The natural dynamic characteristics of a circular cylindrical tube made of three-directional(3 D)functional graded material(FGM)based on the Timoshenko beam theory are investigated.Hamilton’s principle is utilized to...The natural dynamic characteristics of a circular cylindrical tube made of three-directional(3 D)functional graded material(FGM)based on the Timoshenko beam theory are investigated.Hamilton’s principle is utilized to derive the novel motion equations of the tube,considering the interactions among the longitudinal,transverse,and rotation deformations.By dint of the differential quadrature method(DQM),the governing equations are discretized to conduct the analysis of natural dynamic characteristics.The Ritz method,in conjunction with the finite element method(FEM),is introduced to verify the present results.It is found that the asymmetric modes in the tube are controlled by the 3 D FGM,which exhibit more complicated shapes compared with the unidirectional(1 D)and bi-directional(2 D)FGM cases.Numerical examples illustrate the effects of the axial,radial,and circumferential FGM indexes as well as the supported edges on the natural dynamic characteristics in detail.It is notable that the obtained results are beneficial for accurate design of smart structures composed from multi-directional FGM.展开更多
A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shea...A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.展开更多
With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau...With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.展开更多
Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partit...Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.展开更多
Prestress enables the Glulam beam could make full use of the compression strength,and then increase the span,but it still could not reduce all drawbacks,such as cross-section weakening and small force arm.To avoid slo...Prestress enables the Glulam beam could make full use of the compression strength,and then increase the span,but it still could not reduce all drawbacks,such as cross-section weakening and small force arm.To avoid slotting and ensure suitable tension and compression couple,one kind of novel anchor has been proposed,which could meet the bearing capacity requirement.And then the bending test of prestressed Glulam beams with a geometric scale ratio of 1:2 was simulated,to investigate the effect of the force arm on bending capacities,failure modes,and deformation performance.Results show that increasing the force arm could improve the ultimate bending per-formance of the beam significantly,and the anchor arm length has a certain effect on the performance,but it is not obvious.Finally,based on Finite element method analysis,the practice design suggestions have been offered.展开更多
This article presents a study on the structural behavior of transversely prestressed laminated timber slabs,focusing on an innovative approach:vertically misaligned lamellae.This misalignment,achieved by sliding verti...This article presents a study on the structural behavior of transversely prestressed laminated timber slabs,focusing on an innovative approach:vertically misaligned lamellae.This misalignment,achieved by sliding vertically the wooden lamellae rather than aligning them,enhances the slab’s cross-section moment of inertia,thereby improving load-bearing capacity and stiffness.Testing involved two groups of structural size specimens:one with vertically aligned lamellae(control group)and the other with misaligned lamellae(study group).Results showed the study group exhibited 42%superior stiffness and 10%less load capacity compared to the control.Failures typically occurred individually in the lamellae,particularly in those with defects or lower modulus of elasticity,concentrated in the middle third of the slabs’free span where tensile stresses peak.Despite a higher number of failed lamellae,the study group demonstrated promising performance.Analysis of prestressing bar indicated no damage at all in the thread,suggesting potential for reducing bar diameter.These findings offer crucial insights into applying these slabs in timber construction as well as to any kind of construction.展开更多
This paper introduces a crack detection example of the prestressed box girder in a certain project. The morphology of the box girder cracks was surveyed and mapped. The length, width, and depth of the cracks were insp...This paper introduces a crack detection example of the prestressed box girder in a certain project. The morphology of the box girder cracks was surveyed and mapped. The length, width, and depth of the cracks were inspected, and the strength and reinforcement configuration of the components were tested. The test results indicate that the strength and reinforcement configuration of the inspected components meet the design requirements. The crack at the end of the top plate of the box girder is a local compressive crack at the anchorage end. The width and length of the crack on the bottom surface of the top plate are not significant, and the depth is relatively shallow. Judging from the crack morphology, this crack is identified as a temperature crack. Additionally, based on the treatment measures for cracks of different widths, the treatment measures for the cracks of the components in this project are derived, providing a reference basis for similar projects in the future.展开更多
