To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main compon...To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.展开更多
Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial t...Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.展开更多
Adipose-derived stromal cells (ASCs) have gained great attention in regenerative medicine. Progress in our understanding of adult neovascularization further suggests the potential of ASCs in promoting vascular regen...Adipose-derived stromal cells (ASCs) have gained great attention in regenerative medicine. Progress in our understanding of adult neovascularization further suggests the potential of ASCs in promoting vascular regeneration, although the specific cues that stimulate their angiogenic behavior remain controversial In this study, we established a three-dimensional (3D) angiogenesis model by co-culturing ASCs and endothelial cells (ECs) in collagen gel and found that ASC-EC-instructed angiogenesis was regulated by the canonical Wnt pathway. Furthermore, the angiogenesis that occurred in implants collected after injections of our collagen gel- based 3D angiogenesis model into nude mice was confirmed to be functional and also regulated by the canonical Wnt pathway. Wnt regulation of angiogenesis involving changes in vessel length, vessel density, vessel sprout, and connection numbers occurred in our system. Wnt signaling was then shown to regulate ASC- mediated paracrine signaling during angiogenesis through the nuclear translocation of β-catenin after its cytoplasmic accumulation in both ASCs and ECs. This translocation enhanced the expression of nuclear cofactor Lef-1 and cyclin D1 and activated the angiogenic transcription of vascular endothelial growth factor A (VEGFA), basic fibroblast growth factor (bFGF), and insulin-like growth factor 1 (IGF-1). The angiogenesis process in the 3D collagen model appeared to follow canonical Wnt signaling, and this model can help us understand the importance of the canonical Wnt pathway in the use of ASCs in vascular regeneration.展开更多
To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with ...To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.展开更多
The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear...The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.展开更多
Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to...Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels.Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues.The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering.Recent advances in 3D printing have facilitated fabrication of vascular scaffolds,contributing to broad prospects for tissue vascularization.This review presents state of the art on modeling methods,print materials and preparation processes for fabrication of vascular scaffolds,and discusses the advantages and application fields of each method.Specially,significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized.Print materials and preparation processes are discussed in detail.And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting,electrospinning,and Lego-like construction.And related studies are exemplified.Transformation of vascular scaffolds to clinical application is discussed.Also,four trends of 3D printing of tissue engineering vascular scaffolds are presented,including machine learning,near-infrared photopolymerization,4D printing,and combination of self-assembly and 3D printing-based methods.展开更多
The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based...The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.展开更多
A three-dimensional (3D) mathematical model of tumour growth at the avascular phase and vessel remodelling in host tissues is proposed with emphasis on the study of the interactions of tumour growth and hypoxic micr...A three-dimensional (3D) mathematical model of tumour growth at the avascular phase and vessel remodelling in host tissues is proposed with emphasis on the study of the interactions of tumour growth and hypoxic micro-environment in host tissues. The hybrid based model includes the continuum part, such as the distributions of oxygen and vascular endothelial growth factors (VEGFs), and the discrete part of tumour cells (TCs) and blood vessel networks. The simulation shows the dynamic process of avascular tumour growth from a fewinitial cells to an equilibrium state with varied vessel networks. After a phase of rapidly increasing numbers of the TCs, more and more host vessels collapse due to the stress caused by the growing tumour. In addition, the consumption of oxygen expands with the enlarged tumour region. The study also discusses the effects of certain factors on tumour growth, including the density and configuration of pre- existing vessel networks and the blood oxygen content. The model enables us to examine the relationship between early tumour growth and hypoxic micro-environment in host tissues, which can be useful for further applications, such as tumour metastasis and the initialization of tumour angiogenesis.展开更多
To describe strategies for addressing technical aspects of computational modeling of leg tissue with the finite element (FE) method, a patient's leg sample was selected and scanned by CT at the direction parallel t...To describe strategies for addressing technical aspects of computational modeling of leg tissue with the finite element (FE) method, a patient's leg sample was selected and scanned by CT at the direction parallel to the Frankfort Horizontal plane. A three-dimensional (3D) finite element model of the human leg was developed using the actual geometry of the leg skeleton and soft tissues, which were obtained from 3D reconstruction of CT images. All joints were defined as contact surfaces, which allow relative articulating movement. The major ligaments were simulated using tension-only truss elements by connecting the corresponding attachment points on the bone surfaces. The bony and ligamentous structures were embedded in a volume of soft tissues. The muscles were defined as non-linear viscoelastic material, and the skin, ligaments and tendons were defined as hyperelastic, while the bony structures were assumed to be linearly elastic. The muhilayer FEM model containing thighbone, tibia, fibula, kneecap, soft tissue was formed after meshing. Diverse forces were imposed on the FEM model. The results show that the multilayer FEM model can represent tissue deformation more accurately.展开更多
