Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tur...Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tures.Methods:From January 2018 to August 2020,we obtained data of 99 patients diagnosed thoracolumbar compression fractures.These patients were divided into control group(n=50)underwent traditional PKP surgery,and observation group(n=49)underwent preoperative digital design combined with 3D printing model assisted PKP treatment.The clinical efficacy was evaluated with five parameters,including operation time,number of intraoperative radiographs,visual analogue scale(VAS)score,Cobb Angle change,and high compression rate of injured vertebrae.Results:There were statistically significant differences of operation time and number of intraoperative radio graphs between the two groups(P<0.05).For VAS score,Cobb Angle change and vertebral height compression rate,all of these three parameters were significantly improved when the patients accepted surgery teatment in two groups(P<0.05).However,there were no significant differences between control group and observation group for these three parameters either before or after surgery(P>0.05).Conclusions:Through the design of preoperative surgical guide plate and the application of 3D printing model to guide the operation,the precise design of preoperative surgical puncture site and puncture Angle of the injured vertebra was realized,the number of intraoperative radiographs was reduced,the operation time was shortened and the operation efficiency was improved.展开更多
In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-di...In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-dimensional groundwater flows,making it impossible to validate groundwater flows simulated by numerical methods with physical modeling.展开更多
With the rapid development of the power industry,the work of the power electrician is becoming increasingly heavy,and the demand for improving work efficiency and reducing work intensity is becoming increasingly promi...With the rapid development of the power industry,the work of the power electrician is becoming increasingly heavy,and the demand for improving work efficiency and reducing work intensity is becoming increasingly prominent.As one of the common tools of electric power,the design and application of wire stripper has an important influence on the efficiency and safety of electric power.This paper briefly analyzes the design and application of ceramic wire for electric power and electricians to provide a reference for the development of related fields.展开更多
Based on a stochastic wire length distributed model, the interconnect distribution of a three-dimensional integrated circuit (3D IC) is predicted exactly. Using the results of this model, a global interconnect desig...Based on a stochastic wire length distributed model, the interconnect distribution of a three-dimensional integrated circuit (3D IC) is predicted exactly. Using the results of this model, a global interconnect design window for a giga-scale system-on-chip (SOC) is established by evaluating the constraints of 1) wiring resource, 2) wiring bandwidth, and 3) wiring noise. In comparison to a two-dimensional integrated circuit (2D IC) in a 130-nm and 45-nm technology node, the design window expands for a 3D IC to improve the design reliability and system performance, further supporting 3D IC application in future integrated circuit design.展开更多
With the reduction of urban land, the three-dimensional garage is increasingly built with its advantages of saving land. But the current three-dimensional garage is built for the car. It is hardly stereo parking garag...With the reduction of urban land, the three-dimensional garage is increasingly built with its advantages of saving land. But the current three-dimensional garage is built for the car. It is hardly stereo parking garage for electric bicycles. This paper designed a hollow tower electric bicycle stereo parking garage with fork comb structure, based on the analysis of the characteristics of electric bicycles and the characteristics of existing three-dimensional garages. A fixed comb is mounted on the garage frame. The movable comb is mounted on the middle lift mechanism of the garage. The access of the vehicle is achieved by the exchange of the comb. The key comb structure was modeled using SolidWorks software and the stress distribution of the structure was analyzed. It was optimized by MATLAB software. The result shows that this structure can improve access efficiency. The quality of the comb structure can be minimized under the constraints of strength requirements.展开更多
We present a design of an acoustic levitator consisting of three pairs of opposite transducer arrays.Three orthogonal standing waves create a large number of acoustic traps at which the particles are levitated in mid-...We present a design of an acoustic levitator consisting of three pairs of opposite transducer arrays.Three orthogonal standing waves create a large number of acoustic traps at which the particles are levitated in mid-air.By changing the phase difference of transducer arrays,three-dimensional manipulation of particles is successfully realized.Moreover,the relationship between the translation of particles and the phase difference is experimentally investigated,and the result is in agreement with the theoretical calculation.This design can expand the application of acoustic levitation in many fields,such as biomedicine,ultrasonic motor and new materials processing.展开更多
