期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
In-situ three-dimensional visualization of dynamic tension deformation in ferrite stainless steels
1
作者 ZHANG Zhixia BI Hongyun LI Xin 《Baosteel Technical Research》 CAS 2013年第4期56-61,共6页
An improved three-dimensional (3-D) experimental visualization methodology is presented tor evaluating the fracture mechanisms of ferritic stainless steels by in-situ tensile testing with an environmental scanning e... An improved three-dimensional (3-D) experimental visualization methodology is presented tor evaluating the fracture mechanisms of ferritic stainless steels by in-situ tensile testing with an environmental scanning electron microscope (ESEM). The samples were machined with a radial notched shape and a sloped surface. Both planar surface deformation and sloping surface deformation-induced microvoids were observed during dynamic tension experiments, where a greater amount of information could be obtained from the sloping surface. The results showed that microvoids formed at the grain boundaries of highly elongated large grains. The microvoids nucleated in the severely deformed regions grew nearly parallel to the tensile axis, predominantly along the grain boundaries. The microvoids nucleated at the interface of particles and the matrix did not propagate due to the high plasticity of the matrix. The large microvoids propagated and showed a zigzag shape along the grain boundaries,seemingly a consequence of the fracture of the slip bands caused by dislocation pile-ups. The final failure took place due to the reduction of the load-beating area. 展开更多
关键词 three-dimensional 3-D) visualization MICROVOIDS in-situ dynamic tensile testing ferritic stainless steels
下载PDF
Method for visualizing the shear process of rock joints using 3D laser scanning and 3D printing techniques
2
作者 Man Huang Chenjie Hong +3 位作者 Peng Sha Shigui Du Zhanyou Luo Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期204-215,共12页
This study presents a visualized approach for tracking joint surface morphology.Three-dimensional laser scanning(3DLS)and 3D printing(3DP)techniques are adopted to record progressive failure during rock joint shearing... This study presents a visualized approach for tracking joint surface morphology.Three-dimensional laser scanning(3DLS)and 3D printing(3DP)techniques are adopted to record progressive failure during rock joint shearing.The 3DP resin is used to create transparent specimens to reproduce the surface morphology of a natural joint precisely.The freezing method is employed to enhance the mechanical properties of the 3DP specimens to reproduce the properties of hard rock more accurately.A video camera containing a charge-coupled device(CCD)camera is utilized to record the evolution of damaged area of joint surface during the direct shear test.The optimal shooting distance and shooting angle are recommended to be 800 mm and 40?,respectively.The images captured by the CCD camera are corrected to quantitatively describe the damaged area on the joint surface.Verification indicates that this method can accurately describe the total sheared areas at different shear stages.These findings may contribute to elucidating the shear behavior of rock joints. 展开更多
关键词 Rock joint Shear test three-dimensional printing(3DP) three-dimensional laser scanning(3DLS) visualization approach
下载PDF
Researches on Cartographic Database-Based Interactive Three-Dimensional Topographic Map
3
作者 JiangWenping XiDaping 《Journal of China University of Geosciences》 SCIE CSCD 2003年第4期374-380,共7页
With the development of computer graphics, the three-dimensional (3D) visualization brings new technological revolution to the traditional cartography. Therefore, the topographic 3D-map emerges to adapt to this techno... With the development of computer graphics, the three-dimensional (3D) visualization brings new technological revolution to the traditional cartography. Therefore, the topographic 3D-map emerges to adapt to this technological revolution, and the applications of topographic 3D-map are spread rapidly to other relevant fields due to its incomparable advantage. The researches on digital map and the construction of map database offer strong technical support and abundant data source for this new technology, so the research and development of topographic 3D-map will receive greater concern. The basic data of the topographic 3D-map are rooted mainly in digital map and its basic model is derived from digital elevation model (DEM) and 3D-models of other DEM-based geographic features. In view of the potential enormous data and the complexity of geographic features, the dynamic representation of geographic information becomes the focus of the research of topographic 3D-map and also the prerequisite condition of 3D query and analysis. In addition to the equipment of hardware that are restraining, to a certain extent, the 3D representation, the data organization structure of geographic information will be the core problem of research on 3D-map. Level of detail (LOD), space partitioning, dynamic object loading (DOL) and object culling are core technologies of the dynamic 3D representation. The object- selection, attribute-query and model-editing are important functions and interaction tools for users with 3D-maps provided by topographic 3D-map system, all of which are based on the data structure of the 3D-model. This paper discusses the basic theories, concepts and cardinal principles of topographic 3D-map, expounds the basic way to organize the scene hierarchy of topographic 3D-map based on the node mechanism and studies the dynamic representation technologies of topographic 3D-map based on LOD, space partitioning, DOL and object culling. Moreover, such interactive operation functions are explored, in this paper, as spatial query, scene editing and management of topographic 3D-map. Finally, this paper describes briefly the applications of topographic 3D-map in its related fields. 展开更多
关键词 three-dimensional (3D) visualization topographic 3D-map level of detail (LOD) space partitioning dynamic object loading (DOL) dynamic representation.
