A numerical study is carried out to investigate the influence of a sudden change of the specific force on a three-floated gyroscope with a rotor supported on gas-lubricated bearings.The interference torque is calculat...A numerical study is carried out to investigate the influence of a sudden change of the specific force on a three-floated gyroscope with a rotor supported on gas-lubricated bearings.The interference torque is calculated to evaluate the influence by modeling the transient behavior of the rotor-bearing system. In combination with dynamic equations of the rotor displacement,the Reynolds equation is solved on the surface of spiral-grooved conical bearings. It is assumed that a steady state has been obtained with a constant specific force, and then the specific force is suddenly changed and maintained constant after that. Responses of the sudden change are obtained by solving the equations. Numerical results show that the direction of the sudden change of the specific force is the main factor which influences the interference torque curve. With a sudden change along the input direction, the interference torque fluctuation has a constant frequency and a decreasing amplitude. With a sudden change along the output direction, the interference torque fluctuates in a small range. With a sudden change along the spin direction, the change of the interference torque combines a fluctuation and a gradually-changing quasi-equilibrium value. This study provides a supplement to the steady-state error model of the three-floated gyroscope.展开更多
A composite target seeker gyro with dual spectral range infrared rays and millimeter waves, and the associated control methodology are developed. The static pressure air floated ball bearing is used to sustain the ou...A composite target seeker gyro with dual spectral range infrared rays and millimeter waves, and the associated control methodology are developed. The static pressure air floated ball bearing is used to sustain the outer frame, the optical fiber and wave guide are used to transmit these two kinds of signals to the rear part of the gyro, and the stator coils are used to get non contact angular measurement. Composite guiding, scanning, tracing and controlling can be achieved, the maximum tracing angular velocity can be as high as 16(°)/s.展开更多
According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements r...According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.展开更多
To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and ...To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and semi-soft threshold filtering is chosen based on the comparison of hard threshold and soft threshold filtering. The semi-soft threshold wavelet package filtering method is applied in the filtering of the FOG output signal. Experiments of the stationary and dynamic FOG output signals filtered with the wavelet package analysis are carried out in a lab environment, respectively. Experiments done with the real-time measured FOG signal show that the method of semi-soft threshold wavelet package filtering reduces the mean square error from 5 (°)/h to 1 (°)/h, so it is effective in eliminating the white noises and the fractal noises existing in the FOG. The novel method proposed here is proved valid in reducing the FOG drift error, satisfying the technical demands of high precision and realtime processing.展开更多
The resonator fiber optic gyro (R-FOG) ,which utilizes a resonance frequency change due to the Sagnac effect,is a promising candidate for the next generation inertial rotation sensor. In this study, an open-loop R-F...The resonator fiber optic gyro (R-FOG) ,which utilizes a resonance frequency change due to the Sagnac effect,is a promising candidate for the next generation inertial rotation sensor. In this study, an open-loop R-FOG is set up using phase modulation spectroscopy. First,the demodulation curve is obtained using a lock-in amplifier. From the demodulation signal,a gyro dynamic range of ± 4.2rad/s is obtained. Then,using different phase modulation frequencies,the open-loop gyro output signal is measured when the gyro is rotated clockwise or counterclockwise. The bias drift as a function of time is also measured. The fluctuation of the output over 5s is about 0.02rad/s. The drift can be reduced by taking countermeasures against system noise.展开更多
Aim To analyze the mathematical error model of a dynamically tuned gyro (DTG) strapdown northfinder in detail, guide the process of design, manufacture and adjustment of northfinder. Methods Each error source of thi...Aim To analyze the mathematical error model of a dynamically tuned gyro (DTG) strapdown northfinder in detail, guide the process of design, manufacture and adjustment of northfinder. Methods Each error source of this type of northfinder was determined, and the influence of each source on northfinding result was formulated. Results and Conclusion Under the guidance of the analysis, select relevant method for each source which has different effect on result to reduce northfinding error, a type of northfinder meeting the practical requirements of user was developed.展开更多