The changes of design methods and manufacturing techniques have brought new requirements for engineers in enterprises, and therefore brought a challenge to the traditional teaching system of mechanical major courses. ...The changes of design methods and manufacturing techniques have brought new requirements for engineers in enterprises, and therefore brought a challenge to the traditional teaching system of mechanical major courses. A new teaching system based on three-dimensional design to cultivate modern engineers with solid specialty bases and high creativity in a wide range of fields is presented.展开更多
An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, clo...An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.展开更多
Based on thermodynamic calculations, the effect of pressure and alloying elements on the nitrogen content, solidification mode, and welding characteristics were investigated in this study. By increasing the partial pr...Based on thermodynamic calculations, the effect of pressure and alloying elements on the nitrogen content, solidification mode, and welding characteristics were investigated in this study. By increasing the partial pressure of N_2, the nitrogen content in the weld pool increased dramatically, and the γ zone was enlarged. The nitrogen content increased as alloying elements such as Cr and Mn were added to the molten steel. The δ zone with high temperature treatment was compressed by adding Ni. These alloying elements play important roles in the formation of the single γ region at the temperature of 298 K. With proper Mn addition, the phase area of γ was extended and became more stable, and the "ferrite trap" was also avoided. Two kinds of welding wires with different nitrogen contents were developed and corresponding MIG welding experiments were performed. As the nitrogen content in wire was higher than that in the base metal, severe blowhole defects and mixture microstructure of δ and γ developed.展开更多
The feasibility of three-dimensional (3D) printing technology cgmbined with minimally invasive surgery in the treatment of pubic rami fractures was explored.From August 2015 to October 2017,a series of 30 patients who...The feasibility of three-dimensional (3D) printing technology cgmbined with minimally invasive surgery in the treatment of pubic rami fractures was explored.From August 2015 to October 2017,a series of 30 patients who underwent surgical stabilization of their anterior pelvic ring (all utilizing the 3D printing technology)by one surgeon at a single hospital were studied.The minimally invasive incisions were made through anterior inferior cilia spine and pubic nodule.Data collected included the operative duration,the blood loss,the damage of the important tissue,the biographic union and therecovery of the function after the operation.Measurements on inlet and outlet pelvic cardiograph were made immediately post-operation and at all follow-up clinic visits.The scores of reduction and function were measured during follow-up.Results showed that the wounds of 30 patients were healed in the first stage,and there was no injury of important structures such as blood vessels and nerves.According to the Matta criteria,excellent effectiveness was obtained in 22 cases and good in 8 cases.According to the functional evaluation criteria of Majeed,excellent effectiveness was obtained in 21 cases and good in 9 cases.It was suggested that the 3D printing technology assisted by minimally invasive surgery can better evaluate the pelvic fracture before operation,which was helpful in plate modeling, and can shorten surgery duration and reduce intraoperative blood loss and complications. The positioning accuracy was improved,and better surgical result was finally achieved.展开更多
The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sens...The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.展开更多
An automatic 3D wiring method for switchgear design is proposed in this paper. First, wiring constraints are created, and a corresponding evaluation model is proposed. Then, based on the structure of the cabinet, we p...An automatic 3D wiring method for switchgear design is proposed in this paper. First, wiring constraints are created, and a corresponding evaluation model is proposed. Then, based on the structure of the cabinet, we propose a contour expansion scheme to construct rough paths. Different wiring features of the switchgear are used to connect rough local paths. All the paths are represented in a uniform data structure and forma path network. Finally, an improved A* algorithm is used to search the wiring path between the components in the routing network; the evaluation model is considered as heuristic rules for path searching. The result can satisfy the practical requirements of switchgear design. Experimental results are also provided.展开更多
Laying head is a high-precision engineering device in hot-rolled high speed wire rod production line. Previously research works are focused on the laying pipe wear-resisting. Laying pipe curve design method based on w...Laying head is a high-precision engineering device in hot-rolled high speed wire rod production line. Previously research works are focused on the laying pipe wear-resisting. Laying pipe curve design method based on wire rod kinematics and dynamics analyses are not reported before. In order to design and manufacture the laying pipe, the motion and force process of the wire rod in the laying pipe should be studied. In this paper, a novel approach is proposed to investigate the force modeling for hot-rolled wire rod in laying pipe. An idea of limited element method is used to analysis and calculates the forces between laying pipe inner surface and wire rod. The design requirements of laying pipe curve for manufacturing are discussed. The kinematics and dynamics modeling for numerical calculation are built. A laying pipe curve equation is proposed by discussing design boundary conditions. Numerical results with di erent laying pipe curves design parameters are plotted and compared. The proposed approach performs good result which can be applied for laying pipe curve design and analysis for engineering application.展开更多
