期刊文献+
共找到7,903篇文章
< 1 2 250 >
每页显示 20 50 100
The improved element-free Galerkin method forthree-dimensional wave equation 被引量:16
1
作者 Zan Zhang Dong-Ming Li +1 位作者 Yu-Min Cheng Kim Moew Liew 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期808-818,共11页
The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, w... The paper presents the improved element-free Galerkin (IEFG) method for three-dimensional wave propa- gation. The improved moving least-squares (IMLS) approx- imation is employed to construct the shape function, which uses an orthogonal function system with a weight function as the basis function. Compared with the conventional moving least-squares (MLS) approximation, the algebraic equation system in the IMLS approximation is not ill-conditioned, and can be solved directly without deriving the inverse matrix. Because there are fewer coefficients in the IMLS than in the MLS approximation, fewer nodes are selected in the IEFG method than in the element-free Galerkin method. Thus, the IEFG method has a higher computing speed. In the IEFG method, the Galerkin weak form is employed to obtain a dis- cretized system equation, and the penalty method is applied to impose the essential boundary condition. The traditional difference method for two-point boundary value problems is selected for the time discretization. As the wave equations and the boundary-initial conditions depend on time, the scal- ing parameter, number of nodes and the time step length are considered for the convergence study. 展开更多
关键词 Weighted orthogonal function Improved mov-ing least squares (IMLS) approximation. Improved element-free Galerkin (IEFG) method Penalty method Temporaldiscretization wave equation
下载PDF
Three-dimensional acoustic wave equation modeling based on the optimal finite-difference scheme 被引量:4
2
作者 蔡晓慧 刘洋 +4 位作者 任志明 王建民 陈志德 陈可洋 王成 《Applied Geophysics》 SCIE CSCD 2015年第3期409-420,469,共13页
Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a... Generally, FD coefficients can be obtained by using Taylor series expansion (TE) or optimization methods to minimize the dispersion error. However, the TE-based FD method only achieves high modeling precision over a limited range of wavenumbers, and produces large numerical dispersion beyond this range. The optimal FD scheme based on least squares (LS) can guarantee high precision over a larger range of wavenumbers and obtain the best optimization solution at small computational cost. We extend the LS-based optimal FD scheme from two-dimensional (2D) forward modeling to three-dimensional (3D) and develop a 3D acoustic optimal FD method with high efficiency, wide range of high accuracy and adaptability to parallel computing. Dispersion analysis and forward modeling demonstrate that the developed FD method suppresses numerical dispersion. Finally, we use the developed FD method to source wavefield extrapolation and receiver wavefield extrapolation in 3D RTM. To decrease the computation time and storage requirements, the 3D RTM is implemented by combining the efficient boundary storage with checkpointing strategies on GPU. 3D RTM imaging results suggest that the 3D optimal FD method has higher precision than conventional methods. 展开更多
关键词 3D acoustic wave equation optimal finite-difference forward modeling reversetime migration
下载PDF
Fast High Order Algorithm for Three-Dimensional Helmholtz Equation Involving Impedance Boundary Condition with Large Wave Numbers
3
作者 Chengjie Tong Xianqi Fang Meiling Zhao 《American Journal of Computational Mathematics》 2023年第2期211-229,共19页
Acoustic fields with impedance boundary conditions have high engineering applications, such as noise control and evaluation of sound insulation materials, and can be approximated by three-dimensional Helmholtz boundar... Acoustic fields with impedance boundary conditions have high engineering applications, such as noise control and evaluation of sound insulation materials, and can be approximated by three-dimensional Helmholtz boundary value problems. Finite difference method is widely applied to solving these problems due to its ease of use. However, when the wave number is large, the pollution effects are still a major difficulty in obtaining accurate numerical solutions. We develop a fast algorithm for solving three-dimensional Helmholtz boundary problems with large wave numbers. The boundary of computational domain is discrete based on high-order compact difference scheme. Using the properties of the tensor product and the discrete Fourier sine transform method, the original problem is solved by splitting it into independent small tridiagonal subsystems. Numerical examples with impedance boundary conditions are used to verify the feasibility and accuracy of the proposed algorithm. Results demonstrate that the algorithm has a fourth- order convergence in  and -norms, and costs less CPU calculation time and random access memory. 展开更多
关键词 Impedance Boundary Condition Helmholtz equation Compact Finite Difference Fourier Sine Transform Large wave Numbers
下载PDF
An analogical study of wave equations,physical quantities,conservation and reciprocity equations between electromagnetic and elastic waves
