Extracellular vesicles are released by all cell types and contain proteins,microRNAs,mRNAs,and other bioactive molecules.Extracellular vesicles play an important role in intercellular communication and in the modulati...Extracellular vesicles are released by all cell types and contain proteins,microRNAs,mRNAs,and other bioactive molecules.Extracellular vesicles play an important role in intercellular communication and in the modulation of the immune system and neuroinflammation.The cargo of extra cellular vesicles(e.g.,proteins and microRNAs)is altered in pathological situations.Extracellular vesicles contribute to the pathogenesis of many pathologies associated with sustained inflammation and neuroinflammation,including cance r,diabetes,hype rammonemia and hepatic encephalopathy,and other neurological and neurodegenerative diseases.Extracellular vesicles may cross the blood-brain barrier and transfer pathological signals from the periphery to the brain.This contributes to inducing neuroinflammation and cognitive and motor impairment in hyperammonemia and hepatic encephalopathy and in neurodegenerative diseases.The mechanisms involved are beginning to be unde rstood.For example,increased tumor necrosis factor a in extracellular vesicles from plasma of hype rammonemic rats induces neuroinflammation and motor impairment when injected into normal rats.Identifying the mechanisms by which extracellular vesicles contribute to the pathogenesis of these diseases will help to develop new treatments and diagnostic tools for their easy and early detection.In contrast,extra cellular vesicles from mesenchymal stem cells have therapeutic utility in many of the above pathologies,by reducing inflammation and neuroinflammation and improving cognitive and motor function.These extra cellular vesicles recapitulate the beneficial effects of mesenchymal stem cells and have advantages as therapeutic tools:they are less immunoge nic,may not diffe rentiate to malignant cells,cross the blood-brain barrier,and may reach more easily target organs.Extracellular vesicles from mesenchymal stem cells have beneficial effects in models of ischemic brain injury,Alzheimer's and Parkinson's diseases,hyperammonemia,and hepatic encephalopathy.Extracellular vesicles from mesenchymal stem cells modulate the immune system,promoting the shift from a pro-inflammato ry to an anti-inflammatory state.For example,extracellular vesicles from mesenchymal stem cells modulate the Th17/Treg balance,promoting the anti-inflammatory Treg.Extracellular vesicles from mesenchymal stem cells may also act directly in the brain to modulate microglia activation,promoting a shift from a pro-inflammatory to an anti-inflammatory state.This reduces neuroinflammation and improves cognitive and motor function.Two main components of extracellular vesicles from mesenchymal stem cells which contribute to these beneficial effects are transforming growth factor-βand miR-124.Identifying the mechanisms by which extracellular vesicles from mesenchymal stem cells induce the beneficial effects and the main molecules(e.g.,proteins and mRNAs)involved may help to improve their therapeutic utility.The aims of this review are to summarize the knowledge of the pathological effects of extracellular vesicles in different pathologies,the therapeutic potential of extra cellular vesicles from mesenchymal stem cells to recover cognitive and motor function and the molecular mechanisms for these beneficial effects on neurological function.展开更多
Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injur...Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injury remain limited.Recently,extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury.Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells,including those in the brain,and can be engineered to contain therapeutic cargo,such as anti-inflammatory molecules,growth factors,and microRNAs.When administered intravenously,extra cellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury,where they can be taken up by recipient cells and modulate the inflammatory response,promote neuroregeneration,and improve functional outcomes.In preclinical studies,extracellular vesicle-based therapies have shown promising results in promoting recove ry after traumatic brain injury,including reducing neuronal damage,improving cognitive function,and enhancing motor recovery.While further research is needed to establish the safety and efficacy of extra cellular vesicle-based therapies in humans,extra cellular vesicles represent a promising novel approach for the treatment of traumatic brain injury.In this review,we summarize mesenchymal ste m/stromal cell-de rived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brainderived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury.展开更多
Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increas...Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increasing numbers of studies have focused on the role of mesenchymal stem cell(MSC)-derived extracellular vesicles(EVs)in skin wound repair.As a cell-free therapy,MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy.Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures,including the regeneration of vessels,nerves,and hair follicles.In addition,MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization,wound angiogenesis,cell proliferation,and cell migration,and by inhibiting excessive extracellular matrix production.Additionally,these structures can serve as a scaffold for components used in wound repair,and they can be developed into bioengineered EVs to support trauma repair.Through the formulation of standardized culture,isolation,purification,and drug delivery strategies,exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair.In conclusion,MSCderived EV-based therapies have important application prospects in wound repair.Here we provide a comprehensive overview of their current status,application potential,and associated drawbacks.展开更多
Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial ac...Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial activation and neuroinflammation, edema, ischemia, vascular injury, energy failure, and peripheral immune cell infiltration. The timing of these events post injury has been linked to injury severity and functional outcome. Extracellular vesicles are membrane bound secretory vesicles that contain markers and cargo pertaining to their cell of origin and can cross the blood-brain barrier. These qualities make extracellular vesicles intriguing candidates for a liquid biopsy into the pathophysiologic changes occurring at the cellular level post traumatic brain injury. Herein, we review the most commonly reported cargo changes in extracellular vesicles from clinical traumatic brain injury samples. We then use knowledge from animal and in vitro models to help infer what these changes may indicate regrading cellular responses post traumatic brain injury. Future research should prioritize labeling extracellular vesicles with markers for distinct cell types across a range of timepoints post traumatic brain injury.展开更多
Extracellular vesicles(EVs)are considered to be a new generation of bioinspired nanoscale drug delivery systems due to their low immunogenicity,natural functionality,and excellent biocompatibility.However,limitations ...Extracellular vesicles(EVs)are considered to be a new generation of bioinspired nanoscale drug delivery systems due to their low immunogenicity,natural functionality,and excellent biocompatibility.However,limitations such as low uptake efficiency,insufficient production,and inhomogeneous performance undermine their potential.To address these issues,numerous researchers have put forward various methods and applications for enhancing EV uptake in recent decades.In this review,we introduce various methods for the cellular uptake of EVs and summarize recent advances on the methods and mechanisms for enhancing EV uptake.In addition,we provide further understanding regarding enhancing EV uptake and put forward prospects and challenges for the development of EV-based therapy in the future.展开更多