This work provides a method to predict the three-dimensional equivalent elastic properties of the filament-wound composites based on the multi-scale homogenization principle.In the meso-scale,a representative volume e...This work provides a method to predict the three-dimensional equivalent elastic properties of the filament-wound composites based on the multi-scale homogenization principle.In the meso-scale,a representative volume element(RVE)is defined and the bridging model is adopted to establish a theoretical predictive model for its three-dimensional equivalent elastic constants.The results obtained through this method for the previous experimental model are compared with the ones gained respectively by experiments and classical laminate theory to verify the reliability of this model.In addition,the effects of some winding parameters,such as winding angle,on the equivalent elastic behavior of the filament-wound composites are analyzed.The rules gained can provide a theoretical reference for the optimum design of filament-wound composites.展开更多
This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with u...This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with unique 5-element configuration</span></span><span style="white-space:normal;"><span style="font-family:;" "="">, with all five elements acting as transmitters and four elements as receivers. The receivers are designed to reduce the amount of uncertainty. As the fluid moves through this setup, four Doppler frequencies are obtained. The multi-dimensional velocity information along the measurement line can be reconstructed. The transducer has a compact geometry suitable for a wide range of applications, including narrow flow areas. The transducer’s basic frequency and sound pressure are selected and evaluated to be compatible with the application. First, to confirm the measurement ability, the measurement of the developed system in two-dimensional flow is validated by comparing it to the theoretical data. The uncertainty of measurement was within 15%. Second, the three-dimensional measurement in turbulent and swirling flow is proved experimentally to check the applicability of the proposed technique.</span></span>展开更多
Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, ...Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.展开更多
With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to t...With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to today’s digital software design era.Early designers relied on hand-drawn paper design forms which was time-consuming and error-prone.Digital support for road and bridge design not only saves the design time but the design quality has also achieved a qualitative leap.This paper engages in the application of digital technology in road and bridge design,to provide technical reference for China’s road and bridge engineering design units,to promote the popularity of Civil3D and other advanced design software in the field of engineering design and development,ultimately contributing to the sustainable development of China’s road and bridge engineering.展开更多
基金supported in part by the General Program of Natural Science Foundation of Hubei Province,China(Grant No.2020CFB548)a Project in 2021 of Science and Technology Support Plan of Guizhou Province,China(Grant No.202158413293820389).
文摘Objective:To evaluate the clinical efficacy of the preoperative digita1 design combined with three dimensional(3D)printing models to assist percutaneous kyphoplasty(PKP)treatment for thoracolumbar compression frac tures.Methods:From January 2018 to August 2020,we obtained data of 99 patients diagnosed thoracolumbar compression fractures.These patients were divided into control group(n=50)underwent traditional PKP surgery,and observation group(n=49)underwent preoperative digital design combined with 3D printing model assisted PKP treatment.The clinical efficacy was evaluated with five parameters,including operation time,number of intraoperative radiographs,visual analogue scale(VAS)score,Cobb Angle change,and high compression rate of injured vertebrae.Results:There were statistically significant differences of operation time and number of intraoperative radio graphs between the two groups(P<0.05).For VAS score,Cobb Angle change and vertebral height compression rate,all of these three parameters were significantly improved when the patients accepted surgery teatment in two groups(P<0.05).However,there were no significant differences between control group and observation group for these three parameters either before or after surgery(P>0.05).Conclusions:Through the design of preoperative surgical guide plate and the application of 3D printing model to guide the operation,the precise design of preoperative surgical puncture site and puncture Angle of the injured vertebra was realized,the number of intraoperative radiographs was reduced,the operation time was shortened and the operation efficiency was improved.
