This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with u...This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with unique 5-element configuration</span></span><span style="white-space:normal;"><span style="font-family:;" "="">, with all five elements acting as transmitters and four elements as receivers. The receivers are designed to reduce the amount of uncertainty. As the fluid moves through this setup, four Doppler frequencies are obtained. The multi-dimensional velocity information along the measurement line can be reconstructed. The transducer has a compact geometry suitable for a wide range of applications, including narrow flow areas. The transducer’s basic frequency and sound pressure are selected and evaluated to be compatible with the application. First, to confirm the measurement ability, the measurement of the developed system in two-dimensional flow is validated by comparing it to the theoretical data. The uncertainty of measurement was within 15%. Second, the three-dimensional measurement in turbulent and swirling flow is proved experimentally to check the applicability of the proposed technique.</span></span>展开更多
The Particle Velocity Sensor (PVS) is a kind of acoustic transducer which measures the particle velocity directly with figure-of-eight directivity. This paper proposes a near-field noise scanning technology based on t...The Particle Velocity Sensor (PVS) is a kind of acoustic transducer which measures the particle velocity directly with figure-of-eight directivity. This paper proposes a near-field noise scanning technology based on the research of PVS, pressure-particle velocity (P-U) probe, and its application in noise source identification. Firstly, the principle and characteristics of PVS are presented. Secondly, a P-U probe is designed on the basis of PVS development. Finally, the noise measurement experiment for a single source is arranged and conducted. The result shows that the proposed P-U probe performs well in near-field noise source identification and localization.展开更多
Force measurements of oscillatory flow acting on a single circular cylinder have been carried out. The experiments were done by oscillating a circular cylinder in still water. Instantaneous forces and velocity fields ...Force measurements of oscillatory flow acting on a single circular cylinder have been carried out. The experiments were done by oscillating a circular cylinder in still water. Instantaneous forces and velocity fields around the cylinder were measured by Particle Image Velocimetry (PIV). The Keulegan-Carpenter number (KC) varied in the range from 5 to 20 and the viscous parameter beta = Re / KC was set at 500 (Re is Reynolds number). It was found that the strength and frequency of the lift force increased with KC number, the main frequency of the lift force being three times the frequency of the oscillatory flow at KC = 20. The movement and strength of the vortices around the cylinder are discussed for different KC numbers.展开更多
An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing rati...An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing ratios (M=1.5, 2) on the flow field are studied. The experimental results reveal the classical phenomena of the formation of kidney vortex pair and secondary flow in wake region behind the jet hole. And the changes of the kidney vortex pair and the wake at different locations away from the hole on the suction and pressure sides are also studied. Compared with the flow field in stationary cascade, there are centrifugal force and Coriolis force existing in the flow field of rotating turbine, and these forces bring the radial velocity in the jet flow. The effect of rotatien on the flow field of the pressure side is more distinct than that on the suction side from the measured flow fields in Y-Z plane and radial velocity contours. The increase of blowing ratio makes the kidney vortex pair and the secondary flow in the wake region stronger and makes the range of the wake region enlarged.展开更多
The in-cylinder flow field of the internal combustion engine is an important factor affecting the quality and combustion quality of the fuel mixture in the cylinder. In order to calculate the high-precision flow field...The in-cylinder flow field of the internal combustion engine is an important factor affecting the quality and combustion quality of the fuel mixture in the cylinder. In order to calculate the high-precision flow field, the paper presents a flow field calculation method based on the optical flow algorithm. The motion of the point was calculated using the change in pixel intensity within two temporally adjacent frame images. The results show the high accuracy and resolution of the flow field at small displacement conditions.展开更多