Bone tissue renewal can be enhanced through co-transplantation of bone mesenchymal stem cells(BMSCs)and vascular endothelial cells(ECs).However,there are apparent limitations in stem cell-based therapy which hinder it...Bone tissue renewal can be enhanced through co-transplantation of bone mesenchymal stem cells(BMSCs)and vascular endothelial cells(ECs).However,there are apparent limitations in stem cell-based therapy which hinder its clinic translation.Hence,we investigated the potential of alternative stem cell substitutes for facilitating bone regeneration.In this study,we successfully prepared cell membrane vesicles(CMVs)from BMSCs and ECs.The results showed that BMSC-derived cell membrane vesicles(BMSC-CMVs)possessed membrane receptors involved in juxtacrine signaling and growth factors derived from their parental cells.EC-derived cell membrane vesicles(EC-CMVs)also contained BMP2 and VEGF derived from their parental cells.BMSC-CMVs enhanced tube formation and migration ability of hUVECs,while EC-CMVs promoted the osteogenic differentiation of hBMSCs in vitro.Using a rat skull defect model,we found that co-transplantation of BMSC-CMVs and EC-CMVs could stimulate angiogenesis and bone formation in vivo.Therefore,our research might provide an innovative and feasible approach for cell-free therapy in bone tissue regeneration.展开更多
Transfer RNA-derived small RNAs(tsRNAs)have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells.However,it is unknown whether tsRNAs also regulate...Transfer RNA-derived small RNAs(tsRNAs)have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells.However,it is unknown whether tsRNAs also regulate embryo hatching.In this study,we mined the sequencing data of a previous experiment in which we demonstrated that the microRNA(miRNA)cargo of preimplantation embryonic extracellular vesicles(EVs)influences embryo development.We thus profiled the tsRNA cargo of EVs secreted by blastocysts and non-blastocysts.The majority of tsRNAs was identified as tRNA halves originating from the 5'ends of tRNAs.Among the 148 differentially expressed tsRNAs,the 19 nt tRNA fragment(tRF)tDR-14:32-Glu-CTC-1 was found to be significantly up-regulated in EVs derived from non-blastocysts.RT-qPCR assays confirmed its significant up-regulation in non-blastocyst embryos and their conditioned medium compared to the blastocyst group(P<0.05).Inhibition of tDR-14:32-Glu-CTC-1 by supplementing antagomirs to the conditioned medium improved embryo hatching(P<0.05).Transcriptomic analysis of embryos treated with tDR-14:32-Glu-CTC-1 antagomirs further showed differential expression of genes that are associated with embryo hatching and implantation.In summary,tDR-14:32-Glu-CTC-1 is up-regulated in non-blastocyst embryos and their secretions,and inhibition of tDR-14:32-Glu-CTC-1 promotes embryo hatching,while influencing embryo implantation-related genes and pathways.These results indicate that embryonic EVs containing specific tRFs may regulate preimplantation embryo development.展开更多
Mitochondrial organelle transplantation (MOT) is an innovative strategy for the treatment of mitochondrial dysfunction such as cardiac ischemic reperfusion injuries, Parkinson’s diseases, brain and spinal cord injuri...Mitochondrial organelle transplantation (MOT) is an innovative strategy for the treatment of mitochondrial dysfunction such as cardiac ischemic reperfusion injuries, Parkinson’s diseases, brain and spinal cord injuries, and amyotrophic lateral sclerosis (ALS). However, one of the major challenges for widespread usage is a methodology for preservation of isolated mitochondria. Extracellular vesicles (EVs) are phospholipid bilayer-enclosed vesicles released from cells. EVs carry a cargo of proteins, nucleic acids, lipids, metabolites, and even organelles such as mitochondria. Purpose: To test if EVs enhance the stability of isolated mitochondria. Methods: We mixed isolated mitochondria of fibroblasts with EVs of mesenchymal stromal cells (imEVs) (9:1 in volume) and stored the mixture at 2°C - 6°C for different time periods. We measured morphology, mitochondrial membrane potential (MMP) and mitochondrial ATP content at 0, 2, 5 days. Key findings: After 2 days of storage, the mito-chondria without imEVs lost approximate 70% MMP (RFU: 1822 ± 68), compared to the fresh mitochondria (RFU: 5458 ± 52) (p 0.05). In agreement with MMP, mitochondria without imEVs lost significant mitochondrial ATP content (p 0.05), after 2 days of cold storage, compared to fresh mitochondria. Microscopy showed that imEVs promoted aggregation of isolated mitochondria. Summary: The preliminary data showed that imEVs enhanced the stability of isolated mitochondria in cold storage.展开更多
Bacterial outer membrane vesicles(OMVs)are diminutive vesicles naturally released by Gram-negative bacteria.These vesicles possess distinctive characteristics that attract attention for their potential use in drug adm...Bacterial outer membrane vesicles(OMVs)are diminutive vesicles naturally released by Gram-negative bacteria.These vesicles possess distinctive characteristics that attract attention for their potential use in drug administration and immunotherapy in cancer treatment.Therapeutic medicines may be delivered via OMVs directly to the tumor sites,thereby minimizing exposure to healthy cells and lowering the risk of systemic toxicity.Furthermore,the activation of the immune system by OMVs has been demonstrated to facilitate the recognition and elimination of cancer cells,which makes them a desirable tool for immunotherapy.They can also be genetically modified to carry specific antigens,immunomodulatory compounds,and small interfering RNAs,enhancing the immune response to cancerous cells and silencing genes associated with disease progression.Combining OMVs with other cancer treatments like chemotherapy and radiation has shown promising synergistic effects.This review highlights the crucial role of bacterial OMVs in cancer,emphasizing their potential as vectors for novel cancer targeted therapies.As researchers delve deeper into the complexities of these vesicles and their interactions with tumors,there is a growing sense of optimism that this avenue of study will bring positive outcomes and renewed hope to cancer patients in the foreseeable future.展开更多
Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent bioc...Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.展开更多
Extracellular vesicles(EVs)are membranous vesicular structures released from almost all eukaryotic cell types under different physiological or pathological conditions.Growing evidence demonstrates that EVs can serve a...Extracellular vesicles(EVs)are membranous vesicular structures released from almost all eukaryotic cell types under different physiological or pathological conditions.Growing evidence demonstrates that EVs can serve as mediators of intercellular communication between donor and recipient cells or microorganism-infected and noninfected cells.Coronavirus disease 2019(COVID-19)disease is caused by infection of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)of host cells in the respiratory system and various extra-pulmonary tissue/organs,resulting in complications of multiple organ systems.As the cell surface receptor,angiotensin-converting enzyme 2(ACE2)mediates cellular entry of SARS-CoV-2 into the host cells in patients with COVID-19.Recent studies have found that ACE2 can be released with EVs,which have been shown to interfere with the entry of the virus into host cells and thus may be involved in COVID-19 pathophysiology.In addition,ACE2,neprilysin(NEP),and thimet oligopeptidase(TOP)are the key enzymes that regulate angiotensin metabolism by converting angiotensin II or angiotensin I to angiotensin 1-7,the latter of which has protective effects in counterbalancing the harmful effects of angiotensin II in COVID-19 disease.This review summarizes the recent research progress regarding EV-associated ACE2,NEP,and TOP and the perspectives of their potential involvement in the pathophysiology of COVID-19 disease.展开更多
Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different...Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different organs,S.suis 2 must colonize the host,break the blood barrier,and cause exaggerated inflammation.In the last few years,most studies have focused on a single virulence factor and its influences on the host.Membrane vesicles(MVs)can be actively secreted into the extracellular environment contributing to bacteria-host interactions.Gram-negative bacteria-derived outer membrane vesicles(OMVs)were recently shown to activate host Caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide(LPS),causing host cell pyroptosis.However,little is known about the effect of the MVs from S.suis 2(Gram-positive bacteria without LPS)on cell pyroptosis.Thus,we investigated the molecular mechanism by which S.suis 2 MVs participate in endothelial cell pyroptosis.In this study,we used proteomics,electron scanning microscopy,fluorescence microscope,Western blotting,and bioassays,to investigate the MVs secreted by S.suis 2.First,we demonstrated that S.suis 2 secreted MVs with an average diameter of 72.04 nm,and 200 proteins in MVs were identified.Then,we showed that MVs were transported to cells via mainly dynamin-dependent endocytosis.The S.suis 2 MVs activated NLRP3/Caspase-1/GSDMD canonical inflammasome signaling pathway,resulting in cell pyroptosis,but it did not activate the Caspase-4/-5 pathway.More importantly,endothelial cells produce large amounts of reactive oxygen species(ROS)and lost their mitochondrial membrane potential under induction by S.suis 2 MVs.The results in this study suggest for the first time that MVs from S.suis 2 were internalized by endothelial cells via mainly dynamin-dependent endocytosis and might promote NLRP3/Caspase-1/GSDMD pathway by mitochondrial damage,which produced mtDNA and ROS under induction,leading to the pyroptosis of endothelial cells.展开更多
Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)iso...Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)isolated from cerebral endothelial cells(CEC-sEVs)of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a(miR-27a)is an elevated miRNA in ischemic CEC-sEVs.In the present study,we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a(27a-sEVs)further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs.27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector.Small EVs isolated from CECs transfected with a scramble vector(Scra-sEVs)were used as a control.Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs.An array of behavior assays was used to measure neurological function.Compared with treatment of ischemic stroke with Scra-sEVs,treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side,and significantly improved neurological outcomes.In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth.Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone,while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a,and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone.Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs.Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes.Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.展开更多
BACKGROUND Pulmonary fibrosis(PF)is a chronic interstitial lung disease characterized by fibroblast proliferation and extracellular matrix formation,causing structural damage and lung failure.Stem cell therapy and mes...BACKGROUND Pulmonary fibrosis(PF)is a chronic interstitial lung disease characterized by fibroblast proliferation and extracellular matrix formation,causing structural damage and lung failure.Stem cell therapy and mesenchymal stem cells-extracellular vesicles(MSC-EVs)offer new hope for PF treatment.AIM To investigate the therapeutic potential of MSC-EVs in alleviating fibrosis,oxidative stress,and immune inflammation in A549 cells and bleomycin(BLM)-induced mouse model.METHODS The effect of MSC-EVs on A549 cells was assessed by fibrosis markers[collagen I andα-smooth muscle actin(α-SMA),oxidative stress regulators[nuclear factor E2-related factor 2(Nrf2)and heme oxygenase-1(HO-1),and inflammatory regu-lators[nuclear factor-kappaB(NF-κB)p65,interleukin(IL)-1β,and IL-2].Similarly,they were assessed in the lungs of mice where PF was induced by BLM after MSC-EV transfection.MSC-EVs ion PF mice were detected by pathological staining and western blot.Single-cell RNA sequencing was performed to investigate the effects of the MSC-EVs on gene expression profiles of macrophages after modeling in mice.RESULTS Transforming growth factor(TGF)-β1 enhanced fibrosis in A549 cells,significantly increasing collagen I andα-SMA levels.Notably,treatment with MSC-EVs demonstrated a remarkable alleviation of these effects.Similarly,the expression of oxidative stress regulators,such as Nrf2 and HO-1,along with inflammatory regulators,including NF-κB p65 and IL-1β,were mitigated by MSC-EV treatment.Furthermore,in a parallel manner,MSC-EVs exhibited a downregulatory impact on collagen deposition,oxidative stress injuries,and inflammatory-related cytokines in the lungs of mice with PF.Additionally,the mRNA sequencing results suggested that BLM may induce PF in mice by upregulating pulmonary collagen fiber deposition and triggering an immune inflammatory response.The findings collectively highlight the potential therapeutic efficacy of MSC-EVs in ameliorating fibrotic processes,oxidative stress,and inflammatory responses associated with PF.CONCLUSION MSC-EVs could ameliorate fibrosis in vitro and in vivo by downregulating collagen deposition,oxidative stress,and immune-inflammatory responses.展开更多
Spinal cord injury is a severe insult to the central nervous system that causes persisting neurological deficits.The currently available treatments involve surgical,medical,and rehabilitative strategies.However,none o...Spinal cord injury is a severe insult to the central nervous system that causes persisting neurological deficits.The currently available treatments involve surgical,medical,and rehabilitative strategies.However,none of these techniques can markedly reverse neurological deficits.Recently,extracellular vesicles from various cell sources have been applied to different models of spinal cord injury,thereby generating new cell-free therapies for the treatment of spinal cord injury.However,the use of extracellular vesicles alone is still associated with some notable shortcomings,such as their uncertainty in targeting damaged spinal cord tissues and inability to provide structural support to damaged axons.Therefore,this paper reviews the latest combined strategies for the use of extracellular vesicle-based technology for spinal cord injury,including the combination of extracellular vesicles with nanoparticles,exogenous drugs and/or biological scaffold materials,which facilitate the targeting ability of extracellular vesicles and the combinatorial effects with extracellular vesicles.We also highlight issues relating to the clinical transformation of these extracellular vesicle-based combination strategies for the treatment of spinal cord injury.展开更多
Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limit...Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.展开更多
Extracellular vesicles(EVs)are small particles released by many cell types in different tissues,including the liver,and transfer specific cargo molecules from originating cells to receptor cells.This process generally...Extracellular vesicles(EVs)are small particles released by many cell types in different tissues,including the liver,and transfer specific cargo molecules from originating cells to receptor cells.This process generally culminates in activation of distant cells and inflammation and progression of certain diseases.The global chronic liver disease(CLD)epidemic is estimated at 1.5 billion patients world-wide.Cirrhosis and liver cancer are the most common risk factors for CLD.However,hepatitis C and B virus infection and obesity are also highly associated with CLD.Nonetheless,the etiology of many CLD pathophysiological,cellular,and molecular events are unclear.Changes in hepatic lipid metabolism can lead to lipotoxicity events that induce EV release.Here,we aimed to present an overview of EV features,from definition to types and biogenesis,with particular focus on the molecules related to steatosis-related liver disease,diagnosis,and therapy.展开更多
Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with ...Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C–X3–C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence.展开更多
Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)...Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.展开更多
Alzheimer's disease is a severe, highly disabling neurodegenerative disease, clinically characterized by a progressive decline in cognitive functions, and is the most common form of dementia in the elderly. For de...Alzheimer's disease is a severe, highly disabling neurodegenerative disease, clinically characterized by a progressive decline in cognitive functions, and is the most common form of dementia in the elderly. For decades, the search for disease-modifying therapies has focused on the two main Alzheimer's disease histopathological hallmarks, seeking to prevent, mitigate, or clear the formation of extracellular aggregates of β-amyloid peptide and intracellular neurofibrillary tangles of tau protein, although without clinical success. Mesenchymal stem cell-based therapy has emerged as a promising alternative for the treatment of Alzheimer's disease, especially because it also targets other crucial players in the pathogenesis of the disease, such as neuroinflammation, synaptic dysfunction/loss, oxidative stress, and impaired neurogenesis. Herein, we review current knowledge of the therapeutic potential of mesenchymal stem cells and their extracellular vesicles for Alzheimer's disease, discussing the most recent findings in both preclinical and clinical trials as well as how advanced technologies have helped to overcome some limitations and contributed to stimulate the development of more effective treatments.展开更多
基金supported in part by the Ministerio de Ciencia e Innovacion Spain(PID2020-113388RB-I00 to VF and PID2021-124359OB-100 to VMM)Conselleria Educacion Generalitat Valenciana(CIPROM/2021/082 to VF)co-funded with European Regional Development Funds(ERDF)to VF and VMM。
文摘Extracellular vesicles are released by all cell types and contain proteins,microRNAs,mRNAs,and other bioactive molecules.Extracellular vesicles play an important role in intercellular communication and in the modulation of the immune system and neuroinflammation.The cargo of extra cellular vesicles(e.g.,proteins and microRNAs)is altered in pathological situations.Extracellular vesicles contribute to the pathogenesis of many pathologies associated with sustained inflammation and neuroinflammation,including cance r,diabetes,hype rammonemia and hepatic encephalopathy,and other neurological and neurodegenerative diseases.Extracellular vesicles may cross the blood-brain barrier and transfer pathological signals from the periphery to the brain.This contributes to inducing neuroinflammation and cognitive and motor impairment in hyperammonemia and hepatic encephalopathy and in neurodegenerative diseases.The mechanisms involved are beginning to be unde rstood.For example,increased tumor necrosis factor a in extracellular vesicles from plasma of hype rammonemic rats induces neuroinflammation and motor impairment when injected into normal rats.Identifying the mechanisms by which extracellular vesicles contribute to the pathogenesis of these diseases will help to develop new treatments and diagnostic tools for their easy and early detection.In contrast,extra cellular vesicles from mesenchymal stem cells have therapeutic utility in many of the above pathologies,by reducing inflammation and neuroinflammation and improving cognitive and motor function.These extra cellular vesicles recapitulate the beneficial effects of mesenchymal stem cells and have advantages as therapeutic tools:they are less immunoge nic,may not diffe rentiate to malignant cells,cross the blood-brain barrier,and may reach more easily target organs.Extracellular vesicles from mesenchymal stem cells have beneficial effects in models of ischemic brain injury,Alzheimer's and Parkinson's diseases,hyperammonemia,and hepatic encephalopathy.Extracellular vesicles from mesenchymal stem cells modulate the immune system,promoting the shift from a pro-inflammato ry to an anti-inflammatory state.For example,extracellular vesicles from mesenchymal stem cells modulate the Th17/Treg balance,promoting the anti-inflammatory Treg.Extracellular vesicles from mesenchymal stem cells may also act directly in the brain to modulate microglia activation,promoting a shift from a pro-inflammatory to an anti-inflammatory state.This reduces neuroinflammation and improves cognitive and motor function.Two main components of extracellular vesicles from mesenchymal stem cells which contribute to these beneficial effects are transforming growth factor-βand miR-124.Identifying the mechanisms by which extracellular vesicles from mesenchymal stem cells induce the beneficial effects and the main molecules(e.g.,proteins and mRNAs)involved may help to improve their therapeutic utility.The aims of this review are to summarize the knowledge of the pathological effects of extracellular vesicles in different pathologies,the therapeutic potential of extra cellular vesicles from mesenchymal stem cells to recover cognitive and motor function and the molecular mechanisms for these beneficial effects on neurological function.
基金supported by Notional Institutes of Health Grant,No.1R01NS100710-01A1(to YX)。
文摘Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide.Despite significant advancements in the field of medicine,effective treatments for traumatic brain injury remain limited.Recently,extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury.Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells,including those in the brain,and can be engineered to contain therapeutic cargo,such as anti-inflammatory molecules,growth factors,and microRNAs.When administered intravenously,extra cellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury,where they can be taken up by recipient cells and modulate the inflammatory response,promote neuroregeneration,and improve functional outcomes.In preclinical studies,extracellular vesicle-based therapies have shown promising results in promoting recove ry after traumatic brain injury,including reducing neuronal damage,improving cognitive function,and enhancing motor recovery.While further research is needed to establish the safety and efficacy of extra cellular vesicle-based therapies in humans,extra cellular vesicles represent a promising novel approach for the treatment of traumatic brain injury.In this review,we summarize mesenchymal ste m/stromal cell-de rived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brainderived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury.
基金supported by the National Key Research and Development Project Intergovernmental Cooperation in Science and Technology of China(2018YFE0126900)the Key R&D Program of Lishui City(2021ZDYF12)the National Natural Science Foundation of China(82271629)。
文摘Skin wounds are characterized by injury to the skin due to trauma,tearing,cuts,or contusions.As such injuries are common to all human groups,they may at times represent a serious socioeconomic burden.Currently,increasing numbers of studies have focused on the role of mesenchymal stem cell(MSC)-derived extracellular vesicles(EVs)in skin wound repair.As a cell-free therapy,MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy.Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures,including the regeneration of vessels,nerves,and hair follicles.In addition,MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization,wound angiogenesis,cell proliferation,and cell migration,and by inhibiting excessive extracellular matrix production.Additionally,these structures can serve as a scaffold for components used in wound repair,and they can be developed into bioengineered EVs to support trauma repair.Through the formulation of standardized culture,isolation,purification,and drug delivery strategies,exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair.In conclusion,MSCderived EV-based therapies have important application prospects in wound repair.Here we provide a comprehensive overview of their current status,application potential,and associated drawbacks.