The article takes a simply supported prestressed concrete small box girder bridge project as an example for inspection and evaluation after a fire incident.This includes appearance detection,concrete color hardness de...The article takes a simply supported prestressed concrete small box girder bridge project as an example for inspection and evaluation after a fire incident.This includes appearance detection,concrete color hardness detection,concrete strength detection,concrete surface damage layer detection,reinforcement protective layer detection,and concrete carbonation detection.It is hoped that this analysis can be used as a reference for the detection and evaluation of future bridge projects with fire incidents to smoothen its subsequent repair and maintenance.展开更多
In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a...In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity.展开更多
Based on the durability characteristics of prestressed concrete structures,the durability limit states of carbonation and chloride ion attack are defined, respectively.Durability predicting models on the basis of reli...Based on the durability characteristics of prestressed concrete structures,the durability limit states of carbonation and chloride ion attack are defined, respectively.Durability predicting models on the basis of reliability mathematics and stochastic processes areconstructed, and the pure theoretical formulae of failure probability of prestressed concretestructures are analyzed. In addition, a simple durability design method for carbonation ofstructures is put forward. According to the analysis, the durability of prestressed concretestructures is superior to that of traditional structures. The research also indicates that theconcrete cover prescribed in the current code (GB 50010-2002) is not adequate. The rational coverthickness should notbe less than 35 or 45 mm according to carbonation or chloride ion attack,respectively.展开更多
New high performance grouts with high volume stability and good fluidity were prepared with Portland cement and a multifunctional admixture (MFA). The theological characteristics and mechanical performance of the grou...New high performance grouts with high volume stability and good fluidity were prepared with Portland cement and a multifunctional admixture (MFA). The theological characteristics and mechanical performance of the grouts were investigated. The addition of MFA effectively improves the pseudo-plasticity of the grout. The Ma cone flow time decreases obviously, and the bleeding rate tends to be zero. The deformation behaviors of fresh mixture and hardened grout are systematically studied. Mercury injection method (MIP), scanning electron microscopy (SEM) and X-ray diffractory analysis experiments are used to analyze the microstructure evolution of the grouts, which manifests that the co-action of the early bubble reaction and the latter ettringite crystallization ensure the volume stability throughout the whole hydration process and result in refined pore structure of the grout.展开更多
With a concrete pavement slab prestressed, its load carrying capacity can be significantly increased; thus a thinner slab may be used for the same loading. Prestressing modify the structural behavior of the pavement ...With a concrete pavement slab prestressed, its load carrying capacity can be significantly increased; thus a thinner slab may be used for the same loading. Prestressing modify the structural behavior of the pavement slab and there is a greater resistance to impact, vibration and overloading. This paper discusses the major design considerations necessary in the successful construction of prestressed concrete pavements and presents a design procedure developed to predict the compressive stress due to prestressing in the pavements at early stage, during service and after cracking. Variation in the approach for repetitive and nonrepetitive loads is clearly distinguished. Check on the recovery after cracking for overloading in prestressed pavements is also needed. Finally, a design example is illustrated the application of the approach developed.展开更多
Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crac...Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.展开更多
This paper describes an experimental study of the hysteretic behavior of prestressed truss concrete composite beams (PTCCBs) under cyclic loading. Five beam models were designed and tested, in which the testing para...This paper describes an experimental study of the hysteretic behavior of prestressed truss concrete composite beams (PTCCBs) under cyclic loading. Five beam models were designed and tested, in which the testing parameters include the global reinforcement index β0, the prestress level 2 and the ratio of stirrup ρsv in the potential plastic hinge zones. Based on the test results, the failure mode and hysteretic behavior of the tested models are obtained. In addition, the P-△ and sectional M-φ hysteretic models for the PTCCBs at the midspan are established. The P-△ hysteretic model shows good agreement with the test results.展开更多
Replica scaled impact experiments with unconfined ceramic targets have shown that the transition velocity,i.e.,the impact velocity at which interface defeat ceases and ceramic penetration occurs,decreased as the lengt...Replica scaled impact experiments with unconfined ceramic targets have shown that the transition velocity,i.e.,the impact velocity at which interface defeat ceases and ceramic penetration occurs,decreased as the length scale increased.A possible explanation of how this scale effect is related to the formation of a cone crack in the ceramic has been presented by the authors in an earlier paper.Here,the influence of confinement and prestress on cone cracking and transition velocity is investigated.The hypothesis is that prestress will suppress the formation and growth of the cone crack by lowering the driving stress.A set of impact experiments has been performed in which the transition velocity for four different levels of prestress has been determined.The transition velocities as a function of the level of confining prestress is compared to an analytical model for the influence of prestress on the formation and extension of the cone crack in the ceramic material.Both experiments and model indicate that prestress has a strong influence on the transition from interface defeat to penetration,although the model underestimates the influence of prestress.展开更多