The quest to find novel therapeutics for mental and neurological disorders has been hindered by the lack of access to l ive human brain samples and relevant experimental models. Conventional 2D human pluripotent st...The quest to find novel therapeutics for mental and neurological disorders has been hindered by the lack of access to l ive human brain samples and relevant experimental models. Conventional 2D human pluripotent stem cell-derived neuronal cultures and animal models do not ful ly recapitulate many endogenous human biochemical processes and disease phenotypes. Currently, the majority of candidate drugs obtained from preclinical testing in conventional systems does not usually translate into success and have a high failure rate in clinical trials. Recent advancements in bioengineering and stem cell technologies have resulted in three-dimensional brain-like tissues, such as oragnoids, which better resemble endogenous tissue and are more physiologically relevant than monolayer cultures. These brain-like tissues can bridge the gap between existing models and the patient, and may revolutionize the field of translational neuroscience. Here, we discuss utilities and challenges of using stem cell-derived human brain tissues in basic research and pharmacotherapy.展开更多
The mechanical characteristics of crystalline rocks are affected by the heterogeneity of the spatial distribution of minerals.In this paper,a novel three-dimensional(3D)grain-based model(GBM)based on particle flow cod...The mechanical characteristics of crystalline rocks are affected by the heterogeneity of the spatial distribution of minerals.In this paper,a novel three-dimensional(3D)grain-based model(GBM)based on particle flow code(PFC),i.e.PFC3D-GBM,is proposed.This model can accomplish the grouping of mineral grains at the 3D scale and then filling them.Then,the effect of the position distribution,geometric size,and volume composite of mineral grains on the cracking behaviour and macroscopic properties of granite are examined by conducting Brazilian splitting tests.The numerical results show that when an external load is applied to a sample,force chains will form around each contact,and the orientation distribution of the force chains is uniform,which is independent of the external load level.Furthermore,the number of high-strength force chains is proportional to the external load level,and the main orientation distribution is consistent with the external loading direction.The main orientation of the cracks is vertical to that of the high-strength force chains.The geometric size of the mineral grains controls the mechanical behaviours.As the average grain size increases,the number of transgranular contacts with higher bonding strength in the region connecting both loading points increases.The number of high-strength force chains increases,leading to an increase in the stress concentration value required for the macroscopic failure of the sample.Due to the highest bonding strength,the generation of transgranular cracks in quartz requires a higher concentrated stress value.With increasing volume composition of quartz,the number of transgranular cracks in quartz distributed in the region connecting both loading points increases,which requires many high-strength force chains.The load level rises,leading to an increase in the tensile strength of the numerical sample.展开更多
Three-dimensional(3D)printing technology has opened a new paradigm to controllably and reproducibly fabricate bioengineered neural constructs for potential applications in repairing injured nervous tissues or producin...Three-dimensional(3D)printing technology has opened a new paradigm to controllably and reproducibly fabricate bioengineered neural constructs for potential applications in repairing injured nervous tissues or producing in vitro nervous tissue models.However,the complexity of nervous tissues poses great challenges to 3D-printed bioengineered analogues,which should possess diverse architectural/chemical/electrical functionalities to resemble the native growth microenvironments for functional neural regeneration.In this work,we provide a state-of-the-art review of the latest development of 3D printing for bioengineered neural constructs.Various 3D printing techniques for neural tissue-engineered scaffolds or living cell-laden constructs are summarized and compared in terms of their unique advantages.We highlight the advanced strategies by integrating topographical,biochemical and electroactive cues inside 3D-printed neural constructs to replicate in vivo-like microenvironment for functional neural regeneration.The typical applications of 3D-printed bioengineered constructs for in vivo repair of injured nervous tissues,bio-electronics interfacing with native nervous system,neural-on-chips as well as brain-like tissue models are demonstrated.The challenges and future outlook associated with 3D printing for functional neural constructs in various categories are discussed.展开更多
The recently developed hard-magnetic soft(HMS)materials manufactured by embedding high-coercivity micro-particles into soft matrices have received considerable attention from researchers in diverse fields,e.g.,soft ro...The recently developed hard-magnetic soft(HMS)materials manufactured by embedding high-coercivity micro-particles into soft matrices have received considerable attention from researchers in diverse fields,e.g.,soft robotics,flexible electronics,and biomedicine.Theoretical investigations on large deformations of HMS structures are significant foundations of their applications.This work is devoted to developing a powerful theoretical tool for modeling and computing the complicated nonplanar deformations of flexible beams.A so-called quaternion beam model is proposed to break the singularity limitation of the existing geometrically exact(GE)beam model.The singularity-free governing equations for the three-dimensional(3D)large deformations of an HMS beam are first derived,and then solved with the Galerkin discretization method and the trustregion-dogleg iterative algorithm.The correctness of this new model and the utilized algorithms is verified by comparing the present results with the previous ones.The superiority of a quaternion beam model in calculating the complicated large deformations of a flexible beam is shown through several benchmark examples.It is found that the purpose of the HMS beam deformation is to eliminate the direction deviation between the residual magnetization and the applied magnetic field.The proposed new model and the revealed mechanism are supposed to be useful for guiding the engineering applications of flexible structures.展开更多
Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurat...Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurately characterize and predict the SRM's mechanical properties. This study reports a novel numerical method incorporating microfocus computed tomography and PFC3D codes to probe the deformation and failure processes of SRM. The three-dimensional (3D) PFC models that represent the SRM's complex structures were built. By simulating the entire failure process in PFC3D, the SRM's strength, elastic modulus and crack growth were obtained. The influence of rock ratios on the SRM's strength, deformation and failure processes, as well as its internal mesoscale mechanism, were analyzed. By comparing simulation results with experimental data, it was verified that the 3D PFC models were in good agreement with SRM's real structure and the SRM's compression process, deformation and failure patterns; its intrinsic mesomechanism can be effectively analyzed based on such 3D PFC models.展开更多