基金supported by Canadian Institutes for Health Research (CIHR)(to ADR and WW)Ontario Graduate Scholarship (to NOB)+2 种基金Alzheimer's Society of CanadaHeart and Stroke Foundation of Canada,CIHRthe Canadian Consortium for Neurodegeneration and Aging (CCNA)(to SNW)。
文摘Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial activation and neuroinflammation, edema, ischemia, vascular injury, energy failure, and peripheral immune cell infiltration. The timing of these events post injury has been linked to injury severity and functional outcome. Extracellular vesicles are membrane bound secretory vesicles that contain markers and cargo pertaining to their cell of origin and can cross the blood-brain barrier. These qualities make extracellular vesicles intriguing candidates for a liquid biopsy into the pathophysiologic changes occurring at the cellular level post traumatic brain injury. Herein, we review the most commonly reported cargo changes in extracellular vesicles from clinical traumatic brain injury samples. We then use knowledge from animal and in vitro models to help infer what these changes may indicate regrading cellular responses post traumatic brain injury. Future research should prioritize labeling extracellular vesicles with markers for distinct cell types across a range of timepoints post traumatic brain injury.
基金supported by the National Natural Science Foundation of China(No.82370838 and No.82172221).
文摘Extracellular vesicles(EVs)are considered to be a new generation of bioinspired nanoscale drug delivery systems due to their low immunogenicity,natural functionality,and excellent biocompatibility.However,limitations such as low uptake efficiency,insufficient production,and inhomogeneous performance undermine their potential.To address these issues,numerous researchers have put forward various methods and applications for enhancing EV uptake in recent decades.In this review,we introduce various methods for the cellular uptake of EVs and summarize recent advances on the methods and mechanisms for enhancing EV uptake.In addition,we provide further understanding regarding enhancing EV uptake and put forward prospects and challenges for the development of EV-based therapy in the future.
基金supported by the National Natural Science Foundation of China(Nos.U22A20160,82221003,81991505,82201123)China Postdoctoral Science Foundation(2022M720290,2021M700279)Hubei Provincial Key Laboratory of Oral and Maxillofacial Development and Regeneration Open Fund(2022kqhm004).
文摘Bone tissue renewal can be enhanced through co-transplantation of bone mesenchymal stem cells(BMSCs)and vascular endothelial cells(ECs).However,there are apparent limitations in stem cell-based therapy which hinder its clinic translation.Hence,we investigated the potential of alternative stem cell substitutes for facilitating bone regeneration.In this study,we successfully prepared cell membrane vesicles(CMVs)from BMSCs and ECs.The results showed that BMSC-derived cell membrane vesicles(BMSC-CMVs)possessed membrane receptors involved in juxtacrine signaling and growth factors derived from their parental cells.EC-derived cell membrane vesicles(EC-CMVs)also contained BMP2 and VEGF derived from their parental cells.BMSC-CMVs enhanced tube formation and migration ability of hUVECs,while EC-CMVs promoted the osteogenic differentiation of hBMSCs in vitro.Using a rat skull defect model,we found that co-transplantation of BMSC-CMVs and EC-CMVs could stimulate angiogenesis and bone formation in vivo.Therefore,our research might provide an innovative and feasible approach for cell-free therapy in bone tissue regeneration.
基金supported by Ghent University(Grant:Bijzonder Onderzoeksfonds Geconcerteerde Onderzoeksactie 2018000504[GOA030-18 BOF])supported by Ghent University:BOF.STG.2022.02.0034.01+1 种基金supported by China Scholarship Council:Grant 202006910034supported by Fonds Wetenschappelijk Onderzoek:Grant 1228821N and 12A2H24N。
文摘Transfer RNA-derived small RNAs(tsRNAs)have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells.However,it is unknown whether tsRNAs also regulate embryo hatching.In this study,we mined the sequencing data of a previous experiment in which we demonstrated that the microRNA(miRNA)cargo of preimplantation embryonic extracellular vesicles(EVs)influences embryo development.We thus profiled the tsRNA cargo of EVs secreted by blastocysts and non-blastocysts.The majority of tsRNAs was identified as tRNA halves originating from the 5'ends of tRNAs.Among the 148 differentially expressed tsRNAs,the 19 nt tRNA fragment(tRF)tDR-14:32-Glu-CTC-1 was found to be significantly up-regulated in EVs derived from non-blastocysts.RT-qPCR assays confirmed its significant up-regulation in non-blastocyst embryos and their conditioned medium compared to the blastocyst group(P<0.05).Inhibition of tDR-14:32-Glu-CTC-1 by supplementing antagomirs to the conditioned medium improved embryo hatching(P<0.05).Transcriptomic analysis of embryos treated with tDR-14:32-Glu-CTC-1 antagomirs further showed differential expression of genes that are associated with embryo hatching and implantation.In summary,tDR-14:32-Glu-CTC-1 is up-regulated in non-blastocyst embryos and their secretions,and inhibition of tDR-14:32-Glu-CTC-1 promotes embryo hatching,while influencing embryo implantation-related genes and pathways.These results indicate that embryonic EVs containing specific tRFs may regulate preimplantation embryo development.
文摘Mitochondrial organelle transplantation (MOT) is an innovative strategy for the treatment of mitochondrial dysfunction such as cardiac ischemic reperfusion injuries, Parkinson’s diseases, brain and spinal cord injuries, and amyotrophic lateral sclerosis (ALS). However, one of the major challenges for widespread usage is a methodology for preservation of isolated mitochondria. Extracellular vesicles (EVs) are phospholipid bilayer-enclosed vesicles released from cells. EVs carry a cargo of proteins, nucleic acids, lipids, metabolites, and even organelles such as mitochondria. Purpose: To test if EVs enhance the stability of isolated mitochondria. Methods: We mixed isolated mitochondria of fibroblasts with EVs of mesenchymal stromal cells (imEVs) (9:1 in volume) and stored the mixture at 2°C - 6°C for different time periods. We measured morphology, mitochondrial membrane potential (MMP) and mitochondrial ATP content at 0, 2, 5 days. Key findings: After 2 days of storage, the mito-chondria without imEVs lost approximate 70% MMP (RFU: 1822 ± 68), compared to the fresh mitochondria (RFU: 5458 ± 52) (p 0.05). In agreement with MMP, mitochondria without imEVs lost significant mitochondrial ATP content (p 0.05), after 2 days of cold storage, compared to fresh mitochondria. Microscopy showed that imEVs promoted aggregation of isolated mitochondria. Summary: The preliminary data showed that imEVs enhanced the stability of isolated mitochondria in cold storage.
基金supported by the Fundamental Research Funds for the Central UniversitiesNatural Science Foundation(Nos.2022-YGJC-86 and 2020-ZLLH-38 to Yiming Meng)of Liaoning ProvinceExcellent Talent Fund of Liaoning Province Cancer Hospital of Yiming Meng.