下载PDF
A Survey on 3D Visual Tracking of Multicopters 被引量:5
4
作者 Qiang Fu Xiang-Yang Chen Wei He 《International Journal of Automation and computing》 EI CSCD 2019年第6期707-719,共13页
Three-dimensional(3 D) visual tracking of a multicopter(where the camera is fixed while the multicopter is moving) means continuously recovering the six-degree-of-freedom pose of the multicopter relative to the camera... Three-dimensional(3 D) visual tracking of a multicopter(where the camera is fixed while the multicopter is moving) means continuously recovering the six-degree-of-freedom pose of the multicopter relative to the camera. It can be used in many applications,such as precision terminal guidance and control algorithm validation for multicopters. However, it is difficult for many researchers to build a 3 D visual tracking system for multicopters(VTSMs) by using cheap and off-the-shelf cameras. This paper firstly gives an overview of the three key technologies of a 3 D VTSMs: multi-camera placement, multi-camera calibration and pose estimation for multicopters. Then, some representative 3 D visual tracking systems for multicopters are introduced. Finally, the future development of the 3D VTSMs is analyzed and summarized. 展开更多
关键词 Multicopter three-dimensional(3D)visual TRACKING CAMERA PLACEMENT CAMERA calibration POSE estimation
原文传递
Rock characterization while drilling and application of roof bolter drilling data for evaluation of ground conditions 被引量:5
5
作者 Jamal Rostami Sair Kahraman +1 位作者 Ali Naeimipour Craig Collins 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2015年第3期273-281,共9页
Despite recent advances in mine health and safety, roof collapse and instabilities are still the leading causes of injury and fatality in underground mining operations. Improving safety and optimum design of ground su... Despite recent advances in mine health and safety, roof collapse and instabilities are still the leading causes of injury and fatality in underground mining operations. Improving safety and optimum design of ground support requires good and reliable ground characterization. While many geophysical methods have been developed for ground characterizations, their accuracy is insufficient for customized ground support design of underground workings. The actual measurements on the samples of the roof and wall strata from the exploration boring are reliable but the related holes are far apart, thus unsuitable for design purposes. The best source of information could be the geological back mapping of the roof and walls, but this is disruptive to mining operations, and provided information is only from rock surface.Interpretation of the data obtained from roof bolt drilling can offer a good and reliable source of information that can be used for ground characterization and ground support design and evaluations. This paper offers a brief review of the mine roof characterization methods, followed by introduction and discussion of the roof characterization methods by instrumented roof bolters. A brief overview of the results of the preliminary study and initial testing on an instrumented drill and summary of the suggested improvements are also discussed. 展开更多
关键词 Roof bolter Rock characterization three-dimensional3D) visualization of ground Ground support optimization
下载PDF
无垂直视差图像多视点立体视觉图像的形成特性(英文)
6
作者 Yu.N.Ovechkis A.I.Vinokur +1 位作者 Ю.Н.Овечкис А.И. Винокур 《出版与印刷》 2016年第2期20-27,共8页
1.Introduction The reproduction systems of 3D images without using eyeglasses and other special accessories has always attracted attention and aroused great interest of developers and consumers of such equipment becau... 1.Introduction The reproduction systems of 3D images without using eyeglasses and other special accessories has always attracted attention and aroused great interest of developers and consumers of such equipment because of totally accurate image and method of its presentation.Such systems can 展开更多
关键词 3D scientific visualization multi-view auto-stereoscopic system view zone of viewing the depth of sharpness stereoscopy HOLOGRAPHY stereoholography RASTER lens raster three-dimensional image
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部