Based on the loose medium flow field theory, the loose top-coal drawing law of longwall top-coal caving(LTCC) mining technology is studied by using self-developed three-dimensional(3D) test device. The loose top-c...Based on the loose medium flow field theory, the loose top-coal drawing law of longwall top-coal caving(LTCC) mining technology is studied by using self-developed three-dimensional(3D) test device. The loose top-coal drawing test with shields and the controlled test without shields are performed in the condition without any boundary effect. Test results show that shields will cause reduction in drawing volume of coal in the LTCC mining. The deflection phenomenon of drawing body is also observed in the controlled test, which is verified that the deflection of drawing body is caused by shield. It is found that the deflection angle decreases with increasing caving height, with the maximum value of atailand the minimum value of 0. In addition, the formula to calculate the drawing volume is proposed subsequently.The deflection of drawing body is numerically simulated using particle flow code PFC3 Dand the proposed formula to calculate drawing volume in LTCC is also verified.展开更多
Weft knitted fancy fabrics are widely used in knitted garment design. Due to the complexity of the structures, their modeling and simulation needs to be solved in three-dimensional (3D) CAD developments. In this paper...Weft knitted fancy fabrics are widely used in knitted garment design. Due to the complexity of the structures, their modeling and simulation needs to be solved in three-dimensional (3D) CAD developments. In this paper, 3D loop geometrical models of weft knitted fancy structures, including tuck stitch, jacquard stitch, transfer stitch and fleecy stitch, were developed based on an improved model of plain loop, and their central axes as some 3D space curves were achieved by using Non-Uniform Rational B-Splines (NURBS). The 3D visual simulation programme was written in C++ programming language using OpenGL, which was a function library of 3D graphics. Some examples of weft knitted fancy fabrics were generated and practical application of 3D simulation was discussed.展开更多
A new method was put forward to make up the three-dimensional deposit model, and the spatiotemporal models of open-pit with temporal dynamics were also studied combined with the corrected models of multilevel ground s...A new method was put forward to make up the three-dimensional deposit model, and the spatiotemporal models of open-pit with temporal dynamics were also studied combined with the corrected models of multilevel ground states so as to bring the three-dimensional open-pit model at different time and its model serial formed from the evolvement into the management of temporal dimension in order to realize the spatial three-dimension and temporal dynamic for the mining management in open-pits,which makes this model easy to query and analyze 3-D information, also help surface mining replaying and stope evolution forecasting. Finally, the time-spatial model was established to show the dynamic mining on some open-pit under the windows XP and VC++ environment.展开更多
As a general format of the image,bitmap(BMP)image has wide applications,and consequently it is an important part of image processing.By segmenting the bitmap and combining the three-dimesional(3D)model of the discrete...As a general format of the image,bitmap(BMP)image has wide applications,and consequently it is an important part of image processing.By segmenting the bitmap and combining the three-dimesional(3D)model of the discrete algorithm with the scanning line compensation algorithm,a mathematical model is built.According to the topological relations between several control points on the model surface,the surface of the model is discretized,and a planar triangle sequence is used to describe 3D objects.Finally,the bitmap is enlarged by combining the borrowing compensation based on 3D modeling principle of discrete algorithm with the scanning line compensation algorithm of binary lattice image,thus getting a relatively clear enlarged BMP image.展开更多
Anthropometry can analyze the size,weight,and proportion of the human body objectively and quantitatively to supplement the visual assessment.Various non-invasive three-dimensional(3D)anthropometric techniques have be...Anthropometry can analyze the size,weight,and proportion of the human body objectively and quantitatively to supplement the visual assessment.Various non-invasive three-dimensional(3D)anthropometric techniques have been applied to assess soft tissues’3D morphology in the clinical practice.Among them,non-invasive stereophotogrammetry and laser scanning techniques are becoming increasingly popular in craniofacial surgery and plastic surgery.They have been applied for craniofacial growth estimation and morphometric investigation,genetic and acquired malformation diagnosis,as well as orthodontic or surgical treatment arrangement and outcome evaluation.However,few studies have been published for assessing the 3D morphology of soft tissues in the periorbital region.This paper reviews the studies involving the application and evaluation of the increasingly popular 3D photogrammetry in the periorbital region.These studies proposed detailed and standardized protocols for three-dimensionally assessing linear,curvilinear,angular,as well as volumetric measurements,and verified its high reliability in the periorbital region(even higher than caliper-derived direct measurements).In the future,reliable and accurate 3D imaging techniques,as well as standardized analyzing protocols,may find applications in following up morphological growth,preoperatively diagnosing and assessing patient periorbital conditions,planning surgical procedures,postoperatively evaluating treatment outcomes of a specific procedure,and comparing the differences in surgical results between various procedures,studies,as well as populations.展开更多
With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to t...With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to today’s digital software design era.Early designers relied on hand-drawn paper design forms which was time-consuming and error-prone.Digital support for road and bridge design not only saves the design time but the design quality has also achieved a qualitative leap.This paper engages in the application of digital technology in road and bridge design,to provide technical reference for China’s road and bridge engineering design units,to promote the popularity of Civil3D and other advanced design software in the field of engineering design and development,ultimately contributing to the sustainable development of China’s road and bridge engineering.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.52125903)the China Postdoctoral Science Foundation(Grant No.2023M730367)the Fundamental Research Funds for Central Public Welfare Research Institutes of China(Grant No.CKSF2023323/YT).