文摘Bacterial outer membrane vesicles(OMVs)are diminutive vesicles naturally released by Gram-negative bacteria.These vesicles possess distinctive characteristics that attract attention for their potential use in drug administration and immunotherapy in cancer treatment.Therapeutic medicines may be delivered via OMVs directly to the tumor sites,thereby minimizing exposure to healthy cells and lowering the risk of systemic toxicity.Furthermore,the activation of the immune system by OMVs has been demonstrated to facilitate the recognition and elimination of cancer cells,which makes them a desirable tool for immunotherapy.They can also be genetically modified to carry specific antigens,immunomodulatory compounds,and small interfering RNAs,enhancing the immune response to cancerous cells and silencing genes associated with disease progression.Combining OMVs with other cancer treatments like chemotherapy and radiation has shown promising synergistic effects.This review highlights the crucial role of bacterial OMVs in cancer,emphasizing their potential as vectors for novel cancer targeted therapies.As researchers delve deeper into the complexities of these vesicles and their interactions with tumors,there is a growing sense of optimism that this avenue of study will bring positive outcomes and renewed hope to cancer patients in the foreseeable future.
基金supported by the grants from University of Macao,China,Nos.MYRG2022-00221-ICMS(to YZ)and MYRG-CRG2022-00011-ICMS(to RW)the Natural Science Foundation of Guangdong Province,No.2023A1515010034(to YZ)。
文摘Ischemic stroke is a secondary cause of mortality worldwide,imposing considerable medical and economic burdens on society.Extracellular vesicles,serving as natural nanocarriers for drug delivery,exhibit excellent biocompatibility in vivo and have significant advantages in the management of ischemic stroke.However,the uncertain distribution and rapid clearance of extracellular vesicles impede their delivery efficiency.By utilizing membrane decoration or by encapsulating therapeutic cargo within extracellular vesicles,their delivery efficacy may be greatly improved.Furthermore,previous studies have indicated that microvesicles,a subset of large-sized extracellular vesicles,can transport mitochondria to neighboring cells,thereby aiding in the restoration of mitochondrial function post-ischemic stroke.Small extracellular vesicles have also demonstrated the capability to transfer mitochondrial components,such as proteins or deoxyribonucleic acid,or their sub-components,for extracellular vesicle-based ischemic stroke therapy.In this review,we undertake a comparative analysis of the isolation techniques employed for extracellular vesicles and present an overview of the current dominant extracellular vesicle modification methodologies.Given the complex facets of treating ischemic stroke,we also delineate various extracellular vesicle modification approaches which are suited to different facets of the treatment process.Moreover,given the burgeoning interest in mitochondrial delivery,we delved into the feasibility and existing research findings on the transportation of mitochondrial fractions or intact mitochondria through small extracellular vesicles and microvesicles to offer a fresh perspective on ischemic stroke therapy.
文摘Extracellular vesicles(EVs)are membranous vesicular structures released from almost all eukaryotic cell types under different physiological or pathological conditions.Growing evidence demonstrates that EVs can serve as mediators of intercellular communication between donor and recipient cells or microorganism-infected and noninfected cells.Coronavirus disease 2019(COVID-19)disease is caused by infection of the severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)of host cells in the respiratory system and various extra-pulmonary tissue/organs,resulting in complications of multiple organ systems.As the cell surface receptor,angiotensin-converting enzyme 2(ACE2)mediates cellular entry of SARS-CoV-2 into the host cells in patients with COVID-19.Recent studies have found that ACE2 can be released with EVs,which have been shown to interfere with the entry of the virus into host cells and thus may be involved in COVID-19 pathophysiology.In addition,ACE2,neprilysin(NEP),and thimet oligopeptidase(TOP)are the key enzymes that regulate angiotensin metabolism by converting angiotensin II or angiotensin I to angiotensin 1-7,the latter of which has protective effects in counterbalancing the harmful effects of angiotensin II in COVID-19 disease.This review summarizes the recent research progress regarding EV-associated ACE2,NEP,and TOP and the perspectives of their potential involvement in the pathophysiology of COVID-19 disease.
基金supported by the National Natural Science Foundation of China(U22A20520)the Innovation Team Project of Modern Agricultural Industrial Technology System of Guangdong Province,China(2023KJ119)the Natural Science Foundation Program of Guangdong Province,China(2023A1515012206)。
文摘Streptococcus suis serotype 2(S.suis 2)is a zoonotic pathogen that clinically causes severe swine and human infections(such as meningitis,endocarditis,and septicemia).In order to cause widespread diseases in different organs,S.suis 2 must colonize the host,break the blood barrier,and cause exaggerated inflammation.In the last few years,most studies have focused on a single virulence factor and its influences on the host.Membrane vesicles(MVs)can be actively secreted into the extracellular environment contributing to bacteria-host interactions.Gram-negative bacteria-derived outer membrane vesicles(OMVs)were recently shown to activate host Caspase-11-mediated non-canonical inflammasome pathway via deliverance of OMV-bound lipopolysaccharide(LPS),causing host cell pyroptosis.However,little is known about the effect of the MVs from S.suis 2(Gram-positive bacteria without LPS)on cell pyroptosis.Thus,we investigated the molecular mechanism by which S.suis 2 MVs participate in endothelial cell pyroptosis.In this study,we used proteomics,electron scanning microscopy,fluorescence microscope,Western blotting,and bioassays,to investigate the MVs secreted by S.suis 2.First,we demonstrated that S.suis 2 secreted MVs with an average diameter of 72.04 nm,and 200 proteins in MVs were identified.Then,we showed that MVs were transported to cells via mainly dynamin-dependent endocytosis.The S.suis 2 MVs activated NLRP3/Caspase-1/GSDMD canonical inflammasome signaling pathway,resulting in cell pyroptosis,but it did not activate the Caspase-4/-5 pathway.More importantly,endothelial cells produce large amounts of reactive oxygen species(ROS)and lost their mitochondrial membrane potential under induction by S.suis 2 MVs.The results in this study suggest for the first time that MVs from S.suis 2 were internalized by endothelial cells via mainly dynamin-dependent endocytosis and might promote NLRP3/Caspase-1/GSDMD pathway by mitochondrial damage,which produced mtDNA and ROS under induction,leading to the pyroptosis of endothelial cells.