In order to obtain the present effective prestress and its longitudinal distribution of prestressed tendon during the process of inspection and evaluation, a unified analogue method was put forward. Based on the theor...In order to obtain the present effective prestress and its longitudinal distribution of prestressed tendon during the process of inspection and evaluation, a unified analogue method was put forward. Based on the theory for calculating instantaneous prestress loss of the tendons with complicated geometry, a universal numerical model was established. Therefore, the distribution of effective prestress could be simulated after recognizing the nominal coefficients of prestress loss with the obtained stress data of objective steel tendon. The numerical simulation results of a full-length tendon of a three-span continuous beam bridge show that the relative errors between the calculated value and the value in the code are within 5%, which meets the requirement for engineering application.展开更多
This paper presents an experimental study of a prestressed lightweight concrete platform model with a tank and for five steel-columns. This platform can be used not only for extraction but also for storage of oil and ...This paper presents an experimental study of a prestressed lightweight concrete platform model with a tank and for five steel-columns. This platform can be used not only for extraction but also for storage of oil and is suitable for the Bohai Sea and other shallow seas of China. The platform is subjected to temperature. load, or both. The corresponding temperature distribution. strains, cracks. and vulnerable parts of the platform are analyzed respectively. By use of the finite element method and empirical formulas, the temperature field of the model is analyzed. The results agree with the experimental results, thereby verifying! the reliability of these two calculating methods. The paper provides an experimental basis for the des sign of the bearing capacity and normal service state of prestressed concrete platforms.展开更多
The key in the force transmission between the tower and the foundation for offshore wind turbines is to transfer the large moment and horizontal loads. The finite element model of a large-scale prestressing bucket fou...The key in the force transmission between the tower and the foundation for offshore wind turbines is to transfer the large moment and horizontal loads. The finite element model of a large-scale prestressing bucket founda- tion for offshore wind turbines is set up and the structural characteristics of the arc transition structure of the founda- tion are analyzed for 40-60 channels(20-30 rows) arranged with prestressing steel strand under the same ultimate load and boundary conditions. The mechanical characteristics of the key parts of the foundation structures are illus- trated by the peak of the principal tensile stress, the peak of the principal compressive stress and the distribution areas where the principal tensile stress is larger than 2.00 MPa. It can be concluded that the maximum principal tensile stress of the arc transition decreases with the increasing number of channels, and the amplitude does not change signifi- cantly; the maximum principal compressive stress increases with the increasing number of channels and the amplitude changes significantly; however, for the distribution areas where the principal tensile stress is larger than 2.00 MPa, with different channel numbers, the phenomenon is not obvious. Furthermore, the principal tensile stress at the top of the foundation beams fluctuantly increases with the increasing number of channels and for the top cover of the bucket, the principal tensile stress decreases with the increasing number of channels.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.11902001 and12072221)the China Postdoctoral Science Foundation(No.2018M641643)the Anhui Provincial Natural Science Foundation of China(Nos.1908085QA13 and 1808085ME128)。
文摘The natural dynamic characteristics of a circular cylindrical tube made of three-directional(3 D)functional graded material(FGM)based on the Timoshenko beam theory are investigated.Hamilton’s principle is utilized to derive the novel motion equations of the tube,considering the interactions among the longitudinal,transverse,and rotation deformations.By dint of the differential quadrature method(DQM),the governing equations are discretized to conduct the analysis of natural dynamic characteristics.The Ritz method,in conjunction with the finite element method(FEM),is introduced to verify the present results.It is found that the asymmetric modes in the tube are controlled by the 3 D FGM,which exhibit more complicated shapes compared with the unidirectional(1 D)and bi-directional(2 D)FGM cases.Numerical examples illustrate the effects of the axial,radial,and circumferential FGM indexes as well as the supported edges on the natural dynamic characteristics in detail.It is notable that the obtained results are beneficial for accurate design of smart structures composed from multi-directional FGM.