文摘To investigate the long-term stability of deep rocks,a three-dimensional(3D)time-dependent model that accounts for excavation-induced damage and complex stress state is developed.This model comprises three main components:a 3D viscoplastic isotropic constitutive relation that considers excavation damage and complex stress state,a quantitative relationship between critical irreversible deformation and complex stress state,and evolution characteristics of strength parameters.The proposed model is implemented in a self-developed numerical code,i.e.CASRock.The reliability of the model is validated through experiments.It is indicated that the time-dependent fracturing potential index(xTFPI)at a given time during the attenuation creep stage shows a negative correlation with the extent of excavationinduced damage.The time-dependent fracturing process of rock demonstrates a distinct interval effect of the intermediate principal stress,thereby highlighting the 3D stress-dependent characteristic of the model.Finally,the influence of excavation-induced damage and intermediate principal stress on the time-dependent fracturing characteristics of the surrounding rocks around the tunnel is discussed.
基金support from the National Natural Science Foundation of China (Grant No.42207199)Zhejiang Provincial Postdoctoral Science Foundation (Grant Nos.ZJ2022155 and ZJ2022156).
文摘Weak structural plane deformation is responsible for the non-uniform large deformation disasters in layered rock tunnels,resulting in steel arch distortion and secondary lining cracking.In this study,a servo biaxial testing system was employed to conduct physical modeling tests on layered rock tunnels with bedding planes of varying dip angles.The influence of structural anisotropy in layered rocks on the micro displacement and strain field of surrounding rocks was analyzed using digital image correlation(DIC)technology.The spatiotemporal evolution of non-uniform deformation of surrounding rocks was investigated,and numerical simulation was performed to verify the experimental results.The findings indicate that the displacement and strain field of the surrounding layered rocks are all maximized at the horizontal bedding planes and decrease linearly with the increasing dip angle.The failure of the layered surrounding rock with different dip angles occurs and extends along the bedding planes.Compressive strain failure occurs after excavation under high horizontal stress.This study provides significant theoretical support for the analysis,prediction,and control of non-uniform deformation of tunnel surrounding rocks.
基金funded by the National Natural Science Foundation of China(81771125,81471803,81671031)the Sichuan Province Youth Science and Technology Innovation Team(2014TD0001)
文摘Adipose-derived stromal cells (ASCs) have gained great attention in regenerative medicine. Progress in our understanding of adult neovascularization further suggests the potential of ASCs in promoting vascular regeneration, although the specific cues that stimulate their angiogenic behavior remain controversial In this study, we established a three-dimensional (3D) angiogenesis model by co-culturing ASCs and endothelial cells (ECs) in collagen gel and found that ASC-EC-instructed angiogenesis was regulated by the canonical Wnt pathway. Furthermore, the angiogenesis that occurred in implants collected after injections of our collagen gel- based 3D angiogenesis model into nude mice was confirmed to be functional and also regulated by the canonical Wnt pathway. Wnt regulation of angiogenesis involving changes in vessel length, vessel density, vessel sprout, and connection numbers occurred in our system. Wnt signaling was then shown to regulate ASC- mediated paracrine signaling during angiogenesis through the nuclear translocation of β-catenin after its cytoplasmic accumulation in both ASCs and ECs. This translocation enhanced the expression of nuclear cofactor Lef-1 and cyclin D1 and activated the angiogenic transcription of vascular endothelial growth factor A (VEGFA), basic fibroblast growth factor (bFGF), and insulin-like growth factor 1 (IGF-1). The angiogenesis process in the 3D collagen model appeared to follow canonical Wnt signaling, and this model can help us understand the importance of the canonical Wnt pathway in the use of ASCs in vascular regeneration.