4
作者 Yuchen Zang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期296-304,共9页
This paper presents an analogical study between electromagnetic and elastic wave fields,with a one-to-one correspondence principle established regarding the basic wave equations,the physical quantities and the differe... This paper presents an analogical study between electromagnetic and elastic wave fields,with a one-to-one correspondence principle established regarding the basic wave equations,the physical quantities and the differential operations.Using the electromagnetic-to-elastic substitution,the analogous relations of the conservation laws of energy and momentum are investigated between these two physical fields.Moreover,the energy-based and momentum-based reciprocity theorems for an elastic wave are also derived in the time-harmonic state,which describe the interaction between two elastic wave systems from the perspectives of energy and momentum,respectively.The theoretical results obtained in this analysis can not only improve our understanding of the similarities of these two linear systems,but also find potential applications in relevant fields such as medical imaging,non-destructive evaluation,acoustic microscopy,seismology and exploratory geophysics. 展开更多
关键词 analogical study electromagnetic waves elastic waves wave equations physical quantities conservation laws reciprocity theorems
下载PDF
Wave interaction for a generalized higher-dimensional Boussinesq equation describing the nonlinear Rossby waves
5
作者 Rong SU Penghao JI Xiaojun YIN 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第5期1415-1424,共10页
Based on an algebraically Rossby solitary waves evolution model,namely an extended(2+1)-dimensional Boussinesq equation,we firstly introduced a special transformation and utilized the Hirota method,which enable us to ... Based on an algebraically Rossby solitary waves evolution model,namely an extended(2+1)-dimensional Boussinesq equation,we firstly introduced a special transformation and utilized the Hirota method,which enable us to obtain multi-complexiton solutions and explore the interaction among the solutions.These wave functions are then employed to infer the influence of background flow on the propagation of Rossby waves,as well as the characteristics of propagation in multi-wave running processes.Additionally,we generated stereogram drawings and projection figures to visually represent these solutions.The dynamical behavior of these solutions is thoroughly examined through analytical and graphical analyses.Furthermore,we investigated the influence of the generalized beta effect and the Coriolis parameter on the evolution of Rossby waves. 展开更多
关键词 Rossby wave Boussinesq equation Complexiton solution Breather solution
下载PDF
A Hybrid Dung Beetle Optimization Algorithm with Simulated Annealing for the Numerical Modeling of Asymmetric Wave Equations
6
作者 Wei Xu-ruo Bai Wen-lei +2 位作者 Liu Lu Li You-ming Wang Zhi-yang 《Applied Geophysics》 SCIE CSCD 2024年第3期513-527,618,共16页
In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two th... In the generalized continuum mechanics(GCM)theory framework,asymmetric wave equations encompass the characteristic scale parameters of the medium,accounting for microstructure interactions.This study integrates two theoretical branches of the GCM,the modified couple stress theory(M-CST)and the one-parameter second-strain-gradient theory,to form a novel asymmetric wave equation in a unified framework.Numerical modeling of the asymmetric wave equation in a unified framework accurately describes subsurface structures with vital implications for subsequent seismic wave inversion and imaging endeavors.However,employing finite-difference(FD)methods for numerical modeling may introduce numerical dispersion,adversely affecting the accuracy of numerical modeling.The design of an optimal FD operator is crucial for enhancing the accuracy of numerical modeling and emphasizing the scale effects.Therefore,this study devises a hybrid scheme called the dung beetle optimization(DBO)algorithm with a simulated annealing(SA)algorithm,denoted as the SA-based hybrid DBO(SDBO)algorithm.An FD operator optimization method under the SDBO algorithm was developed and applied to the numerical modeling of asymmetric wave equations in a unified framework.Integrating the DBO and SA algorithms mitigates the risk of convergence to a local extreme.The numerical dispersion outcomes underscore that the proposed SDBO algorithm yields FD operators with precision errors constrained to 0.5‱while encompassing a broader spectrum coverage.This result confirms the efficacy of the SDBO algorithm.Ultimately,the numerical modeling results demonstrate that the new FD method based on the SDBO algorithm effectively suppresses numerical dispersion and enhances the accuracy of elastic wave numerical modeling,thereby accentuating scale effects.This result is significant for extracting wavefield perturbations induced by complex microstructures in the medium and the analysis of scale effects. 展开更多
关键词 FINITE-DIFFERENCE Asymmetric wave equation Numerical modeling DBO algorithm SA algorithm