基金supported by the National Natural Science Foundation of China(51978345,52278264).
文摘A theoretical analysis of upward deflection and midspan deflection of prestressed bamboo-steel composite beams is presented in this study.The deflection analysis considers the influences of interface slippage and shear deformation.Furthermore,the calculation model for flexural capacity is proposed considering the two stages of loading.The theoretical results are verified with 8 specimens considering different prestressed load levels,load schemes,and prestress schemes.The results indicate that the proposed theoretical analysis provides a feasible prediction of the deflection and bearing capacity of bamboo-steel composite beams.For deflection analysis,the method considering the slippage and shear deformation provides better accuracy.The theoretical method for bearing capacity matches well with the test results,and the relative errors in the serviceability limit state and ultimate limit state are 4.95%and 5.85%,respectively,which meet the accuracy requirements of the engineered application.
基金Fundamental Research Funds for the National Natural Science Foundation of China under Grant No.52078084the Natural Science Foundation of Chongqing (cstc2021jcyj-msxmX0623)+2 种基金the 111 project of the Ministry of Educationthe Bureau of Foreign Experts of China under Grant No.B18062China Postdoctoral Science Foundation under Grant No.2021M690838。
文摘With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation.
基金supported by the National Natural Science Foundation of China through Grant No.51978523.
文摘Excavating super-large-span tunnels in soft rock masses presents significant challenges.To ensure safety,the sequential excavation method is commonly adopted.It utilizes internal temporary supports to spatially partition the tunnel face and divide the excavation into multiple stages.However,these internal supports generally impose spatial constraints,limiting the use of large-scale excavation equipment and reducing construction efficiency.To address this constraint,this study adopts the“Shed-frame”principle to explore the feasibility of an innovative support system,which aims to replace internal supports with prestressed anchor cables and thus provide a more spacious working space with fewer internal obstructions.To evaluate its effectiveness,a field case involving the excavation of a 24-m span tunnel in soft rock is presented,and an analysis of extensive field data is conducted to study the deformation characteristics of the surrounding rock and the mechanical behavior of the support system.The results revealed that prestressed anchor cables integrated the initial support with the shed,creating an effective“shed-frame”system,which successively maintained tunnel deformation and frame stress levels within safe regulatory bounds.Moreover,the prestressed anchor cables bolstered the surrounding rock effectively and reduced the excavation-induced disturbance zone significantly.In summary,the proposed support system balances construction efficiency and safety.These field experiences may offer valuable insights into the popularization and further development of prestressed anchor cable support systems.
基金supported by the Resources Industry Science and Technology Innovation Joint Funding Project of Nanping(N2021Z003)the Special Project of Service Industry Research of Wuyi University under Grant(2021XJFWCY03)+2 种基金the Research Launch Fund of Wuyi University’s Introduct Talent(YJ202309)the Fujian Training Program of Innovation and Entrepreneurship for Undergraduates(S202210397076)Research on the Stress Performance of Reinforced Bamboo Highway Guardrail with Embedded Channel Steel(LS202304).