基金supported by the State Key Program of National Natural Science of China(Grant No.41130637)
文摘In the past decades,physical modeling has been widely used in hydrogeology for teaching,studying and exhibition purposes.Most of these models are used to illustrate hydrogeological profiles,but few can depict three-dimensional groundwater flows,making it impossible to validate groundwater flows simulated by numerical methods with physical modeling.
文摘With the rapid development of the power industry,the work of the power electrician is becoming increasingly heavy,and the demand for improving work efficiency and reducing work intensity is becoming increasingly prominent.As one of the common tools of electric power,the design and application of wire stripper has an important influence on the efficiency and safety of electric power.This paper briefly analyzes the design and application of ceramic wire for electric power and electricians to provide a reference for the development of related fields.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60725415 and 60676009)the Natural Science and Technology Major Project of the Ministry of Science and Technology of China (Grant No. 2009ZX01034-002-001-005)
文摘Based on a stochastic wire length distributed model, the interconnect distribution of a three-dimensional integrated circuit (3D IC) is predicted exactly. Using the results of this model, a global interconnect design window for a giga-scale system-on-chip (SOC) is established by evaluating the constraints of 1) wiring resource, 2) wiring bandwidth, and 3) wiring noise. In comparison to a two-dimensional integrated circuit (2D IC) in a 130-nm and 45-nm technology node, the design window expands for a 3D IC to improve the design reliability and system performance, further supporting 3D IC application in future integrated circuit design.
基金supported by Supported by National Natural Science Fund(U1704156)
文摘With the reduction of urban land, the three-dimensional garage is increasingly built with its advantages of saving land. But the current three-dimensional garage is built for the car. It is hardly stereo parking garage for electric bicycles. This paper designed a hollow tower electric bicycle stereo parking garage with fork comb structure, based on the analysis of the characteristics of electric bicycles and the characteristics of existing three-dimensional garages. A fixed comb is mounted on the garage frame. The movable comb is mounted on the middle lift mechanism of the garage. The access of the vehicle is achieved by the exchange of the comb. The key comb structure was modeled using SolidWorks software and the stress distribution of the structure was analyzed. It was optimized by MATLAB software. The result shows that this structure can improve access efficiency. The quality of the comb structure can be minimized under the constraints of strength requirements.
基金Supported by the Beijing College Students’Innovation and Entrepreneurship Training Program under Grant No BJ17040
文摘We present a design of an acoustic levitator consisting of three pairs of opposite transducer arrays.Three orthogonal standing waves create a large number of acoustic traps at which the particles are levitated in mid-air.By changing the phase difference of transducer arrays,three-dimensional manipulation of particles is successfully realized.Moreover,the relationship between the translation of particles and the phase difference is experimentally investigated,and the result is in agreement with the theoretical calculation.This design can expand the application of acoustic levitation in many fields,such as biomedicine,ultrasonic motor and new materials processing.
文摘The changes of design methods and manufacturing techniques have brought new requirements for engineers in enterprises, and therefore brought a challenge to the traditional teaching system of mechanical major courses. A new teaching system based on three-dimensional design to cultivate modern engineers with solid specialty bases and high creativity in a wide range of fields is presented.
基金Project(51274250)supported by the National Natural Science Foundation of ChinaProject(2012BAK09B02-05)supported by the National Key Technology R&D Program during the 12th Five-year Plan of China
文摘An integration processing system of three-dimensional laser scanning information visualization in goaf was developed. It is provided with multiple functions, such as laser scanning information management for goaf, cloud data de-noising optimization, construction, display and operation of three-dimensional model, model editing, profile generation, calculation of goaf volume and roof area, Boolean calculation among models and interaction with the third party soft ware. Concerning this system with a concise interface, plentiful data input/output interfaces, it is featured with high integration, simple and convenient operations of applications. According to practice, in addition to being well-adapted, this system is favorably reliable and stable.
