Based on the research of two geophone types (10 Hz moving-coil velocity and piezoelectric acceleration) and their velocity and acceleration parameters, frequency response functions have been determined, as well as t...Based on the research of two geophone types (10 Hz moving-coil velocity and piezoelectric acceleration) and their velocity and acceleration parameters, frequency response functions have been determined, as well as the differences between them. Also, shock- vibration tests have been accomplished, not only to explain the two shock response signal differences, but also to analyze the response signal characteristics and its ability to carry information. In addition, seismic data acquisition experiments have been carried out under comparable conditions in the field. A contrast analysis of shot gathers and stack profiles acquired with the two geophone types is given in this paper. The results show that the acceleration signal from the acceleration geophone has a better advantage in terms of high signal-to-noise ratio, high accuracy, high resolution, and quantity of information to better meet current and future requirements for seismic exploration.展开更多
In this paper, we review the differences between velocity geophones (VG) and acceleration geophones (AG) and their effect on seismic signals acquired in onshore-offshore transition areas. We present a new generati...In this paper, we review the differences between velocity geophones (VG) and acceleration geophones (AG) and their effect on seismic signals acquired in onshore-offshore transition areas. We present a new generation of Land Piezoelectric Geophone (LPG) and analyze its performance. Our field experiments demonstrate that our new LPG can be used to substitute for VGs in order to eliminate phase, frequency and energy differences between different geophone systems commonlv used in transition areas.展开更多
Seismic geophone is the key instrument for seismic data acquisition in the fields of oil and gas exploration and other relevant fields.It plays an important role in data quality,subsequent processing and interpretatio...Seismic geophone is the key instrument for seismic data acquisition in the fields of oil and gas exploration and other relevant fields.It plays an important role in data quality,subsequent processing and interpretation.Aiming at the shortcomings of the existing geophones,such as large volume,heavy weight,unable to monitor in real-time,and heavy workload of data transmission and storage,this paper designs and implements a wireless geophone based on STM32 embedded microcontroller.It is mainly composed of STM32 microcontroller,acceleration sensor,global positioning system(GPS)module,Wi-Fi module and real-time seismic data receiving and processing module.Firstly,the acceleration of vibration in three directions is sensed by the acceleration sensor;secondly,the sampling and analog-to-digital conversion of the vibration data is controlled by the microcontroller;thirdly,the vibration and GPS data are sent to the personal computer(PC)through Wi-Fi,and the personal coomputer PC-side software module completes the reception,display,monitoring and storage of the seismic data;finally,the feasibility and effectiveness of the designed wireless geophone are verified through actual seismic data acquisition experiments.展开更多
The properties of the seismic geophones are important factors for high-resolution seismic exploration and have a great influence on data quality. For this reason, we have tested three kinds of geophones currently used...The properties of the seismic geophones are important factors for high-resolution seismic exploration and have a great influence on data quality. For this reason, we have tested three kinds of geophones currently used in several regions with different geological features: desert, saline-alkali farmland, and carbonate areas in mountainous regions in order to test their property indexes. Based on the geophone vibration equation and from the property index effects ofgeophone and the connection of the geophones on seismic data, we analyzed seismic data quality acquired inthe tested regions and suggest that suitable geophone property indexes, reasonable choice of geophone types, and the suitable geophone connection can enhance the signal/noise ratio of seismic data.展开更多
介绍了一种新的电缆扰动监测系统,解决了传统电网舞动检测器在面对电磁干扰和持续供电问题时的问题。该系统采用双端M-Z光路结构,能够实时定位舞动位置,而检测器采用薄壁增敏电缆套筒构建,经过有限元分析得出其固有频率为106.77 Hz,与...介绍了一种新的电缆扰动监测系统,解决了传统电网舞动检测器在面对电磁干扰和持续供电问题时的问题。该系统采用双端M-Z光路结构,能够实时定位舞动位置,而检测器采用薄壁增敏电缆套筒构建,经过有限元分析得出其固有频率为106.77 Hz,与实验数据仅有1.65%的误差。实验结果显示,该检测器在0~140 Hz范围内的相对灵敏度为41.25~66.78 dB re rad/g,对舞动信号的检测灵敏度高。展开更多
We have developed a type of L-shaped single-component geophone array as a single station(L-array station)for surface microseismic monitoring.The L-array station consists of two orthogonal sensor arrays,each being a li...We have developed a type of L-shaped single-component geophone array as a single station(L-array station)for surface microseismic monitoring.The L-array station consists of two orthogonal sensor arrays,each being a linear array of single-component sensors.L-array stations can be used to accurately estimate the polarization of first arrivals without amplitude picking.In a synthetic example,we first use segmentally iterative ray tracing(SIRT)method and forward model to calculate the travel time and polarization of first arrivals at a set of L-array stations.Then,for each L-array station,the relative delay times of first arrivals along sensor arrays are used to estimate the polarization vector.The small errors in estimated polarization vectors show the reliability and robustness of polarization estimation based on L-array stations.We then use reverse-time ray-tracing(RTRT)method to locate the source position based on estimated polarizations at a set of L-array stations.Very small errors in inverted source location and origin time indicate the great potential of L-array stations for source localization applications in surface microseismic monitoring.展开更多
A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with ...A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.展开更多
基金supported jointly by the National Natural Science Foundation Fund of China (No.40930418)Chinese government-funded scientific program of the Sino Probe Deep Exploration in China (SinoProbe03)the National Science and Technology Support Program Project (No. 2011BAB04B01)
文摘Based on the research of two geophone types (10 Hz moving-coil velocity and piezoelectric acceleration) and their velocity and acceleration parameters, frequency response functions have been determined, as well as the differences between them. Also, shock- vibration tests have been accomplished, not only to explain the two shock response signal differences, but also to analyze the response signal characteristics and its ability to carry information. In addition, seismic data acquisition experiments have been carried out under comparable conditions in the field. A contrast analysis of shot gathers and stack profiles acquired with the two geophone types is given in this paper. The results show that the acceleration signal from the acceleration geophone has a better advantage in terms of high signal-to-noise ratio, high accuracy, high resolution, and quantity of information to better meet current and future requirements for seismic exploration.