The mechanical balance process is the key process to eliminate the quadrature error and improve the performance of the cupped wave gyro. The conventional mechanical balance method for cupped wave gyro based on cup-wal...The mechanical balance process is the key process to eliminate the quadrature error and improve the performance of the cupped wave gyro. The conventional mechanical balance method for cupped wave gyro based on cup-wall trimming requires high control accuracy of trimming quantity, which increases the production cost and decreases the fabrication efficiency in large extent. However, it is hard to reach the high balance accuracy with the natural frequency split of mHz grade by using the conventional method. In this paper, the lumped mass dynamic model of the cupped wave gyro is built by discretization method, and the effects of different position trimming on the natural frequency are analyzed. It is pointed out that trimming off a tiny quantity of material from cup-wall causes large variation of the natural frequency is the main reason for the low accuracy of the conventional mechanical balance method. Then, a precision balance method for cupped wave gyro based on cup-bottom trimming is presented and the entire procedures of this method are given. The static balance process and dynamic balance process of the precision balance method are simulated by the finite element software. The simulation result shows that the precision balance method based on cup-bottom trimming brings less additional natural frequency split in the static balance process, minimizes the natural frequency split to mHz grade and rectify the angle of mode offset to 0.1° grade in the dynamic balance process, furthermore, the method decreases the requirement for control accuracy of trimming quantity evidently. The research work provides references for structure optimization design and balance process plan of the cupped wave gyro.展开更多
Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a ...Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.展开更多
This research is focused on the singularity analysis for single-gimbal control moment gyros systems (SCMGs) which include two types, with constant speed (CSCMG) or variable speed (VSCMG) rotors. Through angular ...This research is focused on the singularity analysis for single-gimbal control moment gyros systems (SCMGs) which include two types, with constant speed (CSCMG) or variable speed (VSCMG) rotors. Through angular momentum hypersurfaces of singular states, the passable and impassable singular points are discriminated easily, meanwhile the information about how much the angular momentum workspace as well as the steering capability available is provided directly. It is obvious that the null motions of steering laws are more effective for the five pyramid configuration(FPC) than for the pyramid configuration(PC) from the singular plots. The possible degenerate hyperbolic singular points of the preceding configurations are calculated and the distinctness of them is denoted by the Gaussian curvature. Furthermore, failure problems to steer integrated power and attitude control system (IPACS) are also analyzed. A sufficient condition of choosing configurations of VSCMGs to guarantee the IPACS steering is given. The angular momentum envelops of VSCMGs, in a given energy and a limited range of rotor speeds, are plotted. The connection and distinctness between CSCMGs and VSCMGs are obtained from the point of view of envelops.展开更多
As an important sensor in the navigation systems,star sensors and the gyro play important roles in spacecraft attitude determination system.Complex environmental factors are the main sources of error in attitude deter...As an important sensor in the navigation systems,star sensors and the gyro play important roles in spacecraft attitude determination system.Complex environmental factors are the main sources of error in attitude determination.The error influence of different benchmarks and the disintegration mode between the star sensor and the gyro is analyzed in theory.The integrated design of the star sensor and the gyro on the same benchmark can effectively avoid the error influence and improves the spacecraft attitude determination accuracy.Simulation results indicate that when the stars sensor optical axis vectors overlap the reference coordinate axis of the gyro in the same benchmark,the attitude determination accuracy improves.展开更多
The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed- loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing appro...The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed- loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.展开更多
According to the disadvantages of traditional mechanical gyro inertial measurement unit('IMU') for steering system not being available for missile attitude control, a concept based on laser gyro IMU is propose...According to the disadvantages of traditional mechanical gyro inertial measurement unit('IMU') for steering system not being available for missile attitude control, a concept based on laser gyro IMU is proposed to realize navigation & positioning and attitude control. The concept will save three single-axis rate gyros compared with traditional missile attitude control system, and is available both for strapdown and platform inertial navigation systems. Firstly, this article analyzes the selection requirements of sensitive device for missile attitude control system, and then analyzes the feasibility of missile attitude control based on laser gyro theoretically, on this basis, from four aspects of error characteristics, anti-vibration characteristics, temperature characteristics and dynamic characteristics, validate the feasibility of the concept practically. Secondly according to the strict requirements of dynamic characteristics on attitude control system, a special design is made for gyro signal filtering used for attitude control. By changing the traditional high order FIR filter to adaptive filter and low order FIR filter, laser gyro's signal phase delay is reduced. The delay time of theoretical design is 1.5 ms. Lastly, this design is validated through an angle vibration test, and test curve indicates that the dynamic characteristics of laser gyro completely meets the requirements of the attitude control system, and the maximum delay time is 1.6144 ms, which satisfies with the attitude update rate of 2 ms per frame. This concept can simplify the missile guidance system design, at the same time, it does not reduce missile guidance accuracy, and also provides reference for the broadening of the application of laser gyro.展开更多