文摘Based on thermodynamic calculations, the effect of pressure and alloying elements on the nitrogen content, solidification mode, and welding characteristics were investigated in this study. By increasing the partial pressure of N_2, the nitrogen content in the weld pool increased dramatically, and the γ zone was enlarged. The nitrogen content increased as alloying elements such as Cr and Mn were added to the molten steel. The δ zone with high temperature treatment was compressed by adding Ni. These alloying elements play important roles in the formation of the single γ region at the temperature of 298 K. With proper Mn addition, the phase area of γ was extended and became more stable, and the "ferrite trap" was also avoided. Two kinds of welding wires with different nitrogen contents were developed and corresponding MIG welding experiments were performed. As the nitrogen content in wire was higher than that in the base metal, severe blowhole defects and mixture microstructure of δ and γ developed.
文摘The feasibility of three-dimensional (3D) printing technology cgmbined with minimally invasive surgery in the treatment of pubic rami fractures was explored.From August 2015 to October 2017,a series of 30 patients who underwent surgical stabilization of their anterior pelvic ring (all utilizing the 3D printing technology)by one surgeon at a single hospital were studied.The minimally invasive incisions were made through anterior inferior cilia spine and pubic nodule.Data collected included the operative duration,the blood loss,the damage of the important tissue,the biographic union and therecovery of the function after the operation.Measurements on inlet and outlet pelvic cardiograph were made immediately post-operation and at all follow-up clinic visits.The scores of reduction and function were measured during follow-up.Results showed that the wounds of 30 patients were healed in the first stage,and there was no injury of important structures such as blood vessels and nerves.According to the Matta criteria,excellent effectiveness was obtained in 22 cases and good in 8 cases.According to the functional evaluation criteria of Majeed,excellent effectiveness was obtained in 21 cases and good in 9 cases.It was suggested that the 3D printing technology assisted by minimally invasive surgery can better evaluate the pelvic fracture before operation,which was helpful in plate modeling, and can shorten surgery duration and reduce intraoperative blood loss and complications. The positioning accuracy was improved,and better surgical result was finally achieved.
基金Y. Wang was supported in part by the US National Science Foundation (NSF) under Grant Nos.CNS-0721666,CNS-0915331,and CNS-1050398Y. Liu was partially supported by the National Natural Science Foundation of China (NSFC) under Grant No. 61074092+1 种基金by the Shandong Provincial Natural Science Foundation,China under Grant No.Q2008E01Z. Guo was partially supported by the NSFC under Grant Nos. 61170258 and 6093301
文摘The past decade has seen a growing interest in ocean sensor networks because of their wide applications in marine research,oceanography,ocean monitoring,offshore exploration,and defense or homeland security.Ocean sensor networks are generally formed with various ocean sensors,autonomous underwater vehicles,surface stations,and research vessels.To make ocean sensor network applications viable,efficient communication among all devices and components is crucial.Due to the unique characteristics of underwater acoustic channels and the complex deployment environment in three dimensional(3D) ocean spaces,new efficient and reliable communication and networking protocols are needed in design of ocean sensor networks.In this paper,we aim to provide an overview of the most recent advances in network design principles for 3D ocean sensor networks,with focuses on deployment,localization,topology design,and position-based routing in 3D ocean spaces.
基金Supported by National Key Technologies R&D Program of China(2015BAF23B03)National Nature Science Foundation of China(61672307)
文摘An automatic 3D wiring method for switchgear design is proposed in this paper. First, wiring constraints are created, and a corresponding evaluation model is proposed. Then, based on the structure of the cabinet, we propose a contour expansion scheme to construct rough paths. Different wiring features of the switchgear are used to connect rough local paths. All the paths are represented in a uniform data structure and forma path network. Finally, an improved A* algorithm is used to search the wiring path between the components in the routing network; the evaluation model is considered as heuristic rules for path searching. The result can satisfy the practical requirements of switchgear design. Experimental results are also provided.