基金supported by the NIH grants,R01 NS111801(to ZGZ)American Heart Association 16SDG29860003(to YZ)。
文摘Axonal remodeling is a critical aspect of ischemic brain repair processes and contributes to spontaneous functional recovery.Our previous in vitro study demonstrated that exosomes/small extracellular vesicles(sEVs)isolated from cerebral endothelial cells(CEC-sEVs)of ischemic brain promote axonal growth of embryonic cortical neurons and that microRNA 27a(miR-27a)is an elevated miRNA in ischemic CEC-sEVs.In the present study,we investigated whether normal CEC-sEVs engineered to enrich their levels of miR-27a(27a-sEVs)further enhance axonal growth and improve neurological outcomes after ischemic stroke when compared with treatment with non-engineered CEC-sEVs.27a-sEVs were isolated from the conditioned medium of healthy mouse CECs transfected with a lentiviral miR-27a expression vector.Small EVs isolated from CECs transfected with a scramble vector(Scra-sEVs)were used as a control.Adult male mice were subjected to permanent middle cerebral artery occlusion and then were randomly treated with 27a-sEVs or Scra-sEVs.An array of behavior assays was used to measure neurological function.Compared with treatment of ischemic stroke with Scra-sEVs,treatment with 27a-sEVs significantly augmented axons and spines in the peri-infarct zone and in the corticospinal tract of the spinal grey matter of the denervated side,and significantly improved neurological outcomes.In vitro studies demonstrated that CEC-sEVs carrying reduced miR-27a abolished 27a-sEV-augmented axonal growth.Ultrastructural analysis revealed that 27a-sEVs systemically administered preferentially localized to the pre-synaptic active zone,while quantitative reverse transcription-polymerase chain reaction and Western Blot analysis showed elevated miR-27a,and reduced axonal inhibitory proteins Semaphorin 6A and Ras Homolog Family Member A in the peri-infarct zone.Blockage of the Clathrin-dependent endocytosis pathway substantially reduced neuronal internalization of 27a-sEVs.Our data provide evidence that 27a-sEVs have a therapeutic effect on stroke recovery by promoting axonal remodeling and improving neurological outcomes.Our findings also suggest that suppression of axonal inhibitory proteins such as Semaphorin 6A may contribute to the beneficial effect of 27a-sEVs on axonal remodeling.
基金Supported by Xi’an Science and Technology Plan Project,No.20200001YX001(1)Xi’an Talent Plan-Elite(Innovative Talents)Project,No.XAYC210062.
文摘BACKGROUND Pulmonary fibrosis(PF)is a chronic interstitial lung disease characterized by fibroblast proliferation and extracellular matrix formation,causing structural damage and lung failure.Stem cell therapy and mesenchymal stem cells-extracellular vesicles(MSC-EVs)offer new hope for PF treatment.AIM To investigate the therapeutic potential of MSC-EVs in alleviating fibrosis,oxidative stress,and immune inflammation in A549 cells and bleomycin(BLM)-induced mouse model.METHODS The effect of MSC-EVs on A549 cells was assessed by fibrosis markers[collagen I andα-smooth muscle actin(α-SMA),oxidative stress regulators[nuclear factor E2-related factor 2(Nrf2)and heme oxygenase-1(HO-1),and inflammatory regu-lators[nuclear factor-kappaB(NF-κB)p65,interleukin(IL)-1β,and IL-2].Similarly,they were assessed in the lungs of mice where PF was induced by BLM after MSC-EV transfection.MSC-EVs ion PF mice were detected by pathological staining and western blot.Single-cell RNA sequencing was performed to investigate the effects of the MSC-EVs on gene expression profiles of macrophages after modeling in mice.RESULTS Transforming growth factor(TGF)-β1 enhanced fibrosis in A549 cells,significantly increasing collagen I andα-SMA levels.Notably,treatment with MSC-EVs demonstrated a remarkable alleviation of these effects.Similarly,the expression of oxidative stress regulators,such as Nrf2 and HO-1,along with inflammatory regulators,including NF-κB p65 and IL-1β,were mitigated by MSC-EV treatment.Furthermore,in a parallel manner,MSC-EVs exhibited a downregulatory impact on collagen deposition,oxidative stress injuries,and inflammatory-related cytokines in the lungs of mice with PF.Additionally,the mRNA sequencing results suggested that BLM may induce PF in mice by upregulating pulmonary collagen fiber deposition and triggering an immune inflammatory response.The findings collectively highlight the potential therapeutic efficacy of MSC-EVs in ameliorating fibrotic processes,oxidative stress,and inflammatory responses associated with PF.CONCLUSION MSC-EVs could ameliorate fibrosis in vitro and in vivo by downregulating collagen deposition,oxidative stress,and immune-inflammatory responses.
基金supported by the 2020 Li Ka Shing Foundation Cross-Disciplinary Research Grant,No.2020LKSFG02C(to Qiang Fang and SG)the National Natural Science Foundation of China,No.82201511(to SG)+1 种基金the Guangdong Basic and Applied Basic Research Foundation,Nos.2021A1515110873(to SG),2022A1515110139(to TW)the Medical Scientific Research Foundation of Guangdong Province,No.A2022077(to SG)。
文摘Spinal cord injury is a severe insult to the central nervous system that causes persisting neurological deficits.The currently available treatments involve surgical,medical,and rehabilitative strategies.However,none of these techniques can markedly reverse neurological deficits.Recently,extracellular vesicles from various cell sources have been applied to different models of spinal cord injury,thereby generating new cell-free therapies for the treatment of spinal cord injury.However,the use of extracellular vesicles alone is still associated with some notable shortcomings,such as their uncertainty in targeting damaged spinal cord tissues and inability to provide structural support to damaged axons.Therefore,this paper reviews the latest combined strategies for the use of extracellular vesicle-based technology for spinal cord injury,including the combination of extracellular vesicles with nanoparticles,exogenous drugs and/or biological scaffold materials,which facilitate the targeting ability of extracellular vesicles and the combinatorial effects with extracellular vesicles.We also highlight issues relating to the clinical transformation of these extracellular vesicle-based combination strategies for the treatment of spinal cord injury.
基金supported by the National Natural Science Foundation of China,No.82271114the Natural Science Foundation of Zhejiang Province of China,No.LZ22H120001(both to ZLC).
文摘Several studies have found that transplantation of neural progenitor cells(NPCs)promotes the survival of injured neurons.However,a poor integration rate and high risk of tumorigenicity after cell transplantation limits their clinical application.Small extracellular vesicles(sEVs)contain bioactive molecules for neuronal protection and regeneration.Previous studies have shown that stem/progenitor cell-derived sEVs can promote neuronal survival and recovery of neurological function in neurodegenerative eye diseases and other eye diseases.In this study,we intravitreally transplanted sEVs derived from human induced pluripotent stem cells(hiPSCs)and hiPSCs-differentiated NPCs(hiPSC-NPC)in a mouse model of optic nerve crush.Our results show that these intravitreally injected sEVs were ingested by retinal cells,especially those localized in the ganglion cell layer.Treatment with hiPSC-NPC-derived sEVs mitigated optic nerve crush-induced retinal ganglion cell degeneration,and regulated the retinal microenvironment by inhibiting excessive activation of microglia.Component analysis further revealed that hiPSC-NPC derived sEVs transported neuroprotective and anti-inflammatory miRNA cargos to target cells,which had protective effects on RGCs after optic nerve injury.These findings suggest that sEVs derived from hiPSC-NPC are a promising cell-free therapeutic strategy for optic neuropathy.