The error equation of a rotating inertial navigation system was introduced. The effect of the system's main error source (constant drift of gyro and zero bias of accelerometer) under rotating conditions for the sy...The error equation of a rotating inertial navigation system was introduced. The effect of the system's main error source (constant drift of gyro and zero bias of accelerometer) under rotating conditions for the system was analyzed. Validity of theoretical analysis was shown via simulation, and that provides a theoretical foundation for a rotating strap-down inertial navigation system during actual experimentation and application.展开更多
Studies the modeling of gyro startup drift rate from acquired experimental gyro startup drift rate data and the nonlinear dynamic models of gyro startup drift rate related temperature established by time delay neural ...Studies the modeling of gyro startup drift rate from acquired experimental gyro startup drift rate data and the nonlinear dynamic models of gyro startup drift rate related temperature established by time delay neural network which enables the gyro temperature drift rate to be compensated in the process of startup and the gyro instant startup to be implemented. And introduces an improved genetic algorithm to learn the weights of neural network identifier to avoid stacking into the local minimal value and achieve rapid convergence.展开更多
The gyro is one of the most interesting and everlasting nonlinear dynamical systems, which displays very rich and complex dynamics, such as sub-harmonic and chaotic behaviors. We study the chaos suppression of the cha...The gyro is one of the most interesting and everlasting nonlinear dynamical systems, which displays very rich and complex dynamics, such as sub-harmonic and chaotic behaviors. We study the chaos suppression of the chaotic gyros in a given finite time. Considering the effects of model uncertainties, external disturbances, and fully unknown parameters, we design a robust adaptive finite-time controller to suppress the chaotic vibration of the uncertain gyro as quickly as possible. Using the finite-time control technique, we give the exact value of the chaos suppression time. A mathematical theorem is presented to prove the finite-time stability of the proposed scheme. The numerical simulation shows the efficiency and usefulness of the proposed finite-time chaos suppression strategy.展开更多
In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of mod...In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of model uncertainties and input nonlinearities are also taken into account. An appropriate adaptation law is proposed to tackle the gyros' unknown parameters. Based on the adaptation law and the finite-time control technique, proper control laws are introduced to ensure that the trajectories of the slave gyro converge to the trajectories of the master gyro in a given finite time. Simulation results show the applicability and the efficiency of the proposed finite-time controller.展开更多
The precision of the laser gyro used in tactical missiles is poor because of dithering frequency,actuating by vibration,shock and overload in dynamical environment.This paper introduces the transfer matrix method of t...The precision of the laser gyro used in tactical missiles is poor because of dithering frequency,actuating by vibration,shock and overload in dynamical environment.This paper introduces the transfer matrix method of the multibody system(MSTMM),establishes the dynamic model of the laser gyro strapdown inertial measure assembly aseismatic system,and analyzes the precision affected by dithering of the laser gyro and shocking of the tactical missile.And the dynamic response of the laser gyro strapdown inertial measure assembly aseismatic system is obtained by simulating the multibody system model.The simulation result indicates a theoretical idea to design the vibration isolation for the laser gyro strapdown inertial measure assembly.展开更多
基金supported by the Aeronautical Science Foundation of China(No.20150863003)
文摘A numerical study is carried out to investigate the influence of a sudden change of the specific force on a three-floated gyroscope with a rotor supported on gas-lubricated bearings.The interference torque is calculated to evaluate the influence by modeling the transient behavior of the rotor-bearing system. In combination with dynamic equations of the rotor displacement,the Reynolds equation is solved on the surface of spiral-grooved conical bearings. It is assumed that a steady state has been obtained with a constant specific force, and then the specific force is suddenly changed and maintained constant after that. Responses of the sudden change are obtained by solving the equations. Numerical results show that the direction of the sudden change of the specific force is the main factor which influences the interference torque curve. With a sudden change along the input direction, the interference torque fluctuation has a constant frequency and a decreasing amplitude. With a sudden change along the output direction, the interference torque fluctuates in a small range. With a sudden change along the spin direction, the change of the interference torque combines a fluctuation and a gradually-changing quasi-equilibrium value. This study provides a supplement to the steady-state error model of the three-floated gyroscope.