下载PDF
GLOBAL CLASSICAL SOLUTIONS OF SEMILINEAR WAVE EQUATIONS ON R^(3)×T WITH CUBIC NONLINEARITIES
7
作者 陶飞 《Acta Mathematica Scientia》 SCIE CSCD 2024年第1期115-128,共14页
In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the ... In this paper,we establish global classical solutions of semilinear wave equations with small compact supported initial data posed on the product space R^(3)×T.The semilinear nonlinearity is assumed to be of the cubic form.The main ingredient here is the establishment of the L^(2)-L^(∞)decay estimates and the energy estimates for the linear problem,which are adapted to the wave equation on the product space.The proof is based on the Fourier mode decomposition of the solution with respect to the periodic direction,the scaling technique,and the combination of the decay estimates and the energy estimates. 展开更多
关键词 semilinear wave equation product space decay estimate energy estimate global solution
下载PDF
Localized wave solutions and interactions of the (2+1)-dimensional Hirota-Satsuma-Ito equation
8
作者 巩乾坤 王惠 王云虎 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第4期409-416,共8页
This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional ... This paper studies the(2+1)-dimensional Hirota-Satsuma-Ito equation.Based on an associated Hirota bilinear form,lump-type solution,two types of interaction solutions,and breather wave solution of the(2+1)-dimensional Hirota-Satsuma-Ito equation are obtained,which are all related to the seed solution of the equation.It is interesting that the rogue wave is aroused by the interaction between one-lump soliton and a pair of resonance stripe solitons,and the fusion and fission phenomena are also found in the interaction between lump solitons and one-stripe soliton.Furthermore,the breather wave solution is also obtained by reducing the two-soliton solutions.The trajectory and period of the one-order breather wave are analyzed.The corresponding dynamical characteristics are demonstrated by the graphs. 展开更多
关键词 lump solution rogue wave solution breather wave solution (2+1)-dimensional Hirota-Satsuma-Ito equation
下载PDF
Bifurcations, Analytical and Non-Analytical Traveling Wave Solutions of (2 + 1)-Dimensional Nonlinear Dispersive Boussinesq Equation
9
作者 Dahe Feng Jibin Li Airen Zhou 《Applied Mathematics》 2024年第8期543-567,共25页
For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits ... For the (2 + 1)-dimensional nonlinear dispersive Boussinesq equation, by using the bifurcation theory of planar dynamical systems to study its corresponding traveling wave system, the bifurcations and phase portraits of the regular system are obtained. Under different parametric conditions, various sufficient conditions to guarantee the existence of analytical and non-analytical solutions of the singular system are given by using singular traveling wave theory. For certain special cases, some explicit and exact parametric representations of traveling wave solutions are derived such as analytical periodic waves and non-analytical periodic cusp waves. Further, two-dimensional wave plots of analytical periodic solutions and non-analytical periodic cusp wave solutions are drawn to visualize the dynamics of the equation. 展开更多
关键词 (2 + 1)-Dimensional Nonlinear Dispersive Boussinesq equation BIFURCATIONS Phase Portrait Analytical Periodic wave Solution Periodic Cusp wave Solution
下载PDF
Propagation and Pinning of Travelling Wave for Nagumo Type Equation
10
作者 Sharon-Yasotha Veerayah-Mcgregor Valipuram Manoranjan 《Journal of Applied Mathematics and Physics》 2024年第3期861-869,共9页
In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population ... In this paper, we study the propagation and its failure to propagate (pinning) of a travelling wave in a Nagumo type equation, an equation that describes impulse propagation in nerve axons that also models population growth with Allee effect. An analytical solution is derived for the traveling wave and the work is extended to a discrete formulation with a piecewise linear reaction function. We propose an operator splitting numerical scheme to solve the equation and demonstrate that the wave either propagates or gets pinned based on how the spatial mesh is chosen. 展开更多
关键词 Operator Splitting Travelling wave Piecewise Reaction Nagumo equation PINNING Finite Differences
下载PDF
Diversity of Rogue Wave Solutions to the (1+1)-Dimensional Boussinesq Equation
11
作者 Xiaoming Wang Jingjie Huang 《Journal of Applied Mathematics and Physics》 2024年第2期458-467,共10页
A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics ... A periodically homoclinic solution and some rogue wave solutions of (1+1)-dimensional Boussinesq equation are obtained via the limit behavior of parameters and different polynomial functions. Besides, the mathematics reasons for different spatiotemporal structures of rogue waves are analyzed using the extreme value theory of the two-variables function. The diversity of spatiotemporal structures not only depends on the disturbance parameter u0 </sub>but also has a relationship with the other parameters c<sub>0</sub>, α, β. 展开更多
