The aim of this study was to provide a simple, easy-to-use incubation system for small-scale rural poultry farmers far from the electricity grid. To this end, a naturally ventilated solar thermal incubator was built a...The aim of this study was to provide a simple, easy-to-use incubation system for small-scale rural poultry farmers far from the electricity grid. To this end, a naturally ventilated solar thermal incubator was built and experimentally tested. A U-shaped evacuated tube collector and a wooden crate holding 50 eggs were used to build the solar thermal incubator. Water was used as the heat transfer fluid, and an EPCM was integrated into the incubation chamber for operation at night or when the sun was hidden. The heat generated by the solar collector and stored in the heat transfer fluid is transported to the incubation chamber by thermosiphon to heat the chamber. Temperature and humidity probes powered by a solar panel were placed at various locations to monitor the thermo-hygrometric efficiency of the incubation system. The incubator, heated by natural convection, proved to function normally, and the incubation chamber was maintained throughout the incubation period within a temperature range of 35.53˚C to 39.53˚C and relative humidity averaging 49.4% to 68.5%. The experiment was carried out by introducing 30 eggs and the results of the experimental study showed that the incubator’s efficiency was 87%. The performance tests gave a fertility rate of 93% and a hatching rate of 93%, i.e. 28 fertile eggs and 26 hatched eggs, respectively.展开更多
In view of the problems of the traditional cell incubator,such as the small range of cell culture types,the inability to adjust the internal space of the incubator according to needs,and the inconvenient sampling,this...In view of the problems of the traditional cell incubator,such as the small range of cell culture types,the inability to adjust the internal space of the incubator according to needs,and the inconvenient sampling,this study innovatively designed a cell incubator structure.It proposed a new design concept that can solve the above-mentioned shortcomings.The cell incubator after the new structural modification can adjust the internal space structure of cell culture by setting the bolt-fixed connection between the fixed plate and the vessel divider.It realizes the cultivation of various cells through refrigeration modules and heating modules.Through setting a sampling hole in the glass inner door,it is favorable for operators to take samples,making cell culture more convenient and efficient.展开更多
Weather conditions play a pivotal role in embryo development and parental incubation costs,potentially impacting the clutch size and incubation behavior of birds.Understanding these effects is crucial for bird conserv...Weather conditions play a pivotal role in embryo development and parental incubation costs,potentially impacting the clutch size and incubation behavior of birds.Understanding these effects is crucial for bird conservation.Reeves’ s Pheasant(Syrmaticus reevesii) is a threatened species endemic to China,which is characterized by female-only incubation.However,there is a lack of information regarding the impact of weather conditions on clutch size and incubation behavior in this species.Using satellite tracking,we tracked 27 wild female Reeves’ s Pheasants from 2020 to 2023 in Hubei Province,China.We explored their clutch size and incubation behavior,as well as their responses to ambient temperature and precipitation.Clutch size averaged 7.75 ±1.36,had an association with average ambient temperature and average daily precipitation during the egglaying period,and was potentially linked to female breeding attempts.Throughout the incubation period,females took an average of 0.73 ±0.46 recesses every 24 h,with an average recess duration of 100.80 ±73.37 min and an average nest attendance of 92.98 ±5.27%.They showed a unimodal recess pattern in which nest departures peaked primarily between 13:00 and 16:00.Furthermore,females rarely left nests when daily precipitation was high.Recess duration and nest attendance were influenced by the interaction between daily mean ambient temperature and daily precipitation,as well as day of incubation.Additionally,there was a positive correlation between clutch size and recess duration.These results contribute valuable insights into the lifehistory features of this endangered species.展开更多