基金The work is sponsored by Nation's "863" Project (No. 2001AA602018).
文摘In this paper, we review the differences between velocity geophones (VG) and acceleration geophones (AG) and their effect on seismic signals acquired in onshore-offshore transition areas. We present a new generation of Land Piezoelectric Geophone (LPG) and analyze its performance. Our field experiments demonstrate that our new LPG can be used to substitute for VGs in order to eliminate phase, frequency and energy differences between different geophone systems commonlv used in transition areas.
基金Supported by the National Natural Science Foundation of China(No.41804135)Key Laboratory of Petroleum Resources Research,Institute of Geology and Geophysics,Chinese Academy of Sciences,Open Project(No.KLOR2018-9)Beijing Information Science and Technology University Research Fund Project(No.2025025).
文摘Seismic geophone is the key instrument for seismic data acquisition in the fields of oil and gas exploration and other relevant fields.It plays an important role in data quality,subsequent processing and interpretation.Aiming at the shortcomings of the existing geophones,such as large volume,heavy weight,unable to monitor in real-time,and heavy workload of data transmission and storage,this paper designs and implements a wireless geophone based on STM32 embedded microcontroller.It is mainly composed of STM32 microcontroller,acceleration sensor,global positioning system(GPS)module,Wi-Fi module and real-time seismic data receiving and processing module.Firstly,the acceleration of vibration in three directions is sensed by the acceleration sensor;secondly,the sampling and analog-to-digital conversion of the vibration data is controlled by the microcontroller;thirdly,the vibration and GPS data are sent to the personal computer(PC)through Wi-Fi,and the personal coomputer PC-side software module completes the reception,display,monitoring and storage of the seismic data;finally,the feasibility and effectiveness of the designed wireless geophone are verified through actual seismic data acquisition experiments.
基金supported by the National Basic Research Program of China(973 Program)(Grant No.2007CB209603)
文摘The properties of the seismic geophones are important factors for high-resolution seismic exploration and have a great influence on data quality. For this reason, we have tested three kinds of geophones currently used in several regions with different geological features: desert, saline-alkali farmland, and carbonate areas in mountainous regions in order to test their property indexes. Based on the geophone vibration equation and from the property index effects ofgeophone and the connection of the geophones on seismic data, we analyzed seismic data quality acquired inthe tested regions and suggest that suitable geophone property indexes, reasonable choice of geophone types, and the suitable geophone connection can enhance the signal/noise ratio of seismic data.
文摘介绍了一种新的电缆扰动监测系统,解决了传统电网舞动检测器在面对电磁干扰和持续供电问题时的问题。该系统采用双端M-Z光路结构,能够实时定位舞动位置,而检测器采用薄壁增敏电缆套筒构建,经过有限元分析得出其固有频率为106.77 Hz,与实验数据仅有1.65%的误差。实验结果显示,该检测器在0~140 Hz范围内的相对灵敏度为41.25~66.78 dB re rad/g,对舞动信号的检测灵敏度高。
基金Project(KYCX17_0500)supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province,ChinaProjects(2013/B17020664X,2014B17614)supported by the Fundamental Research Funds for the Central Universities,China+2 种基金Project(41174043)supported by the National Natural Science Foundation of ChinaProject supported by the Funds from China Scholarship Council(CSC)Project(487237)supported by the NSERC Discovery Grant for LIU Qin-ya。
文摘We have developed a type of L-shaped single-component geophone array as a single station(L-array station)for surface microseismic monitoring.The L-array station consists of two orthogonal sensor arrays,each being a linear array of single-component sensors.L-array stations can be used to accurately estimate the polarization of first arrivals without amplitude picking.In a synthetic example,we first use segmentally iterative ray tracing(SIRT)method and forward model to calculate the travel time and polarization of first arrivals at a set of L-array stations.Then,for each L-array station,the relative delay times of first arrivals along sensor arrays are used to estimate the polarization vector.The small errors in estimated polarization vectors show the reliability and robustness of polarization estimation based on L-array stations.We then use reverse-time ray-tracing(RTRT)method to locate the source position based on estimated polarizations at a set of L-array stations.Very small errors in inverted source location and origin time indicate the great potential of L-array stations for source localization applications in surface microseismic monitoring.
基金This project was funded in part bythe U . S . Army
文摘A fiber Bragg grating (FBG) geophone and a surface seismic wave-based algorithm for detecting the direction of arrival (DOA) are described. The operational principle of FBG geophone is introduced and illustrated with systematic experimental data, demonstrating an improved FBG geophone with many advantages over the conventional geophones. An innovative, robust, and simple algorithm is developed for obtaining the bearing information on the seismic events, such as people walking, or vehicles moving. Such DOA estimate is based on the interactions and projections of surface-propagating seismic waves generated by the moving personnel or vehicles with a single tri-axial seismic sensor based on FBGs. Of particular interest is the case when the distance between the source of the seismic wave and the detector is less than or comparable to one wavelength (less than 100 m), corresponding to near-field detection, where an effective method of DOA finding lacks.