An improved multidirectional velocity model was proposed for more accurately locating micro-seismic events in rock engineering. It was assumed that the stress wave propagation velocities from a micro-seismic source to...An improved multidirectional velocity model was proposed for more accurately locating micro-seismic events in rock engineering. It was assumed that the stress wave propagation velocities from a micro-seismic source to three nearest monitoring sensors in a sensor's array arrangement were the same. Since the defined objective function does not require pre-measurement of the stress wave propagation velocity in the field, errors from the velocity measurement can be avoided in comparison to three traditional velocity models. By analyzing 24 different cases, the proposed multidirectional velocity model iterated by the Simplex method is found to be the best option no matter the source is within the region of the sensor's array or not. The proposed model and the adopted iterative algorithm are verified by field data and it is concluded that it can significantly reduce the error of the estimated source location.展开更多
The Laji Shan—Jishi Shan tectonic belt(LJTB),located in the southern part of the northeastern Tibetan Plateau(NETP),is a tectonic window to reveal regional tectonic deformation in the NETP.However,its kinematics in t...The Laji Shan—Jishi Shan tectonic belt(LJTB),located in the southern part of the northeastern Tibetan Plateau(NETP),is a tectonic window to reveal regional tectonic deformation in the NETP.However,its kinematics in the Holocene remains controversial.We obtain the latest and dense horizontal velocity field based on data collected from our newly constructed and existing GNSS stations.Combined with fault kinematics from geologic observations,we analyze the crustal deformation characteristics along the LJTB.The results show that:(1)The Laji Shan fault(LJF)is inactive,and the northwest-oriented Jishi Shan fault(JSF)exhibits a significant dextral and thrust slip.(2)The transpression along the arc-shaped LJTB accommodates deformation transformation between the dextral Riyue Shan fault and the sinistral west Qinling fault.(3)With the continuous pushing of the Indian plate,internal strains in the Tibetan Plateau are continuously transferred in the northeast via the LJTB as they are gradually dissipated near the LJTB and translated into significant crustal uplift in these regions.展开更多
In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare co...In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers.展开更多
While log law is an equation theoretically derived for near-bed region, in most cases, power law has been researched by experimental methods. Thus, many consider it as an empirical equation and fixed power law exponen...While log law is an equation theoretically derived for near-bed region, in most cases, power law has been researched by experimental methods. Thus, many consider it as an empirical equation and fixed power law exponents such as 1/6 and 1/7 are generally applied. However, exponent of power law is an index representing bed resistance related with relative roughness and furthermore influences the shapes of vertical velocity distribution. The purpose of this study is to investigate characteristics of vertical velocity distribution of the natural rivers by testing and optimizing previous methods used for determination of power law exponent with vertical velocity distribution data collected with ADCPs during the years of 2005 to 2009 from rivers in South Korea. Roughness coefficient has been calculated from the equation of Limerinos. And using theoretical and empirical formulae, and representing relationships between bed resistance and power law exponent, it has been evaluated whether the exponents suggested by these equations appropriately reproduce vertical velocity distribution of actual rivers. As a result, it has been confirmed that there is an increasing trend of power law exponent as bed resistance increases. Therefore, in order to correctly predict vertical velocity distribution in the natural rivers, it is necessary to use an exponent that reflects flow conditions at the field.展开更多
The paper presents the problem of right direction of changes of the velocity quotient in view of getting advantageous smoothing results of material finishing using a compact elastic wheel. In fact the problem has been...The paper presents the problem of right direction of changes of the velocity quotient in view of getting advantageous smoothing results of material finishing using a compact elastic wheel. In fact the problem has been considered reversely in comparison with the change direction of the velocity quotient on the grounds of knowledge on grinding using ceramic wheels. The specifics of performance of the elastic wheels are considered. The investigation was carried out on the effect of their peripheral velocity on the directions of smoothing. The problem is considered by presenting it on the background of determined results of grinding using a ceramic wheel. The dependence of a determined roughness measure of the smoothed surface on the velocity quotient is delivered. The forms of a function approximating experimental dependences of the subject roughness measure on the mentioned quotient have been derived. Furthermore, the results coming out of the performed experimental studies have been presented.展开更多