关键词 Boussinesq equation Rogue wave Periodically Homoclinic Solution Spatiotemporal Structure
下载PDF
Adequate Closed Form Wave Solutions to the Generalized KdV Equation in Mathematical Physics
12
作者 Md. Munnu Miah Md. Al Amin Meia +1 位作者 Md. Matiur Rahman Sarker Ahammodullah Hasan 《Journal of Applied Mathematics and Physics》 2024年第6期2069-2082,共14页
In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, ... In this paper, we consider the generalized Korteweg-de-Vries (KdV) equations which are remarkable models of the water waves mechanics, the shallow water waves, the quantum mechanics, the ion acoustic waves in plasma, the electro-hydro-dynamical model for local electric field, signal processing waves through optical fibers, etc. We determine the useful and further general exact traveling wave solutions of the above mentioned NLDEs by applying the exp(−τ(ξ))-expansion method by aid of traveling wave transformations. Furthermore, we explain the physical significance of the obtained solutions of its definite values of the involved parameters with graphic representations in order to know the physical phenomena. Finally, we show that the exp(−τ(ξ))-expansion method is convenient, powerful, straightforward and provide more general solutions and can be helping to examine vast amount of travelling wave solutions to the other different kinds of NLDEs. 展开更多
关键词 The Generalized KdV equation The exp(-τ(ξ)) -Expansion Method Travelling wave Solitary wave
下载PDF
Existence and Stability of Standing Waves for the Nonlinear Schrödinger Equation with Combined Nonlinearities and a Partial Harmonic Potential
13
作者 Wei Wang 《Journal of Applied Mathematics and Physics》 2024年第5期1606-1615,共10页
In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercriti... In this paper, we study the existence of standing waves for the nonlinear Schrödinger equation with combined power-type nonlinearities and a partial harmonic potential. In the L<sup>2</sup>-supercritical case, we obtain the existence and stability of standing waves. Our results are complements to the results of Carles and Il’yasov’s artical, where orbital stability of standing waves have been studied for the 2D Schrödinger equation with combined nonlinearities and harmonic potential. 展开更多
关键词 Nonlinear Schrödinger equation Orbital Stability Standing waves
下载PDF
New Lump Solution and Their Interactions with N-Solitons for a Shallow Water Wave Equation
14
作者 Yin Ji Xiyu Tan 《Journal of Applied Mathematics and Physics》 2024年第8期2836-2848,共13页
By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some n... By employing the Hirota’s bilinear method and different test functions, the breather solutions of HSI equation with different structures are obtained based on symbolic calculation with perturbation parameters. Some new lump solitons are found in the process of studying the degradation behavior of breather solutions. The interaction between lump solution and soliton solution is constructed in the form of lump solution, and the motion trajectory of lump is obtained. In addition, the theorem of lump solitons and N-solitons superposition is given and proved. The superposition formula of lump is derived from the theorem, and its spatial evolution behavior is given. 展开更多
关键词 HSI equation Breather-waves Lump Solutions Interaction Solution
下载PDF
Three-dimensional parabolic equation model for seismo-acoustic propagation: Theoretical development and preliminary numerical implementation 被引量:4
15
作者 唐骏 朴胜春 张海刚 《Chinese Physics B》 SCIE EI CAS CSCD 2017年第11期269-278,共10页
A three-dimensional(3D) parabolic equation(PE) model for sound propagation in a seismo-acoustic waveguide is developed in Cartesian coordinates, with x, y, and z representing the marching direction, the longitudin... A three-dimensional(3D) parabolic equation(PE) model for sound propagation in a seismo-acoustic waveguide is developed in Cartesian coordinates, with x, y, and z representing the marching direction, the longitudinal direction, and the depth direction, respectively. Two sets of 3D PEs for horizontally homogenous media are derived by rewriting the 3D elastic motion equations and simultaneously choosing proper dependent variables. The numerical scheme is for now restricted to the y-independent bathymetry. Accuracy of the numerical scheme is validated, and its azimuthal limitation is analyzed. In addition, effects of horizontal refraction in a wedge-shaped waveguide and another waveguide with a polyline bottom are illustrated. Great efforts should be made in future to provide this model with the ability to handle arbitrarily irregular fluid-elastic interfaces. 展开更多
关键词 three-dimensional parabolic equation sound propagation seismo-acoustic waveguides
下载PDF
Alternating Direction Finite Volume Element Methods for Three-Dimensional Parabolic Equations 被引量:1
16
作者 Tongke Wang 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第4期499-522,共24页