基金the financial support from the National Natural Science Foundation of China(Grant No.51839003)Liaoning Revitalization Talents Program(Grant No.XLYCYSZX 1902)Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources(Grant No.2023zy002).
文摘To achieve the loading of the stress path of hard rock,the spherical discrete element model(DEM)and the new flexible membrane technology were utilized to realize the transient loading of three principal stresses with arbitrary magnitudes and orientations.Furthermore,based on the deep tunnel of China Jinping Underground Laboratory II(CJPL-II),the deformation and fracture evolution characteristics of deep hard rock induced by excavation stress path were analyzed,and the mechanisms of transient loading-unloading and stress rotation-induced fractures were revealed from a mesoscopic perspective.The results indicated that the stressestrain curve exhibits different trends and degrees of sudden changes when subjected to transient changes in principal stress,accompanied by sudden changes in strain rate.Stress rotation induces spatially directional deformation,resulting in fractures of different degrees and orientations,and increasing the degree of deformation anisotropy.The correlation between the degree of induced fracture and the unloading magnitude of minimum principal stress,as well as its initial level is significant and positive.The process of mechanical response during transient unloading exhibits clear nonlinearity and directivity.After transient unloading,both the minimum principal stress and minimum principal strain rate decrease sharply and then tend to stabilize.This occurs from the edge to the interior and from the direction of the minimum principal stress to the direction of the maximum principal stress on theε1-ε3 plane.Transient unloading will induce a tensile stress wave.The ability to induce fractures due to changes in principal stress magnitude,orientation and rotation paths gradually increases.The analysis indicates a positive correlation between the abrupt change amplitude of strain rate and the maximum unloading magnitude,which is determined by the magnitude and rotation of principal stress.A high tensile strain rate is more likely to induce fractures under low minimum principal stress.
基金supported by the National Natural Science Foundation of China(Grant No.51974173)the Natural Science Foundation of Shandong Province,China(Grant No.ZR2020QD122).
文摘The shear failure of intact rock under thermo-mechanical(TM)coupling conditions is common,such as in enhanced geothermal mining and deep mine construction.Under the effect of a continuous engineering disturbance,shear-formed fractures are prone to secondary instability,posing a severe threat to deep engineering.Although numerous studies regarding three-dimensional(3D)morphologies of fracture surfaces have been conducted,the understanding of shear-formed fractures under TM coupling conditions is limited.In this study,direct shear tests of intact granite under various TM coupling conditions were conducted,followed by 3D laser scanning tests of shear-formed fractures.Test results demonstrated that the peak shear strength of intact granite is positively correlated with the normal stress,whereas it is negatively correlated with the temperature.The internal friction angle and cohesion of intact granite significantly decrease with an increase in the temperature.The anisotropy,roughness value,and height of the asperities on the fracture surfaces are reduced as the normal stress increases,whereas their variation trends are the opposite as the temperature increases.The macroscopic failure mode of intact granite under TM coupling conditions is dominated by mixed tensileeshear and shear failures.As the normal stress increases,intragranular fractures are developed ranging from a local to a global distribution,and the macroscopic failure mode of intact granite changes from mixed tensileeshear to shear failure.Finally,3D morphological characteristics of the asperities on the shear-formed fracture surfaces were analyzed,and a quadrangular pyramid conceptual model representing these asperities was proposed and sufficiently verified.
文摘Tissue engineering is an emerging means for resolving the problems of tissue repair and organ replacement in regenerative medicine.Insufficient supply of nutrients and oxygen to cells in large-scale tissues has led to the demand to prepare blood vessels.Scaffold-based tissue engineering approaches are effective methods to form new blood vessel tissues.The demand for blood vessels prompts systematic research on fabrication strategies of vascular scaffolds for tissue engineering.Recent advances in 3D printing have facilitated fabrication of vascular scaffolds,contributing to broad prospects for tissue vascularization.This review presents state of the art on modeling methods,print materials and preparation processes for fabrication of vascular scaffolds,and discusses the advantages and application fields of each method.Specially,significance and importance of scaffold-based tissue engineering for vascular regeneration are emphasized.Print materials and preparation processes are discussed in detail.And a focus is placed on preparation processes based on 3D printing technologies and traditional manufacturing technologies including casting,electrospinning,and Lego-like construction.And related studies are exemplified.Transformation of vascular scaffolds to clinical application is discussed.Also,four trends of 3D printing of tissue engineering vascular scaffolds are presented,including machine learning,near-infrared photopolymerization,4D printing,and combination of self-assembly and 3D printing-based methods.
基金National Natural Science Foundation of China(No.61771123)。
文摘The three-dimensional(3D)model is of great significance to analyze the performance of nonwovens.However,the existing modelling methods could not reconstruct the 3D structure of nonwovens at low cost.A new method based on deep learning was proposed to reconstruct 3D models of nonwovens from multi-focus images.A convolutional neural network was trained to extract clear fibers from sequence images.Image processing algorithms were used to obtain the radius,the central axis,and depth information of fibers from the extraction results.Based on this information,3D models were built in 3D space.Furthermore,self-developed algorithms optimized the central axis and depth of fibers,which made fibers more realistic and continuous.The method with lower cost could reconstruct 3D models of nonwovens conveniently.