Embryonic development is a critical period for phenotype formation.Environmental variation during embryonic development can induce changes in postnatal phenotypes of animals.The thyroxine secretion and aerobic metabol...Embryonic development is a critical period for phenotype formation.Environmental variation during embryonic development can induce changes in postnatal phenotypes of animals.The thyroxine secretion and aerobic metabolic activity of small birds are important phenotypes closely related to their winter survival.In the context of climate change,it is necessary to determine whether temperature variation during incubation in birds leads to developmental plasticity of these cold responsive phenotypes.We incubated Japanese Quail(Coturnix japonica)eggs at 36.8℃,37.8℃,and 38.8℃,and raised the chicks to 35-day old at 22℃with same raising conditions,then all the quails were exposed to gradually temperature dropping environment(from 15℃to 0℃).After cold treatment,serum T3 level,resting metabolic rate,skeletal muscle and liver metabolomes of the birds were measured.The serum T3 levels were significantly lower in the 38.8℃group and significantly higher in the 36.8℃group compared to the 37.8℃group.The metabolic rate in the 38.8℃group was significantly lower compared to the 37.8℃group.Compared with the 37.8℃group,metabolites involved in the tricarboxylic acid cycle in the liver were significantly lower in the 38.8℃group,and metabolites related to lipid oxidation metabolism and fatty acid biosynthesis were significantly lower in the skeletal muscles in the 38.8℃group but significantly higher in the 36.8℃group.These results indicate that incubation temperature variation can lead to developmental plasticity in cold responsive physiological phenotypes.Higher incubation temperature may impair the capacity of birds coping with cold challenge.展开更多
The emergence of antibiotic-resistant bacterial strains and the weaponization of rare bacterial strains pose a potential threat of pandemic disease. Those involved in the treatment and control of infectious diseases h...The emergence of antibiotic-resistant bacterial strains and the weaponization of rare bacterial strains pose a potential threat of pandemic disease. Those involved in the treatment and control of infectious diseases have called for the development of a device capable of rapidly, simultaneously, and safely investigate a myriad of culture conditions. In response to this need, a microliter incubator array system is described and results from a proof-of-concept study using yeast cells to determine optimal growth conditions is presented.展开更多
Background: The thermal environment surrounding neonates in closed incubators can be regulated via two different modes: skin servocontrol mode (SSC) and air temperature control mode (ATC). These produce different patt...Background: The thermal environment surrounding neonates in closed incubators can be regulated via two different modes: skin servocontrol mode (SSC) and air temperature control mode (ATC). These produce different patterns of incubator air and infant body temperatures. Objective: To assess the effects of incubator control mode on clinical outcomes of low-birth-weight-infants during the first days of life and at hospital discharge. Methods: 52 low-birth-weight neonates were nursed over ten days in closed incubators functioning either with SSC mode (n = 29), or with ATC mode (n = 23). Results: The anthropomorphic characteristics of the two groups of neonates were homogenous (gestational age = 29.4 ± 1.4 vs. 29.9 ± 1.2 weeks and birthweight = 1214 ± 347 vs. 1263 ±292 gin the SSC-group and the ATC-group, respectively) and the caregiving (energy and fluid intakes, ventilator assistance and drug administration) did not differ statistically. Daily means of incubator air temperature were similar in the SSC and the ATC-group, however, the SSC mode resulted in more variable incubator air temperature but more stable skin abdominal temperature whereas the reverse was found when using the ATC mode. Those differences had no impact on the body weight of the neonates or their clinical outcomes at hospital discharge which were not statistically different. Conclusion: The clinical outcomes do not differ depending on the incubator control mode after the first ten days of life and at hospital discharge.展开更多
This study suggests a theoretical component to the thus far proposed explanations of what makes a startup incubator successful in enabling entrepreneurial activity. Departing from a traditional focus on industry- and ...This study suggests a theoretical component to the thus far proposed explanations of what makes a startup incubator successful in enabling entrepreneurial activity. Departing from a traditional focus on industry- and nation-wide resources, we develop a framework of the critical success factors for a startup incubator and a scoring mechanism to evaluate the success of existing startup incubators using these factors. We score a selection of American and European incubators using the developed scoring mechanism and comparatively benchmark the European incubators against the American ones to identify areas for improvement. Our findings suggest that European incubators, while relatively strong overall, can look to and learn from their American counterparts in certain areas. Importantly, these improvement areas are not specific to characteristics of any individual European incubator, but to European incubators overall. Finally, we aim to expand this study to other entrepreneurship hubs worldwide and we outline a plan of action to enable this expansion.展开更多