Three dimensional-digital image correlation (3D-DIC) is a widely used optical metrology in the experimental mechanics community because of its reliability, practicality, and flexibility. Although the precision of di...Three dimensional-digital image correlation (3D-DIC) is a widely used optical metrology in the experimental mechanics community because of its reliability, practicality, and flexibility. Although the precision of digital image correlation (DIC) has been thoroughly studied theoretically and numerically, verification experiments have seldom been performed, especially fbr complex surfaces with a small field of view (FOV). In this work, the shape of a 1-yuan coin was measured using 3D-DIC; the shape was complex due to the presence of many fine details, and the FOV was relatively small because the coin diameter was only 25 mm. During the experiment, a novel strategy for speckle production was developed: white paint was simply sprayed onto the surface. Black paint was not used; instead, taking advantage of the reflective nature of the coin surface, polarized light and a Polaroid filter were introduced, and the polarization direction was carefully adjusted, ensuring that the spray pattern was extremely thin and that high-quality speckle images with significant contrast were captured. The three-dimensional coin shape was also successfully determined for comparison using a stylus profiler. The results demonstrate that 3D-DIC provides high precision in shape measurement even for complex surfaces with small FOV. The precision of 3D-DIC can reach 1/7000 of the field of view, corresponding to about 6 ~tm in this experiment.展开更多
西南印度洋中脊(Southwest Indian Ridge,SWIR)热液区具有潜在发育的大规模硫化物矿床,当前正在开展SWIR硫化物矿产资源评价。测量分析硫化物和不同围岩的声速等物性特征是硫化物近底地震勘探资料处理和解释的基础。该文对西南印度洋中...西南印度洋中脊(Southwest Indian Ridge,SWIR)热液区具有潜在发育的大规模硫化物矿床,当前正在开展SWIR硫化物矿产资源评价。测量分析硫化物和不同围岩的声速等物性特征是硫化物近底地震勘探资料处理和解释的基础。该文对西南印度洋中脊热液区的硫化物和围岩等样品进行了系统的物性测量,结合岩石物性(包括密度、孔隙度、P波速度)与矿物组成,深入分析了西南印度洋中脊热液区岩石声速变化特性及其影响因素。结果表明,SWIR热液区围岩的P波速度受到岩石骨架矿物、孔隙和围压的影响。由于岩石孔隙度总体偏小,对P波速度的影响并不显著,但围压的增加使岩石微裂缝和孔隙逐渐闭合,P波速度呈非线性指数变化。蚀变作用导致了矿物成分改变,是影响围岩声速的最关键因素。单一物性参数测量结果可能存在多解性,联合波速、密度、磁性和电性等多物性参数测量有利于岩性区分。该研究成果有助于识别硫化物和围岩,为我国西南印度洋合同区多金属硫化物地震勘探工作提供重要支撑。展开更多
文摘This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with unique 5-element configuration</span></span><span style="white-space:normal;"><span style="font-family:;" "="">, with all five elements acting as transmitters and four elements as receivers. The receivers are designed to reduce the amount of uncertainty. As the fluid moves through this setup, four Doppler frequencies are obtained. The multi-dimensional velocity information along the measurement line can be reconstructed. The transducer has a compact geometry suitable for a wide range of applications, including narrow flow areas. The transducer’s basic frequency and sound pressure are selected and evaluated to be compatible with the application. First, to confirm the measurement ability, the measurement of the developed system in two-dimensional flow is validated by comparing it to the theoretical data. The uncertainty of measurement was within 15%. Second, the three-dimensional measurement in turbulent and swirling flow is proved experimentally to check the applicability of the proposed technique.</span></span>
文摘The Particle Velocity Sensor (PVS) is a kind of acoustic transducer which measures the particle velocity directly with figure-of-eight directivity. This paper proposes a near-field noise scanning technology based on the research of PVS, pressure-particle velocity (P-U) probe, and its application in noise source identification. Firstly, the principle and characteristics of PVS are presented. Secondly, a P-U probe is designed on the basis of PVS development. Finally, the noise measurement experiment for a single source is arranged and conducted. The result shows that the proposed P-U probe performs well in near-field noise source identification and localization.
基金National Science Foundation of China and British Council
文摘Force measurements of oscillatory flow acting on a single circular cylinder have been carried out. The experiments were done by oscillating a circular cylinder in still water. Instantaneous forces and velocity fields around the cylinder were measured by Particle Image Velocimetry (PIV). The Keulegan-Carpenter number (KC) varied in the range from 5 to 20 and the viscous parameter beta = Re / KC was set at 500 (Re is Reynolds number). It was found that the strength and frequency of the lift force increased with KC number, the main frequency of the lift force being three times the frequency of the oscillatory flow at KC = 20. The movement and strength of the vortices around the cylinder are discussed for different KC numbers.
基金This work was supported by the National Natural Science Foundation of China(Grant No.51479035)the Scientific Research Foundation of the Graduate School of Southeast University(Grant No.YBPY1883).