文摘A composite target seeker gyro with dual spectral range infrared rays and millimeter waves, and the associated control methodology are developed. The static pressure air floated ball bearing is used to sustain the outer frame, the optical fiber and wave guide are used to transmit these two kinds of signals to the rear part of the gyro, and the stator coils are used to get non contact angular measurement. Composite guiding, scanning, tracing and controlling can be achieved, the maximum tracing angular velocity can be as high as 16(°)/s.
文摘According to gyro application in micro-satellites, a new gyro bias real-time on-orbit calibration technology is presented and it is independent of any other sensors. The approach relies on gyro on-orbit measurements restricted by satellite attitude dynamics and estimates the gyro bias generated when the gyro is electrified. Observability of the calibration model is analyzed and applicable conditions of the technology are derived. Simulation results indicate that the calibration algorithm is accurate and robust at gyro sampling rate, and its convergence speed is fast. Within the given attitude dynamics model error, the convergence time is less than 100 s and the convergence accuracy is about 1.0 (°)/h. Calibration performance can meet requirements of spacecraft operations.
基金Pre-Research Program of General Armament Departmentduring the11th Five-Year Plan Period(No.51309020503)the National De-fense Basic Research Program of China(973 Program)(No.973-61334)+1 种基金the National Natural Science Foundation of China(No.50575042)Specialized Research Fund for the Doctoral Program of Higher Education ( No.20050286026).
文摘To reduce the drift error existing in the output signal of fiber optic gyroscopes (FOG), a mathematical model of the FOG output signal is set up; the error characteristics of the FOG output signal are analyzed, and semi-soft threshold filtering is chosen based on the comparison of hard threshold and soft threshold filtering. The semi-soft threshold wavelet package filtering method is applied in the filtering of the FOG output signal. Experiments of the stationary and dynamic FOG output signals filtered with the wavelet package analysis are carried out in a lab environment, respectively. Experiments done with the real-time measured FOG signal show that the method of semi-soft threshold wavelet package filtering reduces the mean square error from 5 (°)/h to 1 (°)/h, so it is effective in eliminating the white noises and the fractal noises existing in the FOG. The novel method proposed here is proved valid in reducing the FOG drift error, satisfying the technical demands of high precision and realtime processing.
文摘The resonator fiber optic gyro (R-FOG) ,which utilizes a resonance frequency change due to the Sagnac effect,is a promising candidate for the next generation inertial rotation sensor. In this study, an open-loop R-FOG is set up using phase modulation spectroscopy. First,the demodulation curve is obtained using a lock-in amplifier. From the demodulation signal,a gyro dynamic range of ± 4.2rad/s is obtained. Then,using different phase modulation frequencies,the open-loop gyro output signal is measured when the gyro is rotated clockwise or counterclockwise. The bias drift as a function of time is also measured. The fluctuation of the output over 5s is about 0.02rad/s. The drift can be reduced by taking countermeasures against system noise.
文摘Aim To analyze the mathematical error model of a dynamically tuned gyro (DTG) strapdown northfinder in detail, guide the process of design, manufacture and adjustment of northfinder. Methods Each error source of this type of northfinder was determined, and the influence of each source on northfinding result was formulated. Results and Conclusion Under the guidance of the analysis, select relevant method for each source which has different effect on result to reduce northfinding error, a type of northfinder meeting the practical requirements of user was developed.