基金supported by the National 973 Basic Research Program of China(No.2013CB733800)the National Natural Science Foundation of China(Nos.11272091 and 11102113)
文摘A three-dimensional (3D) mathematical model of tumour growth at the avascular phase and vessel remodelling in host tissues is proposed with emphasis on the study of the interactions of tumour growth and hypoxic micro-environment in host tissues. The hybrid based model includes the continuum part, such as the distributions of oxygen and vascular endothelial growth factors (VEGFs), and the discrete part of tumour cells (TCs) and blood vessel networks. The simulation shows the dynamic process of avascular tumour growth from a fewinitial cells to an equilibrium state with varied vessel networks. After a phase of rapidly increasing numbers of the TCs, more and more host vessels collapse due to the stress caused by the growing tumour. In addition, the consumption of oxygen expands with the enlarged tumour region. The study also discusses the effects of certain factors on tumour growth, including the density and configuration of pre- existing vessel networks and the blood oxygen content. The model enables us to examine the relationship between early tumour growth and hypoxic micro-environment in host tissues, which can be useful for further applications, such as tumour metastasis and the initialization of tumour angiogenesis.
基金Sponsored by the Natural Science Foundation of Heilongjiang Province of China(Grant No.200815)the Research Foundation for Talented Scholars ofHarbin (Grant No.2008RFQXS061)
文摘To describe strategies for addressing technical aspects of computational modeling of leg tissue with the finite element (FE) method, a patient's leg sample was selected and scanned by CT at the direction parallel to the Frankfort Horizontal plane. A three-dimensional (3D) finite element model of the human leg was developed using the actual geometry of the leg skeleton and soft tissues, which were obtained from 3D reconstruction of CT images. All joints were defined as contact surfaces, which allow relative articulating movement. The major ligaments were simulated using tension-only truss elements by connecting the corresponding attachment points on the bone surfaces. The bony and ligamentous structures were embedded in a volume of soft tissues. The muscles were defined as non-linear viscoelastic material, and the skin, ligaments and tendons were defined as hyperelastic, while the bony structures were assumed to be linearly elastic. The muhilayer FEM model containing thighbone, tibia, fibula, kneecap, soft tissue was formed after meshing. Diverse forces were imposed on the FEM model. The results show that the multilayer FEM model can represent tissue deformation more accurately.
文摘The quest to find novel therapeutics for mental and neurological disorders has been hindered by the lack of access to l ive human brain samples and relevant experimental models. Conventional 2D human pluripotent stem cell-derived neuronal cultures and animal models do not ful ly recapitulate many endogenous human biochemical processes and disease phenotypes. Currently, the majority of candidate drugs obtained from preclinical testing in conventional systems does not usually translate into success and have a high failure rate in clinical trials. Recent advancements in bioengineering and stem cell technologies have resulted in three-dimensional brain-like tissues, such as oragnoids, which better resemble endogenous tissue and are more physiologically relevant than monolayer cultures. These brain-like tissues can bridge the gap between existing models and the patient, and may revolutionize the field of translational neuroscience. Here, we discuss utilities and challenges of using stem cell-derived human brain tissues in basic research and pharmacotherapy.
基金the financial support of the National Natural Science Foundation of China(Grant No.52179118)the Graduate Innovation Program of China University of Mining and Technology(Grant No.2022WLKXJ032)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX22_2581).
文摘The mechanical characteristics of crystalline rocks are affected by the heterogeneity of the spatial distribution of minerals.In this paper,a novel three-dimensional(3D)grain-based model(GBM)based on particle flow code(PFC),i.e.PFC3D-GBM,is proposed.This model can accomplish the grouping of mineral grains at the 3D scale and then filling them.Then,the effect of the position distribution,geometric size,and volume composite of mineral grains on the cracking behaviour and macroscopic properties of granite are examined by conducting Brazilian splitting tests.The numerical results show that when an external load is applied to a sample,force chains will form around each contact,and the orientation distribution of the force chains is uniform,which is independent of the external load level.Furthermore,the number of high-strength force chains is proportional to the external load level,and the main orientation distribution is consistent with the external loading direction.The main orientation of the cracks is vertical to that of the high-strength force chains.The geometric size of the mineral grains controls the mechanical behaviours.As the average grain size increases,the number of transgranular contacts with higher bonding strength in the region connecting both loading points increases.The number of high-strength force chains increases,leading to an increase in the stress concentration value required for the macroscopic failure of the sample.Due to the highest bonding strength,the generation of transgranular cracks in quartz requires a higher concentrated stress value.With increasing volume composition of quartz,the number of transgranular cracks in quartz distributed in the region connecting both loading points increases,which requires many high-strength force chains.The load level rises,leading to an increase in the tensile strength of the numerical sample.
