The ambiguity resolution in the field of GPS is investigated in detail. A new algorithm to resolve the ambiguity is proposed. The algorithm first obtains the floating resolution of the ambiguity aided with triple diff...The ambiguity resolution in the field of GPS is investigated in detail. A new algorithm to resolve the ambiguity is proposed. The algorithm first obtains the floating resolution of the ambiguity aided with triple difference measurement. Decorrelation of searching space is done by reducing the ambiguity covariance matrix's dimension to overcome the possible sick factorization of the matrix brought by Z-transformation. In simulation, the proposed algorithm is compared with least-squares ambiguity decorrelation adjustment (LAMBDA). The result shows that the proposed algorithm is better than LAMBDA because of lesser resolving time, which approximately reduces 20% resolving time. Thus, the proposed algorithm adapts to the high dynamic real-time applications.展开更多
文摘The ambiguity resolution in the field of GPS is investigated in detail. A new algorithm to resolve the ambiguity is proposed. The algorithm first obtains the floating resolution of the ambiguity aided with triple difference measurement. Decorrelation of searching space is done by reducing the ambiguity covariance matrix's dimension to overcome the possible sick factorization of the matrix brought by Z-transformation. In simulation, the proposed algorithm is compared with least-squares ambiguity decorrelation adjustment (LAMBDA). The result shows that the proposed algorithm is better than LAMBDA because of lesser resolving time, which approximately reduces 20% resolving time. Thus, the proposed algorithm adapts to the high dynamic real-time applications.