基金supported by National Natural Science Foundation of China (Grant No. 51005239)
文摘The mechanical balance process is the key process to eliminate the quadrature error and improve the performance of the cupped wave gyro. The conventional mechanical balance method for cupped wave gyro based on cup-wall trimming requires high control accuracy of trimming quantity, which increases the production cost and decreases the fabrication efficiency in large extent. However, it is hard to reach the high balance accuracy with the natural frequency split of mHz grade by using the conventional method. In this paper, the lumped mass dynamic model of the cupped wave gyro is built by discretization method, and the effects of different position trimming on the natural frequency are analyzed. It is pointed out that trimming off a tiny quantity of material from cup-wall causes large variation of the natural frequency is the main reason for the low accuracy of the conventional mechanical balance method. Then, a precision balance method for cupped wave gyro based on cup-bottom trimming is presented and the entire procedures of this method are given. The static balance process and dynamic balance process of the precision balance method are simulated by the finite element software. The simulation result shows that the precision balance method based on cup-bottom trimming brings less additional natural frequency split in the static balance process, minimizes the natural frequency split to mHz grade and rectify the angle of mode offset to 0.1° grade in the dynamic balance process, furthermore, the method decreases the requirement for control accuracy of trimming quantity evidently. The research work provides references for structure optimization design and balance process plan of the cupped wave gyro.
文摘Gyro's drift is not only the main drift error which influences gyro's precision but also the primary factor that affects gyro's reliability. Reducing zero drift and random drift is a key problem to the output of a gyro signal. A three-layer de-nosing threshold algorithm is proposed based on the wavelet decomposition to dispose the signal which is collected from a running fiber optic gyro (FOG). The coefficients are obtained from the three-layer wavelet packet decomposition. By setting the high frequency part which is greater than wavelet packet threshold as zero, then reconstructing the nodes which have been filtered out noise and interruption, the soft threshold function is constructed by the coefficients of the third nodes. Compared wavelet packet de-noise with forced de-noising method, the proposed method is more effective. Simulation results show that the random drift compensation is enhanced by 13.1%, and reduces zero drift by 0.052 6°/h.
文摘This research is focused on the singularity analysis for single-gimbal control moment gyros systems (SCMGs) which include two types, with constant speed (CSCMG) or variable speed (VSCMG) rotors. Through angular momentum hypersurfaces of singular states, the passable and impassable singular points are discriminated easily, meanwhile the information about how much the angular momentum workspace as well as the steering capability available is provided directly. It is obvious that the null motions of steering laws are more effective for the five pyramid configuration(FPC) than for the pyramid configuration(PC) from the singular plots. The possible degenerate hyperbolic singular points of the preceding configurations are calculated and the distinctness of them is denoted by the Gaussian curvature. Furthermore, failure problems to steer integrated power and attitude control system (IPACS) are also analyzed. A sufficient condition of choosing configurations of VSCMGs to guarantee the IPACS steering is given. The angular momentum envelops of VSCMGs, in a given energy and a limited range of rotor speeds, are plotted. The connection and distinctness between CSCMGs and VSCMGs are obtained from the point of view of envelops.
文摘As an important sensor in the navigation systems,star sensors and the gyro play important roles in spacecraft attitude determination system.Complex environmental factors are the main sources of error in attitude determination.The error influence of different benchmarks and the disintegration mode between the star sensor and the gyro is analyzed in theory.The integrated design of the star sensor and the gyro on the same benchmark can effectively avoid the error influence and improves the spacecraft attitude determination accuracy.Simulation results indicate that when the stars sensor optical axis vectors overlap the reference coordinate axis of the gyro in the same benchmark,the attitude determination accuracy improves.