基金financially supported by the National Natural Science Foundation of China (52125501)OPEN Project (BHJ17C019)+4 种基金the Key Research Project of Shaanxi Province (2021LLRH-08)the Program for Innovation Team of Shaanxi Province (2023-CX-TD-17)the Natural Science Basic Research Program of Shaanxi Province (2023-JCQN-0543)the China Postdoctoral Science Foundation (2021M702597)the Fundamental Research Funds for the Central Universities
文摘Three-dimensional(3D)printing technology has opened a new paradigm to controllably and reproducibly fabricate bioengineered neural constructs for potential applications in repairing injured nervous tissues or producing in vitro nervous tissue models.However,the complexity of nervous tissues poses great challenges to 3D-printed bioengineered analogues,which should possess diverse architectural/chemical/electrical functionalities to resemble the native growth microenvironments for functional neural regeneration.In this work,we provide a state-of-the-art review of the latest development of 3D printing for bioengineered neural constructs.Various 3D printing techniques for neural tissue-engineered scaffolds or living cell-laden constructs are summarized and compared in terms of their unique advantages.We highlight the advanced strategies by integrating topographical,biochemical and electroactive cues inside 3D-printed neural constructs to replicate in vivo-like microenvironment for functional neural regeneration.The typical applications of 3D-printed bioengineered constructs for in vivo repair of injured nervous tissues,bio-electronics interfacing with native nervous system,neural-on-chips as well as brain-like tissue models are demonstrated.The challenges and future outlook associated with 3D printing for functional neural constructs in various categories are discussed.
基金Project supported by the National Key Research and Development Program of China(No.2018YFA0703200)the National Natural Science Foundation of China(Nos.52205594 and51820105008)+1 种基金the China National Postdoctoral Program for Innovative Talents(No.BX20220118)the China Postdoctoral Science Foundation(No.2021M701306)。
文摘The recently developed hard-magnetic soft(HMS)materials manufactured by embedding high-coercivity micro-particles into soft matrices have received considerable attention from researchers in diverse fields,e.g.,soft robotics,flexible electronics,and biomedicine.Theoretical investigations on large deformations of HMS structures are significant foundations of their applications.This work is devoted to developing a powerful theoretical tool for modeling and computing the complicated nonplanar deformations of flexible beams.A so-called quaternion beam model is proposed to break the singularity limitation of the existing geometrically exact(GE)beam model.The singularity-free governing equations for the three-dimensional(3D)large deformations of an HMS beam are first derived,and then solved with the Galerkin discretization method and the trustregion-dogleg iterative algorithm.The correctness of this new model and the utilized algorithms is verified by comparing the present results with the previous ones.The superiority of a quaternion beam model in calculating the complicated large deformations of a flexible beam is shown through several benchmark examples.It is found that the purpose of the HMS beam deformation is to eliminate the direction deviation between the residual magnetization and the applied magnetic field.The proposed new model and the revealed mechanism are supposed to be useful for guiding the engineering applications of flexible structures.
基金Acknowledgements The authors gratefully acknowledge the financial support from the State Key Research Development Program of China (Grant No. 2016YFC0600705), the National Natural Science Foundation of China (Grant Nos. 51674251, 51727807, 51374213), the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 51125017), the Fund for Creative Research and Development Group Program of Jiangsu Province (Grant No. 2014-27), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (Grant No. PAPD2014), and an open project sponsored by the State Key Labo- ratory for Geomechanics and Deep Underground Engineering (Grant SKLGDUE K1318) for their financial support.
文摘Soil-rock mixture (SRM) is a unique type of geomaterial characterized by a heterogeneous composition and a complicated structure. It is intractable for the continuum-based soil and rock mechanics theories to accurately characterize and predict the SRM's mechanical properties. This study reports a novel numerical method incorporating microfocus computed tomography and PFC3D codes to probe the deformation and failure processes of SRM. The three-dimensional (3D) PFC models that represent the SRM's complex structures were built. By simulating the entire failure process in PFC3D, the SRM's strength, elastic modulus and crack growth were obtained. The influence of rock ratios on the SRM's strength, deformation and failure processes, as well as its internal mesoscale mechanism, were analyzed. By comparing simulation results with experimental data, it was verified that the 3D PFC models were in good agreement with SRM's real structure and the SRM's compression process, deformation and failure patterns; its intrinsic mesomechanism can be effectively analyzed based on such 3D PFC models.
基金financially supported by the Coal Joint Funds of the National Natural Science Foundation of China(No.U1361209)the National Basic Research Program of China(973 Program)(No.2013CB227903)
文摘Based on the loose medium flow field theory, the loose top-coal drawing law of longwall top-coal caving(LTCC) mining technology is studied by using self-developed three-dimensional(3D) test device. The loose top-coal drawing test with shields and the controlled test without shields are performed in the condition without any boundary effect. Test results show that shields will cause reduction in drawing volume of coal in the LTCC mining. The deflection phenomenon of drawing body is also observed in the controlled test, which is verified that the deflection of drawing body is caused by shield. It is found that the deflection angle decreases with increasing caving height, with the maximum value of atailand the minimum value of 0. In addition, the formula to calculate the drawing volume is proposed subsequently.The deflection of drawing body is numerically simulated using particle flow code PFC3 Dand the proposed formula to calculate drawing volume in LTCC is also verified.