In order to obtain larger,clinical-scale and practical-scale bone grafts,we have designed both tailored scaffolds and tailored bio incubator with optimal bio-production characteristics.Using DIC files to Simpleware Sc...In order to obtain larger,clinical-scale and practical-scale bone grafts,we have designed both tailored scaffolds and tailored bio incubator with optimal bio-production characteristics.Using DIC files to Simpleware Scan-IP(Simple-ware-exeter United Kingdom),we have digitally reconstructed segmental additive bone-tissue in order to perform images processing.Both hydroxyapatite and tannin composites have been used in order to get the final bone modules combined for retexturing of segmental bone defect.We have found that sectioning of bone segment deficiency reorganizations into well disk-shaped design permits one to standardize the cell culture and seeding protocol,to get better products.The present study concludes that some techniques with cultured cell in segmental bone grafts in the laboratory can be transferred and clinically used.展开更多
The project has as its aim the design and implementation of the control of temperature in the cockpit of the prototype of neonatal life support equipment ESVIN based on the international standard IEC 60601-2-19 concer...The project has as its aim the design and implementation of the control of temperature in the cockpit of the prototype of neonatal life support equipment ESVIN based on the international standard IEC 60601-2-19 concerning the basic security and operation of the neonatal incubators. The prototype has been developed and is important because the cockpit is a new concept of medical equipment of neonatal life support. There was a modeling of the system of heating of the incubator using the concepts of system identification with the purpose of finding a mathematical model that describes the dynamic behavior of the system. Then, design and implement the strategy of feedback control with digital PID (proportional-integral-derivative) algorithm. The model allowed the design and implementation of a digital PID controller that meets in a satisfactory manner with the requirements, in accordance with the international standard. The control system implemented in the neonatal incubator ESVIN improved the effectiveness of the neonatal life support equipment in regard to temperature controller of the cockpit.展开更多
We are announcing the second group of na- tional human rights education and training bases, which is a significant as well as pleasant event in China's human rights development. On behalf of the State Council Informa...We are announcing the second group of na- tional human rights education and training bases, which is a significant as well as pleasant event in China's human rights development. On behalf of the State Council Information Office, I would like to express my warm con- gratulations to Renmin University of China, Fudan University, Wuhan University, Shandong University and the Southwest University of Political Science and Law. I would also like to express my sincere re- spect to the experts and scholars who have made excellent contribu- tions to China's human rights cause over the past decades.展开更多
WHEN China's biggest online commerce company Alibaba rang the bell at the New York Stock Exchange on September 19 and its CEO Ma Yun became the wealthiest man in China. Yang Yong, a graduate from Peking University, w...WHEN China's biggest online commerce company Alibaba rang the bell at the New York Stock Exchange on September 19 and its CEO Ma Yun became the wealthiest man in China. Yang Yong, a graduate from Peking University, was also in the United States, sharing his experience of Chinese-style group funding.展开更多
Convolution Neural Networks(CNN)can quickly diagnose COVID-19 patients by analyzing computed tomography(CT)images of the lung,thereby effectively preventing the spread of COVID-19.However,the existing CNN-based COVID-...Convolution Neural Networks(CNN)can quickly diagnose COVID-19 patients by analyzing computed tomography(CT)images of the lung,thereby effectively preventing the spread of COVID-19.However,the existing CNN-based COVID-19 diagnosis models do consider the problem that the lung images of COVID-19 patients in the early stage and incubation period are extremely similar to those of the non-COVID-19 population.Which reduces the model’s classification sensitivity,resulting in a higher probability of the model misdiagnosing COVID-19 patients as non-COVID-19 people.To solve the problem,this paper first attempts to apply triplet loss and center loss to the field of COVID-19 image classification,combining softmax loss to design a jointly supervised metric loss function