文摘Prestress enables the Glulam beam could make full use of the compression strength,and then increase the span,but it still could not reduce all drawbacks,such as cross-section weakening and small force arm.To avoid slotting and ensure suitable tension and compression couple,one kind of novel anchor has been proposed,which could meet the bearing capacity requirement.And then the bending test of prestressed Glulam beams with a geometric scale ratio of 1:2 was simulated,to investigate the effect of the force arm on bending capacities,failure modes,and deformation performance.Results show that increasing the force arm could improve the ultimate bending per-formance of the beam significantly,and the anchor arm length has a certain effect on the performance,but it is not obvious.Finally,based on Finite element method analysis,the practice design suggestions have been offered.
文摘This article presents a study on the structural behavior of transversely prestressed laminated timber slabs,focusing on an innovative approach:vertically misaligned lamellae.This misalignment,achieved by sliding vertically the wooden lamellae rather than aligning them,enhances the slab’s cross-section moment of inertia,thereby improving load-bearing capacity and stiffness.Testing involved two groups of structural size specimens:one with vertically aligned lamellae(control group)and the other with misaligned lamellae(study group).Results showed the study group exhibited 42%superior stiffness and 10%less load capacity compared to the control.Failures typically occurred individually in the lamellae,particularly in those with defects or lower modulus of elasticity,concentrated in the middle third of the slabs’free span where tensile stresses peak.Despite a higher number of failed lamellae,the study group demonstrated promising performance.Analysis of prestressing bar indicated no damage at all in the thread,suggesting potential for reducing bar diameter.These findings offer crucial insights into applying these slabs in timber construction as well as to any kind of construction.
文摘This paper introduces a crack detection example of the prestressed box girder in a certain project. The morphology of the box girder cracks was surveyed and mapped. The length, width, and depth of the cracks were inspected, and the strength and reinforcement configuration of the components were tested. The test results indicate that the strength and reinforcement configuration of the inspected components meet the design requirements. The crack at the end of the top plate of the box girder is a local compressive crack at the anchorage end. The width and length of the crack on the bottom surface of the top plate are not significant, and the depth is relatively shallow. Judging from the crack morphology, this crack is identified as a temperature crack. Additionally, based on the treatment measures for cracks of different widths, the treatment measures for the cracks of the components in this project are derived, providing a reference basis for similar projects in the future.
文摘The article takes a simply supported prestressed concrete small box girder bridge project as an example for inspection and evaluation after a fire incident.This includes appearance detection,concrete color hardness detection,concrete strength detection,concrete surface damage layer detection,reinforcement protective layer detection,and concrete carbonation detection.It is hoped that this analysis can be used as a reference for the detection and evaluation of future bridge projects with fire incidents to smoothen its subsequent repair and maintenance.
基金Post-Doctoral Innovative Projects of Shandong Province(No.200703072)the National Natural Science Foundation of China(No.50574053)
文摘In order to analyze the load carrying capacity of prestressed concrete box girders, failure behaviors of in-situ deteriorated continuous prestressed concrete box girders under loading are experimentally observed and a finite failure analysis method for predicting behaviors of box girders is developed. A degenerated solid shell element is used to simulate box girders and material nonlinearity is considered. Since pre-stressed concrete box girders usually have a large number of curve prestressed tendons, a type of combined element is presented to simulate the prestressed tendons of box girders, and then the number of elements can be significantly reduced. The analytical results are compared with full-scale failure test results. The comparison shows that the presented method can be effectively applied to the failure analysis of in-situ continuous prestressed concrete box girders, and it also shows that the studied old bridge still has enough load carrying capacity.