基金Natural Science Foundation of Tianjin,China( No. 11JCYBJC26400) Tianjin High School Scientific and Technology Fund Planning Project,China( No. 20100310)
文摘Weft knitted fancy fabrics are widely used in knitted garment design. Due to the complexity of the structures, their modeling and simulation needs to be solved in three-dimensional (3D) CAD developments. In this paper, 3D loop geometrical models of weft knitted fancy structures, including tuck stitch, jacquard stitch, transfer stitch and fleecy stitch, were developed based on an improved model of plain loop, and their central axes as some 3D space curves were achieved by using Non-Uniform Rational B-Splines (NURBS). The 3D visual simulation programme was written in C++ programming language using OpenGL, which was a function library of 3D graphics. Some examples of weft knitted fancy fabrics were generated and practical application of 3D simulation was discussed.
基金Project(LS2010071)supported by the Key Laboratory Projects in Universities’Scientific Research Plan of Education Department of Liaoning Province,China
文摘A new method was put forward to make up the three-dimensional deposit model, and the spatiotemporal models of open-pit with temporal dynamics were also studied combined with the corrected models of multilevel ground states so as to bring the three-dimensional open-pit model at different time and its model serial formed from the evolvement into the management of temporal dimension in order to realize the spatial three-dimension and temporal dynamic for the mining management in open-pits,which makes this model easy to query and analyze 3-D information, also help surface mining replaying and stope evolution forecasting. Finally, the time-spatial model was established to show the dynamic mining on some open-pit under the windows XP and VC++ environment.
基金National Natural Science Foundation of China(Nos.61162016,61562057)Natural Science Foundation of Gansu Province(No.18JR3RA124)+1 种基金Science and Technology Program Project of Gansu Province(Nos.18JR3RA104,1504FKCA038)Science and Technology Project of Gansu Education Department(No.2017D-08)
文摘As a general format of the image,bitmap(BMP)image has wide applications,and consequently it is an important part of image processing.By segmenting the bitmap and combining the three-dimesional(3D)model of the discrete algorithm with the scanning line compensation algorithm,a mathematical model is built.According to the topological relations between several control points on the model surface,the surface of the model is discretized,and a planar triangle sequence is used to describe 3D objects.Finally,the bitmap is enlarged by combining the borrowing compensation based on 3D modeling principle of discrete algorithm with the scanning line compensation algorithm of binary lattice image,thus getting a relatively clear enlarged BMP image.
基金This study was supported by the Koeln Fortune Program/Faculty of Medicine,University of Cologne,Germany(No.2680148101)the State Scholarship Fund from China Scholarship Council,China(No.201708080141).
文摘Anthropometry can analyze the size,weight,and proportion of the human body objectively and quantitatively to supplement the visual assessment.Various non-invasive three-dimensional(3D)anthropometric techniques have been applied to assess soft tissues’3D morphology in the clinical practice.Among them,non-invasive stereophotogrammetry and laser scanning techniques are becoming increasingly popular in craniofacial surgery and plastic surgery.They have been applied for craniofacial growth estimation and morphometric investigation,genetic and acquired malformation diagnosis,as well as orthodontic or surgical treatment arrangement and outcome evaluation.However,few studies have been published for assessing the 3D morphology of soft tissues in the periorbital region.This paper reviews the studies involving the application and evaluation of the increasingly popular 3D photogrammetry in the periorbital region.These studies proposed detailed and standardized protocols for three-dimensionally assessing linear,curvilinear,angular,as well as volumetric measurements,and verified its high reliability in the periorbital region(even higher than caliper-derived direct measurements).In the future,reliable and accurate 3D imaging techniques,as well as standardized analyzing protocols,may find applications in following up morphological growth,preoperatively diagnosing and assessing patient periorbital conditions,planning surgical procedures,postoperatively evaluating treatment outcomes of a specific procedure,and comparing the differences in surgical results between various procedures,studies,as well as populations.
文摘With the development and progress of science and technology,road and bridge design has experienced rapid development,from the initial manual drawing design to the popularity of Computer-Aided Design(CAD),and then to today’s digital software design era.Early designers relied on hand-drawn paper design forms which was time-consuming and error-prone.Digital support for road and bridge design not only saves the design time but the design quality has also achieved a qualitative leap.This paper engages in the application of digital technology in road and bridge design,to provide technical reference for China’s road and bridge engineering design units,to promote the popularity of Civil3D and other advanced design software in the field of engineering design and development,ultimately contributing to the sustainable development of China’s road and bridge engineering.