This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite differenc... This paper presents alternating direction finite volume element methods for three-dimensional parabolic partial differential equations and gives four computational schemes, one is analogous to Douglas finite difference scheme with second-order splitting error, the other two schemes have third-order splitting error, and the last one is an extended LOD scheme. The L2 norm and H1 semi-norm error estimates are obtained for the first scheme and second one, respectively. Finally, two numerical examples are provided to illustrate the efficiency and accuracy of the methods. 展开更多
关键词 three-dimensional parabolic equation alternating direction method finite volume element method error estimate
下载PDF
CHEBYSHEV PSEUDOSPECTRAL-HYBRID FINITE ELEMENT METHOD FOR THREE-DIMENSIONAL VORTICITY EQUATION
17
作者 郭本瑜 候镜宇 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1996年第2期161-196,共36页
In this paper,Chebyshev pseudospectral-finite element schemes are proposed for solving three dimensional vorticity equation.Some approximation results in nonisotropic Sobolev spaces are given.The generalized stability... In this paper,Chebyshev pseudospectral-finite element schemes are proposed for solving three dimensional vorticity equation.Some approximation results in nonisotropic Sobolev spaces are given.The generalized stability and the convergence are proved strictly.The numerical results show the advantages of this method.The technique in this paper is also applicable to other three-dimensional nonlinear problems in fluid dynamics. 展开更多
关键词 three-dimensional VORTICITY equation CHEBYSHEV pseudospectral-hybrid finite element
下载PDF
FOURIER-CHEBYSHEV PSEUDOSPECTRAL METHOD FOR THREE-DIMENSIONAL VORTICITY EQUATION WITH UNILATERALLY PERIODIC BOUNDARY CONDITION
18
作者 郭本瑜 李健 曹卫明 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 1994年第2期216-242,共27页
A Fourier-Chebyshev pseudospectral scheme is proposed for three-dimensionalvorticily equation with unilaterally periodic boundary condition. The generalized stability and convergence are analysed. The numerical result... A Fourier-Chebyshev pseudospectral scheme is proposed for three-dimensionalvorticily equation with unilaterally periodic boundary condition. The generalized stability and convergence are analysed. The numerical results are presented. 展开更多
关键词 three-dimensional VORTICITY equation Fourier-Chebyshev PSEUDOSPECTRAL approximation.
下载PDF
INTERFACIAL CRACK ANALYSIS IN THREE-DIMENSIONAL TRANSVERSELY ISOTROPIC BI-MATERIALS BY BOUNDARY INTEGRAL EQUATION METHOD
19
作者 赵明皞 李冬霞 沈亚鹏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2005年第12期1539-1546,共8页
The integral-differential equations for three-dimensional planar interfacial cracks of arbitrary shape in transversely isotropic bimaterials were derived by virtue of the Somigliana identity and the fundamental soluti... The integral-differential equations for three-dimensional planar interfacial cracks of arbitrary shape in transversely isotropic bimaterials were derived by virtue of the Somigliana identity and the fundamental solutions, in which the displacement discontinuities across the crack faces are the unknowns to be determined. The interface is parallel to both the planes of isotropy. The singular behaviors of displacement and stress near the crack border were analyzed and the stress singularity indexes were obtained by integral equation method. The stress intensity factors were expressed in terms of the displacement discontinuities. In the non-oscillatory case, the hyper-singular boundary integral-differential equations were reduced to hyper-singular boundary integral equations similar to those of homogeneously isotropic materials. 展开更多
关键词 three-dimensional bi-material transversely isotropic interfacial crack stress intensity factor integral-differential equation
下载PDF
OpenMP-Based PCG Solver for Three-Dimensional Heat Equation
20
作者 Dandan Li Qun Wang 《Computer Technology and Application》 2011年第12期963-968,共6页
As one of the most important mathematics-physics equations, heat equation has been widely used in engineering area and computing science research. Large-scale heat problems are difficult to solve due to computational ... As one of the most important mathematics-physics equations, heat equation has been widely used in engineering area and computing science research. Large-scale heat problems are difficult to solve due to computational intractability. The parallelization of heat equation is available to improve the simulation model efficiency. In order to solve the three-dimensional heat problems more rapidly, the OpenMP was adopted to parallelize the preconditioned conjugate gradient (PCG) algorithm in this paper. A numerical experiment on the three-dimensional heat equation model was carried out on a computer with four cores. Based on the test results, it is found that the execution time of the original serial PCG program is about 1.71 to 2.81 times of the parallel PCG program executed with different number of threads. The experiment results also demonstrate the available performance of the parallel PCG algorithm based on OpenMP in terms of solution quality and computational performance. 展开更多
关键词 three-dimensional heat equation preconditioned conjugate gradient compiler directives OpenMP.
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部