diffraction. The crystal is of orthorhombic, space group Pnma with a = 14.6113(2), b = 18.6833(1), c = 15.3712(2), V = 4196.14(8)3, Z = 4, Mr = 1548.13, F(000) = 3016, = 2.157 mm-1 and Dc = 2.451 g/cm3. The final R factor is 0.0526 for 3818 unique observed reflections (I > 2(I)). The structural analysis reveals that heptamolybdate anions in the title compound consist of seven edge-sharing MoO6 octahedra, and are linked into a three-dimensional framework by sodium ions and hydrogen bonds.
基金supported by the National Natural Science Foundation of China (No. 20701005 and 20701006)
文摘One interesting coordination polymer, [Zn2(1,2,4-BTC)(OH)(H2O)2]2·2H2O 1, has been synthesized from 1,2,4-BTC (1,2,4-BTC = 1,2,4-bentricarboxylate) under hydrothermal conditions and characterized by elemental analyses, IR, TG and single-crystal X-ray diffraction. Complex I crystallizes in triclinic, space group P^-1, with a = 6.5200(13), b = 9,0600(18), c = 10.968(2) A^°, α = 111.55(3), β = 92.07(3),γ= 95.03(3)°, C9H10O10Zn2, Mr = 408.91, V= 598.7(2) A^°^3, Dc = 2.268 g/cm^3, F(000) = 408 and Z = 2. X-ray diffraction analysis reveals that complex 1 is a three-dimensional network built from tetranuclear Zn(Ⅱ) building unit. In this complex, the Zn4 unit is an eight-connected knot, while 1,2,4-BTC a four-connected knot. This results in a CaF2 topology. To the best of our knowledge, such Zn4 unit is the first 8-connected building block built from asymmetry ligand.
文摘The Metropolitan Area Network (MAN) has faced serious problems after years of rapid development. The model of three-dimensional IP-based MAN, proposed by ZTE, is a next-generation MAN solution, which not only solves the existing problems but also brings new ideas for the development of next-generation MAN.
文摘The simulation of salinity at different locations of a tidal river using physically-based hydrodynamic models is quite cumbersome because it requires many types of data, such as hydrological and hydraulic time series at boundaries, river geometry, and adjusted coefficients. Therefore, an artificial neural network (ANN) technique using a back-propagation neural network (BPNN) and a radial basis function neural network (RBFNN) is adopted as an effective alternative in salinity simulation studies. The present study focuses on comparing the performance of BPNN, RBFNN, and three-dimensional hydrodynamic models as applied to a tidal estuarine system. The observed salinity data sets collected from 18 to 22 May, 16 to 22 October, and 26 to 30 October 2002 (totaling 4320 data points) were used for BPNN and RBFNN model training and for hydrodynamic model calibration. The data sets collected from 30 May to 2 June and 11 to 15 November 2002 (totaling 2592 data points) were adopted for BPNN and RBFNN model verification and for hydrodynamic model verification. The results revealed that the ANN (BPNN and RBFNN) models were capable of predicting the nonlinear time series behavior of salinity to the multiple forcing signals of water stages at different stations and freshwater input at upstream boundaries. The salinity predicted by the ANN models was better than that predicted by the physically based hydrodynamic model. This study suggests that BPNN and RBFNN models are easy-to-use modeling tools for simulating the salinity variation in a tidal estuarine system.
基金financially supported by National Natural Science Foundation of China(Nos.22379056,52102100)Industry foresight and common key technology research in Carbon Peak and Carbon Neutrality Special Project from Zhenjiang city(No.CG2023003)Research and Practice Innovation Plan of Postgraduate Training Innovation Project in Jiangsu Province(No.SJCX23_2164)。
文摘To solve the volume expansion and poor electrical conductivity of germanium-based anode materials,Ge/rGO/CNTs nanocomposites with three-dimensional network structure are fabricated through the dispersion of polyethylene-polypropylene glycol(F127)and reduction of hydrogen.An interesting phenomenon is discovered that F127 can break GeO_(2)polycrystalline microparticles into 100 nm nanoparticles by only physical interaction,which promotes the uniform dispersion of GeO_(2)in a carbon network structure composed of graphene(rGO)and carbon nanotubes(CNTs).As evaluated as anode material of Lithium-ion batteries,Ge/rGO/CNTs nanocomposites exhibit excellent lithium storage performance.The initial specific capacity is high to 1549.7 mAh/g at 0.2 A/g,and the reversible capacity still retains972.4 mAh/g after 100 cycles.The improved lithium storage performance is attributed to that Ge nanoparticles can effectively slow down the volume expansion during charge and discharge processes,and threedimensional carbon networks can improve electrical conductivity and accelerate lithium-ion transfer of anode materials.