基金China Postdoctoral Science Foundation Project(Grant No.2017M611184)
文摘Laying head is a high-precision engineering device in hot-rolled high speed wire rod production line. Previously research works are focused on the laying pipe wear-resisting. Laying pipe curve design method based on wire rod kinematics and dynamics analyses are not reported before. In order to design and manufacture the laying pipe, the motion and force process of the wire rod in the laying pipe should be studied. In this paper, a novel approach is proposed to investigate the force modeling for hot-rolled wire rod in laying pipe. An idea of limited element method is used to analysis and calculates the forces between laying pipe inner surface and wire rod. The design requirements of laying pipe curve for manufacturing are discussed. The kinematics and dynamics modeling for numerical calculation are built. A laying pipe curve equation is proposed by discussing design boundary conditions. Numerical results with di erent laying pipe curves design parameters are plotted and compared. The proposed approach performs good result which can be applied for laying pipe curve design and analysis for engineering application.
文摘This work provides a method to predict the three-dimensional equivalent elastic properties of the filament-wound composites based on the multi-scale homogenization principle.In the meso-scale,a representative volume element(RVE)is defined and the bridging model is adopted to establish a theoretical predictive model for its three-dimensional equivalent elastic constants.The results obtained through this method for the previous experimental model are compared with the ones gained respectively by experiments and classical laminate theory to verify the reliability of this model.In addition,the effects of some winding parameters,such as winding angle,on the equivalent elastic behavior of the filament-wound composites are analyzed.The rules gained can provide a theoretical reference for the optimum design of filament-wound composites.
文摘This study describes an ultrasonic velocity profiler that uses a <span style="white-space:normal;"><span style="font-family:;" "="">new ultrasonic array transducer with unique 5-element configuration</span></span><span style="white-space:normal;"><span style="font-family:;" "="">, with all five elements acting as transmitters and four elements as receivers. The receivers are designed to reduce the amount of uncertainty. As the fluid moves through this setup, four Doppler frequencies are obtained. The multi-dimensional velocity information along the measurement line can be reconstructed. The transducer has a compact geometry suitable for a wide range of applications, including narrow flow areas. The transducer’s basic frequency and sound pressure are selected and evaluated to be compatible with the application. First, to confirm the measurement ability, the measurement of the developed system in two-dimensional flow is validated by comparing it to the theoretical data. The uncertainty of measurement was within 15%. Second, the three-dimensional measurement in turbulent and swirling flow is proved experimentally to check the applicability of the proposed technique.</span></span>
基金supported by the National Natural Science Foundation of China (62001436)the Natural Science Foundation of Jiangsu Province under (BK 20190143,JSGG20190823094603691)。
文摘Three-dimensional(3D) synthetic aperture radar(SAR)extends the conventional 2D images into 3D features by several acquisitions in different aspects. Compared with 3D techniques via multiple observations in elevation, e.g. SAR interferometry(InSAR) and SAR tomography(TomoSAR), holographic SAR can retrieve 3D structure by observations in azimuth. This paper focuses on designing a novel type of orbit to achieve SAR regional all-azimuth observation(AAO) for embedded targets detection and holographic 3D reconstruction. The ground tracks of the AAO orbit separate the earth surface into grids. Target in these grids can be accessed with an azimuth angle span of360°, which is similar to the flight path of airborne circular SAR(CSAR). Inspired from the successive coverage orbits of optical sensors, several optimizations are made in the proposed method to ensure favorable grazing angles, the performance of 3D reconstruction, and long-term supervision for SAR sensors. Simulation experiments show the regional AAO can be completed within five hours. In addition, a second AAO of the same area can be duplicated in two days. Finally, an airborne SAR data process result is presented to illustrate the significance of AAO in 3D reconstruction.
文摘With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to today’s digital software design era.Early designers relied on hand-drawn paper design forms which was time-consuming and error-prone.Digital support for road and bridge design not only saves the design time but the design quality has also achieved a qualitative leap.This paper engages in the application of digital technology in road and bridge design,to provide technical reference for China’s road and bridge engineering design units,to promote the popularity of Civil3D and other advanced design software in the field of engineering design and development,ultimately contributing to the sustainable development of China’s road and bridge engineering.