文摘Based on the durability characteristics of prestressed concrete structures,the durability limit states of carbonation and chloride ion attack are defined, respectively.Durability predicting models on the basis of reliability mathematics and stochastic processes areconstructed, and the pure theoretical formulae of failure probability of prestressed concretestructures are analyzed. In addition, a simple durability design method for carbonation ofstructures is put forward. According to the analysis, the durability of prestressed concretestructures is superior to that of traditional structures. The research also indicates that theconcrete cover prescribed in the current code (GB 50010-2002) is not adequate. The rational coverthickness should notbe less than 35 or 45 mm according to carbonation or chloride ion attack,respectively.
文摘New high performance grouts with high volume stability and good fluidity were prepared with Portland cement and a multifunctional admixture (MFA). The theological characteristics and mechanical performance of the grouts were investigated. The addition of MFA effectively improves the pseudo-plasticity of the grout. The Ma cone flow time decreases obviously, and the bleeding rate tends to be zero. The deformation behaviors of fresh mixture and hardened grout are systematically studied. Mercury injection method (MIP), scanning electron microscopy (SEM) and X-ray diffractory analysis experiments are used to analyze the microstructure evolution of the grouts, which manifests that the co-action of the early bubble reaction and the latter ettringite crystallization ensure the volume stability throughout the whole hydration process and result in refined pore structure of the grout.
文摘With a concrete pavement slab prestressed, its load carrying capacity can be significantly increased; thus a thinner slab may be used for the same loading. Prestressing modify the structural behavior of the pavement slab and there is a greater resistance to impact, vibration and overloading. This paper discusses the major design considerations necessary in the successful construction of prestressed concrete pavements and presents a design procedure developed to predict the compressive stress due to prestressing in the pavements at early stage, during service and after cracking. Variation in the approach for repetitive and nonrepetitive loads is clearly distinguished. Check on the recovery after cracking for overloading in prestressed pavements is also needed. Finally, a design example is illustrated the application of the approach developed.
基金funded by the Science Committee of the Ministry of Science and Higher Education of the Republic of Kazakhstan(Grant No.AP19680589).
文摘Using the software ANSYS-19.2/Explicit Dynamics,this study performedfinite-element modeling of the large-diameter steel pipeline cross-section for the Beineu-Bozoy-Shymkent gas pipeline with a non-through straight crack,strengthened by steel wire wrapping.The effects of the thread tensile force of the steel winding in the form of single rings at the crack edges and the wires with different winding diameters and pitches were also studied.The results showed that the strengthening was preferably executed at a minimum value of the thread tensile force,which was 6.4%more effective than that at its maximum value.The analysis of the influence of the winding dia-meters showed that the equivalent stresses increased by 32%from the beginning of the crack growth until the wire broke.The increment in winding diameter decelerated the disclosure of the edge crack and reduced its length by 8.2%.The analysis of the influence of the winding pitch showed that decreasing the distance between the winding turns also led to a 33.6%reduction in the length of the straight crack and a 7.9%reduction in the maximum stres-ses on the strengthened pipeline cross-section.The analysis of the temperature effect on the pipeline material,within a range from-40℃ to+50℃,resulted in a crack length change of up to 5.8%.As the temperature dropped,the crack length decreased.Within such a temperature range,the maximum stresses were observed along the cen-tral area of the crack,which were equal to 413 MPa at+50℃ and 440 MPa at-40℃.The results also showed that the presence of the steel winding in the pipeline significantly reduced the length of crack propagation up to 8.4 times,depending on the temperature effect and design parameters of prestressing.This work integrated the existing methods for crack localization along steel gas pipelines.
基金National Science and Technology Support Program Subtopics Under Grant No.2006BAJ03A10-07Changjiang Scholars Program of China
文摘This paper describes an experimental study of the hysteretic behavior of prestressed truss concrete composite beams (PTCCBs) under cyclic loading. Five beam models were designed and tested, in which the testing parameters include the global reinforcement index β0, the prestress level 2 and the ratio of stirrup ρsv in the potential plastic hinge zones. Based on the test results, the failure mode and hysteretic behavior of the tested models are obtained. In addition, the P-△ and sectional M-φ hysteretic models for the PTCCBs at the midspan are established. The P-△ hysteretic model shows good agreement with the test results.