基金This project is supported by National Natural Science Foundation ofChina(No. 50406017)
文摘An experimental investigation of three-dimensional flow field in a film-cooled turbine model is carried out by using particle image velocimeter (PIV) in a low-speed wind tunnel. The effects of different blowing ratios (M=1.5, 2) on the flow field are studied. The experimental results reveal the classical phenomena of the formation of kidney vortex pair and secondary flow in wake region behind the jet hole. And the changes of the kidney vortex pair and the wake at different locations away from the hole on the suction and pressure sides are also studied. Compared with the flow field in stationary cascade, there are centrifugal force and Coriolis force existing in the flow field of rotating turbine, and these forces bring the radial velocity in the jet flow. The effect of rotatien on the flow field of the pressure side is more distinct than that on the suction side from the measured flow fields in Y-Z plane and radial velocity contours. The increase of blowing ratio makes the kidney vortex pair and the secondary flow in the wake region stronger and makes the range of the wake region enlarged.
文摘The in-cylinder flow field of the internal combustion engine is an important factor affecting the quality and combustion quality of the fuel mixture in the cylinder. In order to calculate the high-precision flow field, the paper presents a flow field calculation method based on the optical flow algorithm. The motion of the point was calculated using the change in pixel intensity within two temporally adjacent frame images. The results show the high accuracy and resolution of the flow field at small displacement conditions.
基金Project(IRT0950)supported by the Cheung Kong Scholars and the Development Plan of Innovative Team,ChinaProject supported by China Scholarship Council
文摘An improved multidirectional velocity model was proposed for more accurately locating micro-seismic events in rock engineering. It was assumed that the stress wave propagation velocities from a micro-seismic source to three nearest monitoring sensors in a sensor's array arrangement were the same. Since the defined objective function does not require pre-measurement of the stress wave propagation velocity in the field, errors from the velocity measurement can be avoided in comparison to three traditional velocity models. By analyzing 24 different cases, the proposed multidirectional velocity model iterated by the Simplex method is found to be the best option no matter the source is within the region of the sensor's array or not. The proposed model and the adopted iterative algorithm are verified by field data and it is concluded that it can significantly reduce the error of the estimated source location.
基金supported by the National Science Foundation of China(41874117)the Second Tibetan Plateau Scientific Expedition and Research Program(SETP)(2019QZKK0901)Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-ON-0309)。
文摘The Laji Shan—Jishi Shan tectonic belt(LJTB),located in the southern part of the northeastern Tibetan Plateau(NETP),is a tectonic window to reveal regional tectonic deformation in the NETP.However,its kinematics in the Holocene remains controversial.We obtain the latest and dense horizontal velocity field based on data collected from our newly constructed and existing GNSS stations.Combined with fault kinematics from geologic observations,we analyze the crustal deformation characteristics along the LJTB.The results show that:(1)The Laji Shan fault(LJF)is inactive,and the northwest-oriented Jishi Shan fault(JSF)exhibits a significant dextral and thrust slip.(2)The transpression along the arc-shaped LJTB accommodates deformation transformation between the dextral Riyue Shan fault and the sinistral west Qinling fault.(3)With the continuous pushing of the Indian plate,internal strains in the Tibetan Plateau are continuously transferred in the northeast via the LJTB as they are gradually dissipated near the LJTB and translated into significant crustal uplift in these regions.
基金supported by the National Natural Science Foundation of China under Grant[52077027]Liaoning Province Science and Technology Major Project[No.2020JH1/10100020].
文摘In this paper, the axial-flux permanent magnet driver is modeledand analyzed in a simple and novel way under three-dimensional cylindricalcoordinates. The inherent three-dimensional characteristics of the deviceare comprehensively considered, and the governing equations are solved bysimplifying the boundary conditions. The axial magnetization of the sectorshapedpermanent magnets is accurately described in an algebraic form bythe parameters, which makes the physical meaning more explicit than thepurely mathematical expression in general series forms. The parameters of theBessel function are determined simply and the magnetic field distribution ofpermanent magnets and the air-gap is solved. Furthermore, the field solutionsare completely analytical, which provides convenience and satisfactoryaccuracy for modeling a series of electromagnetic performance parameters,such as the axial electromagnetic force density, axial electromagnetic force,and electromagnetic torque. The correctness and accuracy of the analyticalmodels are fully verified by three-dimensional finite element simulations and a15 kW prototype and the results of calculations, simulations, and experimentsunder three methods are highly consistent. The influence of several designparameters on magnetic field distribution and performance is studied and discussed.The results indicate that the modeling method proposed in this papercan calculate the magnetic field distribution and performance accurately andrapidly, which affords an important reference for the design and optimizationof axial-flux permanent magnet drivers.