基金Supported by Universidad de Guadalajara,Programa de Impulso a la Investigación,No.PIN 2020Universidad de Guadalajara,Programa de Apoyo a la Mejora en las Condiciones de Producción de los Miembros del SNI y SNCA,No.PROSNI 2024(to Montoya-Buelna M)and Secretaría de Salud de México,Dirección General de Calidad y Educación en Salud,No.Fellowship 2022-2023(to Millan-Sanchez MS).
文摘Extracellular vesicles(EVs)are small particles released by many cell types in different tissues,including the liver,and transfer specific cargo molecules from originating cells to receptor cells.This process generally culminates in activation of distant cells and inflammation and progression of certain diseases.The global chronic liver disease(CLD)epidemic is estimated at 1.5 billion patients world-wide.Cirrhosis and liver cancer are the most common risk factors for CLD.However,hepatitis C and B virus infection and obesity are also highly associated with CLD.Nonetheless,the etiology of many CLD pathophysiological,cellular,and molecular events are unclear.Changes in hepatic lipid metabolism can lead to lipotoxicity events that induce EV release.Here,we aimed to present an overview of EV features,from definition to types and biogenesis,with particular focus on the molecules related to steatosis-related liver disease,diagnosis,and therapy.
基金supported by grants from the Spanish Ministry of Health-PNSD(2019-I039 and 2023-I024)(to MP)FEDER/Ministerio de Ciencia e Innovación-Agencia Estatal de Investigación PID2021-1243590B-I100(to VMM)+2 种基金GVA(CIAICO/2021/203)(to MP)the Primary Addiction Care Research Network(RD21/0009/0005)(to MP)a predoctoral fellowship from the Generalitat Valenciana(ACIF/2021/338)(to CPC).
文摘Our previous studies have reported that activation of the NLRP3(NOD-,LRR-and pyrin domain-containing protein 3)-inflammasome complex in ethanol-treated astrocytes and chronic alcohol-fed mice could be associated with neuroinflammation and brain damage.Mesenchymal stem cell-derived extracellular vesicles(MSC-EVs)have been shown to restore the neuroinflammatory response,along with myelin and synaptic structural alterations in the prefrontal cortex,and alleviate cognitive and memory dysfunctions induced by binge-like ethanol treatment in adolescent mice.Considering the therapeutic role of the molecules contained in mesenchymal stem cell-derived extracellular vesicles,the present study analyzed whether the administration of mesenchymal stem cell-derived extracellular vesicles isolated from adipose tissue,which inhibited the activation of the NLRP3 inflammasome,was capable of reducing hippocampal neuroinflammation in adolescent mice treated with binge drinking.We demonstrated that the administration of mesenchymal stem cell-derived extracellular vesicles ameliorated the activation of the hippocampal NLRP3 inflammasome complex and other NLRs inflammasomes(e.g.,pyrin domain-containing 1,caspase recruitment domain-containing 4,and absent in melanoma 2,as well as the alterations in inflammatory genes(interleukin-1β,interleukin-18,inducible nitric oxide synthase,nuclear factor-kappa B,monocyte chemoattractant protein-1,and C–X3–C motif chemokine ligand 1)and miRNAs(miR-21a-5p,miR-146a-5p,and miR-141-5p)induced by binge-like ethanol treatment in adolescent mice.Bioinformatic analysis further revealed the involvement of miR-21a-5p and miR-146a-5p with inflammatory target genes and NOD-like receptor signaling pathways.Taken together,these findings provide novel evidence of the therapeutic potential of MSC-derived EVs to ameliorate the hippocampal neuroinflammatory response associated with NLRP3 inflammasome activation induced by binge drinking in adolescence.
基金supported by the Fujian Minimally Invasive Medical Center Foundation,No.2128100514(to CC,CW,HX)the Natural Science Foundation of Fujian Province,No.2023J01640(to CC,CW,ZL,HX)。
文摘Spinal cord injury is a disabling condition with limited treatment options.Multiple studies have provided evidence suggesting that small extracellular vesicles(SEVs)secreted by bone marrow mesenchymal stem cells(MSCs)help mediate the beneficial effects conferred by MSC transplantation following spinal cord injury.Strikingly,hypoxia-preconditioned bone marrow mesenchymal stem cell-derived SEVs(HSEVs)exhibit increased therapeutic potency.We thus explored the role of HSEVs in macrophage immune regulation after spinal cord injury in rats and their significance in spinal cord repair.SEVs or HSEVs were isolated from bone marrow MSC supernatants by density gradient ultracentrifugation.HSEV administration to rats via tail vein injection after spinal cord injury reduced the lesion area and attenuated spinal cord inflammation.HSEVs regulate macrophage polarization towards the M2 phenotype in vivo and in vitro.Micro RNA sequencing and bioinformatics analyses of SEVs and HSEVs revealed that mi R-146a-5p is a potent mediator of macrophage polarization that targets interleukin-1 receptor-associated kinase 1.Reducing mi R-146a-5p expression in HSEVs partially attenuated macrophage polarization.Our data suggest that HSEVs attenuate spinal cord inflammation and injury in rats by transporting mi R-146a-5p,which alters macrophage polarization.This study provides new insights into the application of HSEVs as a therapeutic tool for spinal cord injury.
基金supported by gran ts and fellowships from the Deportomento de Ciência e Tecnologia (DECIT-MS) do Ministério da SaúdeConselho Nacionol de Desenvolvimento Científico e Tecnológico (CNPq)+2 种基金Instituto Nacional de Ciência e Tecnologia em Medicina RegenerotivaFundacao de AmporoàPesquisa do Estado do Rio de Janeiro(FAPERJ)Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES)(all to RMO)。
文摘Alzheimer's disease is a severe, highly disabling neurodegenerative disease, clinically characterized by a progressive decline in cognitive functions, and is the most common form of dementia in the elderly. For decades, the search for disease-modifying therapies has focused on the two main Alzheimer's disease histopathological hallmarks, seeking to prevent, mitigate, or clear the formation of extracellular aggregates of β-amyloid peptide and intracellular neurofibrillary tangles of tau protein, although without clinical success. Mesenchymal stem cell-based therapy has emerged as a promising alternative for the treatment of Alzheimer's disease, especially because it also targets other crucial players in the pathogenesis of the disease, such as neuroinflammation, synaptic dysfunction/loss, oxidative stress, and impaired neurogenesis. Herein, we review current knowledge of the therapeutic potential of mesenchymal stem cells and their extracellular vesicles for Alzheimer's disease, discussing the most recent findings in both preclinical and clinical trials as well as how advanced technologies have helped to overcome some limitations and contributed to stimulate the development of more effective treatments.