基金supported by the West Light Foundation of Chinese Academy of Sciences (XBBS200902)the Knowledge Innovation Project of Chinese Academy of Sciences(KZCX2-YW-BR-12)+2 种基金the National Natural Science Foundation of China (41104130)the West Light Foundation of Chinese Academy of Sciences (XBBS201006)the China Postdoctoral Science Foundation (20100471681)
文摘Drought is one of the major environmental threats in the world. In recent years, the damage from droughts to the environment and economies of some countries has been extensive, and drought monitoring has caused widespread concerns. Remote sensing has a proven ability to provide spatial and temporal measurements of surface properties, and it offers an opportunity for the quantitative assessment of drought indicators such as the vegetation water content at different levels. In this study, sites of cotton field in Shihezi, Xinjiang, Northwest China were sampled. Four classical water content parameters, namely the leaf equivalent water thickness (EWT^e,f), the fuel moisture content (FMC), the canopy equivalent water thickness (EVVmcanopy) and vegetation water content (VWC) were evaluated against seven widely-used water-related vegetation indices, namely the NDII (normalized difference infrared index), NDWI2130 (normalized difference water index), NDVI (normalized difference vegetation index), MSI (moisture stress index), SRWI (simple ratio water index), NOWI1240 (normalized difference water index) and WI (water index), respectively. The results proved that the relationships between the water-related vegetation indices and EWTleaf were much better than that with FMC, and the relationships between vegetation indices and EWTcanopy were better than that with VWC. Furthermore, comparing the significance of all seven water-related vegetation in- dices, WI and NDII proved to be the best candidates for EWT detecting at leaf and canopy levels, with R2 of 0.262 and 0.306 for EWTlear-WI and EWTcanopy-NDII linear models, respectively. Besides, the prediction power of linear regression technique (LR) and artificial neural network (ANN) were compared using calibration and validation dataset, respectively. The results indicated that the performance of ANN as a predictive tool for water status meas- uring was as good as LR. The study should further our understanding of the relationships between water-related vegetation indices and water parameters.
基金National Natural Science Foundation of China(No.51974209)the Natural Science Foundation of Hubei Province of China(Nos.2013CFA021,2017CFB401,2018CFA022)。
文摘Several challenging issues,such as the poor conductivity of sulfur,shuttle effects,large volume change of cathode,and the dendritic lithium in anode,have led to the low utilization of sulfur and hampered the commercialization of lithium–sulfur batteries.In this study,a novel three-dimensionally interconnected network structure comprising Co9 S8 and multiwalled carbon nanotubes(MWCNTs)was synthesized by a solvothermal route and used as the sulfur host.The assembled batteries delivered a specific capacity of1154 m Ah g-1 at 0.1 C,and the retention was 64%after 400 cycles at 0.5 C.The polar and catalytic Co9 S8 nanoparticles have a strong adsorbent effect for polysulfide,which can effectively reduce the shuttling effect.Meanwhile,the three-dimensionally interconnected CNT networks improve the overall conductivity and increase the contact with the electrolyte,thus enhancing the transport of electrons and Li ions.Polysulfide adsorption is greatly increased with the synergistic effect of polar Co9 S8 and MWCNTs in the three-dimensionally interconnected composites,which contributes to their promising performance for the lithium–sulfur batteries.
基金supported by the National Natural Science Foundation of China (Grant No. 40971012)International Science and Technology Cooperation Program of China (Grants No. 2011DFA20820 and 2011DFG93160)Tsinghua University Independent Scientific Research Program (Grant No.20121080027)
文摘This paper focuses on the effects of precipitation and vegetation coverage on runoff and sediment yield in the Jinsha River Basin. Results of regression analysis were taken as input variables to investigate the applicability of the adaptive network-based fuzzy inference system (ANFIS) to simulating annual runoff and sediment yield. Correlation analysis indicates that runoff and sediment yield are positively correlated with the precipitation indices, while negatively correlated with the vegetation indices. Furthermore, the results of stepwise regression show that annual precipitation is the most important factor influencing the variation of runoff, followed by forest coverage, and their contributions to the variation ofrunoffare 69.8% and 17.3%, respectively. For sediment yield, rainfall erosivity is the most important factor, followed by forest coverage, and their contributions to the variation of sediment yield are 49.3% and 24.2%, respectively. The ANFIS model is of high precision in runoff forecasting, with a relative error of less than 5%, but of poor precision in sediment yield forecasting, indicating that precipitation and vegetation coverage can explain only part of the variation of sediment yield, and that other impact factors, such as human activities, should be sufficiently considered as well.
文摘Considering the complexity of vegetables price forecast,the prediction model of vegetables price was set up by applying the neural network based on genetic algorithm and using the characteristics of genetic algorithm and neural work.Taking mushrooms as an example,the parameters of the model are analyzed through experiment.In the end,the results of genetic algorithm and BP neural network are compared.The results show that the absolute error of prediction data is in the scale of 10%;in the scope that the absolute error in the prediction data is in the scope of 20% and 15%.The accuracy of genetic algorithm based on neutral network is higher than the BP neutral network model,especially the absolute error of prediction data is within the scope of 20%.The accuracy of genetic algorithm based on neural network is obviously better than BP neural network model,which represents the favorable generalization capability of the model.
基金This work was supported by the National Natural Science Foundation of China (No. 50572040)
文摘The title complex Mn(H2O)2(HNic)2 (C22H12MnN2O8, Mr = 367.18) crystallizes in monoclinic, space group P21/c with a = 7.5735(8), b = 12.5295(13), c = 7.6466(8)A.β = 101.2790(10)°, Z = 2, V= 711.59(13) A^3, D, = 1.714 g/cm^3,μ(MoKa) = 0.974 mm^-1, F(000) = 374, R1 (1255 observed reflections (Ⅰ 〉 2σ(Ⅰ)) = 0.0250) and wR2 = 0.0662 (all data). In this paper, we report the complexation of Mn(Ⅱ) by the bidentate ligand 2-hydroxynicotinic acid (HNic). In the crystal the Mn(Ⅱ) ion exhibits a deformed octahedron structure. The title complex Mn(H2O)2(HNic)2 has a three-dimensional (3D) network structure extended by hydrogen bonds, which are formed by two typical eight-membered hydrogen-bonded rings.