文摘While log law is an equation theoretically derived for near-bed region, in most cases, power law has been researched by experimental methods. Thus, many consider it as an empirical equation and fixed power law exponents such as 1/6 and 1/7 are generally applied. However, exponent of power law is an index representing bed resistance related with relative roughness and furthermore influences the shapes of vertical velocity distribution. The purpose of this study is to investigate characteristics of vertical velocity distribution of the natural rivers by testing and optimizing previous methods used for determination of power law exponent with vertical velocity distribution data collected with ADCPs during the years of 2005 to 2009 from rivers in South Korea. Roughness coefficient has been calculated from the equation of Limerinos. And using theoretical and empirical formulae, and representing relationships between bed resistance and power law exponent, it has been evaluated whether the exponents suggested by these equations appropriately reproduce vertical velocity distribution of actual rivers. As a result, it has been confirmed that there is an increasing trend of power law exponent as bed resistance increases. Therefore, in order to correctly predict vertical velocity distribution in the natural rivers, it is necessary to use an exponent that reflects flow conditions at the field.
文摘The paper presents the problem of right direction of changes of the velocity quotient in view of getting advantageous smoothing results of material finishing using a compact elastic wheel. In fact the problem has been considered reversely in comparison with the change direction of the velocity quotient on the grounds of knowledge on grinding using ceramic wheels. The specifics of performance of the elastic wheels are considered. The investigation was carried out on the effect of their peripheral velocity on the directions of smoothing. The problem is considered by presenting it on the background of determined results of grinding using a ceramic wheel. The dependence of a determined roughness measure of the smoothed surface on the velocity quotient is delivered. The forms of a function approximating experimental dependences of the subject roughness measure on the mentioned quotient have been derived. Furthermore, the results coming out of the performed experimental studies have been presented.
基金supported by the National Natural Science Foundation of China(Grant Nos.11332010,51271174,11372300,11127201,11472266&11428206)
文摘Three dimensional-digital image correlation (3D-DIC) is a widely used optical metrology in the experimental mechanics community because of its reliability, practicality, and flexibility. Although the precision of digital image correlation (DIC) has been thoroughly studied theoretically and numerically, verification experiments have seldom been performed, especially fbr complex surfaces with a small field of view (FOV). In this work, the shape of a 1-yuan coin was measured using 3D-DIC; the shape was complex due to the presence of many fine details, and the FOV was relatively small because the coin diameter was only 25 mm. During the experiment, a novel strategy for speckle production was developed: white paint was simply sprayed onto the surface. Black paint was not used; instead, taking advantage of the reflective nature of the coin surface, polarized light and a Polaroid filter were introduced, and the polarization direction was carefully adjusted, ensuring that the spray pattern was extremely thin and that high-quality speckle images with significant contrast were captured. The three-dimensional coin shape was also successfully determined for comparison using a stylus profiler. The results demonstrate that 3D-DIC provides high precision in shape measurement even for complex surfaces with small FOV. The precision of 3D-DIC can reach 1/7000 of the field of view, corresponding to about 6 ~tm in this experiment.
文摘西南印度洋中脊(Southwest Indian Ridge,SWIR)热液区具有潜在发育的大规模硫化物矿床,当前正在开展SWIR硫化物矿产资源评价。测量分析硫化物和不同围岩的声速等物性特征是硫化物近底地震勘探资料处理和解释的基础。该文对西南印度洋中脊热液区的硫化物和围岩等样品进行了系统的物性测量,结合岩石物性(包括密度、孔隙度、P波速度)与矿物组成,深入分析了西南印度洋中脊热液区岩石声速变化特性及其影响因素。结果表明,SWIR热液区围岩的P波速度受到岩石骨架矿物、孔隙和围压的影响。由于岩石孔隙度总体偏小,对P波速度的影响并不显著,但围压的增加使岩石微裂缝和孔隙逐渐闭合,P波速度呈非线性指数变化。蚀变作用导致了矿物成分改变,是影响围岩声速的最关键因素。单一物性参数测量结果可能存在多解性,联合波速、密度、磁性和电性等多物性参数测量有利于岩性区分。该研究成果有助于识别硫化物和围岩,为我国西南印度洋合同区多金属硫化物地震勘探工作提供重要支撑。