基金funded by the Swedish Armed Forces and by the Army Research Laboratory through US Naval Regional Contracting Centre,Contract No.W911NF0810271
文摘Replica scaled impact experiments with unconfined ceramic targets have shown that the transition velocity,i.e.,the impact velocity at which interface defeat ceases and ceramic penetration occurs,decreased as the length scale increased.A possible explanation of how this scale effect is related to the formation of a cone crack in the ceramic has been presented by the authors in an earlier paper.Here,the influence of confinement and prestress on cone cracking and transition velocity is investigated.The hypothesis is that prestress will suppress the formation and growth of the cone crack by lowering the driving stress.A set of impact experiments has been performed in which the transition velocity for four different levels of prestress has been determined.The transition velocities as a function of the level of confining prestress is compared to an analytical model for the influence of prestress on the formation and extension of the cone crack in the ceramic material.Both experiments and model indicate that prestress has a strong influence on the transition from interface defeat to penetration,although the model underestimates the influence of prestress.
基金Science & Technology Program for West Communication Construction of MOC(No.200531881215)
文摘In order to obtain the present effective prestress and its longitudinal distribution of prestressed tendon during the process of inspection and evaluation, a unified analogue method was put forward. Based on the theory for calculating instantaneous prestress loss of the tendons with complicated geometry, a universal numerical model was established. Therefore, the distribution of effective prestress could be simulated after recognizing the nominal coefficients of prestress loss with the obtained stress data of objective steel tendon. The numerical simulation results of a full-length tendon of a three-span continuous beam bridge show that the relative errors between the calculated value and the value in the code are within 5%, which meets the requirement for engineering application.
基金The project was financially supported by the National Natural Science Foundation of China(Grant No.59895410)
文摘This paper presents an experimental study of a prestressed lightweight concrete platform model with a tank and for five steel-columns. This platform can be used not only for extraction but also for storage of oil and is suitable for the Bohai Sea and other shallow seas of China. The platform is subjected to temperature. load, or both. The corresponding temperature distribution. strains, cracks. and vulnerable parts of the platform are analyzed respectively. By use of the finite element method and empirical formulas, the temperature field of the model is analyzed. The results agree with the experimental results, thereby verifying! the reliability of these two calculating methods. The paper provides an experimental basis for the des sign of the bearing capacity and normal service state of prestressed concrete platforms.
基金Supported by Creative Research Groups of National Natural Science Foundation of China (No. 51021004)Program for Changjiang Scholars and Innovative Research Team in University (No. IRT0851)
文摘The key in the force transmission between the tower and the foundation for offshore wind turbines is to transfer the large moment and horizontal loads. The finite element model of a large-scale prestressing bucket founda- tion for offshore wind turbines is set up and the structural characteristics of the arc transition structure of the founda- tion are analyzed for 40-60 channels(20-30 rows) arranged with prestressing steel strand under the same ultimate load and boundary conditions. The mechanical characteristics of the key parts of the foundation structures are illus- trated by the peak of the principal tensile stress, the peak of the principal compressive stress and the distribution areas where the principal tensile stress is larger than 2.00 MPa. It can be concluded that the maximum principal tensile stress of the arc transition decreases with the increasing number of channels, and the amplitude does not change signifi- cantly; the maximum principal compressive stress increases with the increasing number of channels and the amplitude changes significantly; however, for the distribution areas where the principal tensile stress is larger than 2.00 MPa, with different channel numbers, the phenomenon is not obvious. Furthermore, the principal tensile stress at the top of the foundation beams fluctuantly increases with the increasing number of channels and for the top cover of the bucket, the principal tensile stress decreases with the increasing number of channels.