基金Project supported by the National High Technology Research and Development Program of China (Grant No. 2007AA04Z436)
文摘The phase modulation and the closed-loop controller can generate electrical crosstalk-coupling in digital closed- loop fibre optic gyro. Four electrical cross-coupling paths are verified by the open-loop testing approach. It is found the variation of ramp amplitude will lead to the alternation of gyro bias. The amplitude and the phase parameters of the electrical crosstalk signal are measured by lock-in amplifier, and the variation of gyro bias is confirmed to be caused by the alternation of phase according to the amplitude of the ramp. A digital closed-loop fibre optic gyro electrical crosstalk-coupling model is built by approximating the electrical cross-coupling paths as a proportion and integration segment. The results of simulation and experiment show that the modulation signal electrical crosstalk-coupling can cause the dead zone of the gyro when a small angular velocity is inputted, and it could also lead to a periodic vibration of the bias error of the gyro when a large angular velocity is inputted.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50979093)
文摘According to the disadvantages of traditional mechanical gyro inertial measurement unit('IMU') for steering system not being available for missile attitude control, a concept based on laser gyro IMU is proposed to realize navigation & positioning and attitude control. The concept will save three single-axis rate gyros compared with traditional missile attitude control system, and is available both for strapdown and platform inertial navigation systems. Firstly, this article analyzes the selection requirements of sensitive device for missile attitude control system, and then analyzes the feasibility of missile attitude control based on laser gyro theoretically, on this basis, from four aspects of error characteristics, anti-vibration characteristics, temperature characteristics and dynamic characteristics, validate the feasibility of the concept practically. Secondly according to the strict requirements of dynamic characteristics on attitude control system, a special design is made for gyro signal filtering used for attitude control. By changing the traditional high order FIR filter to adaptive filter and low order FIR filter, laser gyro's signal phase delay is reduced. The delay time of theoretical design is 1.5 ms. Lastly, this design is validated through an angle vibration test, and test curve indicates that the dynamic characteristics of laser gyro completely meets the requirements of the attitude control system, and the maximum delay time is 1.6144 ms, which satisfies with the attitude update rate of 2 ms per frame. This concept can simplify the missile guidance system design, at the same time, it does not reduce missile guidance accuracy, and also provides reference for the broadening of the application of laser gyro.
基金the Nature Science Foundation of China under Grant No.60604019 and No.6075001
文摘The error equation of a rotating inertial navigation system was introduced. The effect of the system's main error source (constant drift of gyro and zero bias of accelerometer) under rotating conditions for the system was analyzed. Validity of theoretical analysis was shown via simulation, and that provides a theoretical foundation for a rotating strap-down inertial navigation system during actual experimentation and application.
文摘Studies the modeling of gyro startup drift rate from acquired experimental gyro startup drift rate data and the nonlinear dynamic models of gyro startup drift rate related temperature established by time delay neural network which enables the gyro temperature drift rate to be compensated in the process of startup and the gyro instant startup to be implemented. And introduces an improved genetic algorithm to learn the weights of neural network identifier to avoid stacking into the local minimal value and achieve rapid convergence.
文摘The gyro is one of the most interesting and everlasting nonlinear dynamical systems, which displays very rich and complex dynamics, such as sub-harmonic and chaotic behaviors. We study the chaos suppression of the chaotic gyros in a given finite time. Considering the effects of model uncertainties, external disturbances, and fully unknown parameters, we design a robust adaptive finite-time controller to suppress the chaotic vibration of the uncertain gyro as quickly as possible. Using the finite-time control technique, we give the exact value of the chaos suppression time. A mathematical theorem is presented to prove the finite-time stability of the proposed scheme. The numerical simulation shows the efficiency and usefulness of the proposed finite-time chaos suppression strategy.
文摘In this paper, the problem of the finite-time synchronization of two uncertain chaotic gyros is discussed. The parameters of both the master and the slave gyros are assumed to be unknown in advance. The effects of model uncertainties and input nonlinearities are also taken into account. An appropriate adaptation law is proposed to tackle the gyros' unknown parameters. Based on the adaptation law and the finite-time control technique, proper control laws are introduced to ensure that the trajectories of the slave gyro converge to the trajectories of the master gyro in a given finite time. Simulation results show the applicability and the efficiency of the proposed finite-time controller.
基金supported by the Astronautical Support Foundation of China (2009HTXGD)
文摘The precision of the laser gyro used in tactical missiles is poor because of dithering frequency,actuating by vibration,shock and overload in dynamical environment.This paper introduces the transfer matrix method of the multibody system(MSTMM),establishes the dynamic model of the laser gyro strapdown inertial measure assembly aseismatic system,and analyzes the precision affected by dithering of the laser gyro and shocking of the tactical missile.And the dynamic response of the laser gyro strapdown inertial measure assembly aseismatic system is obtained by simulating the multibody system model.The simulation result indicates a theoretical idea to design the vibration isolation for the laser gyro strapdown inertial measure assembly.