COVID Triplet-Center Loss(COVID-TCL).Triplet loss can increase inter-class discreteness,and center loss can improve intra-class compactness.Therefore,COVID-TCL can help the CNN-based model to extract more discriminative features and strengthen the diagnostic capacity of COVID-19 patients in the early stage and incubation period.Meanwhile,we use the extreme gradient boosting(XGBoost)as a classifier to design a COVID-19 images classification model of CNN-XGBoost architecture,to further improve the CNN-based model’s classification effect and operation efficiency.The experiment shows that the classification accuracy of the model proposed in this paper is 97.41%,and the sensitivity is 97.61%,which is higher than the other 7 reference models.The COVID-TCL can effectively improve the classification sensitivity of the CNN-based model,the CNN-XGBoost architecture can further improve the CNN-based model’s classification effect.展开更多
文摘The aim of this study was to provide a simple, easy-to-use incubation system for small-scale rural poultry farmers far from the electricity grid. To this end, a naturally ventilated solar thermal incubator was built and experimentally tested. A U-shaped evacuated tube collector and a wooden crate holding 50 eggs were used to build the solar thermal incubator. Water was used as the heat transfer fluid, and an EPCM was integrated into the incubation chamber for operation at night or when the sun was hidden. The heat generated by the solar collector and stored in the heat transfer fluid is transported to the incubation chamber by thermosiphon to heat the chamber. Temperature and humidity probes powered by a solar panel were placed at various locations to monitor the thermo-hygrometric efficiency of the incubation system. The incubator, heated by natural convection, proved to function normally, and the incubation chamber was maintained throughout the incubation period within a temperature range of 35.53˚C to 39.53˚C and relative humidity averaging 49.4% to 68.5%. The experiment was carried out by introducing 30 eggs and the results of the experimental study showed that the incubator’s efficiency was 87%. The performance tests gave a fertility rate of 93% and a hatching rate of 93%, i.e. 28 fertile eggs and 26 hatched eggs, respectively.
基金Supported by Young and Middle-aged Teacher Education Research Project of Fujian Province(Science and Technology Category:JAT210477)College Student Innovation and Entrepreneurship Training Program of Xiamen Medical College(X202112631068)。
文摘In view of the problems of the traditional cell incubator,such as the small range of cell culture types,the inability to adjust the internal space of the incubator according to needs,and the inconvenient sampling,this study innovatively designed a cell incubator structure.It proposed a new design concept that can solve the above-mentioned shortcomings.The cell incubator after the new structural modification can adjust the internal space structure of cell culture by setting the bolt-fixed connection between the fixed plate and the vessel divider.It realizes the cultivation of various cells through refrigeration modules and heating modules.Through setting a sampling hole in the glass inner door,it is favorable for operators to take samples,making cell culture more convenient and efficient.
基金supported by the National Natural Science Foundation of China (grant number 31872240)。
文摘Weather conditions play a pivotal role in embryo development and parental incubation costs,potentially impacting the clutch size and incubation behavior of birds.Understanding these effects is crucial for bird conservation.Reeves’ s Pheasant(Syrmaticus reevesii) is a threatened species endemic to China,which is characterized by female-only incubation.However,there is a lack of information regarding the impact of weather conditions on clutch size and incubation behavior in this species.Using satellite tracking,we tracked 27 wild female Reeves’ s Pheasants from 2020 to 2023 in Hubei Province,China.We explored their clutch size and incubation behavior,as well as their responses to ambient temperature and precipitation.Clutch size averaged 7.75 ±1.36,had an association with average ambient temperature and average daily precipitation during the egglaying period,and was potentially linked to female breeding attempts.Throughout the incubation period,females took an average of 0.73 ±0.46 recesses every 24 h,with an average recess duration of 100.80 ±73.37 min and an average nest attendance of 92.98 ±5.27%.They showed a unimodal recess pattern in which nest departures peaked primarily between 13:00 and 16:00.Furthermore,females rarely left nests when daily precipitation was high.Recess duration and nest attendance were influenced by the interaction between daily mean ambient temperature and daily precipitation,as well as day of incubation.Additionally,there was a positive correlation between clutch size and recess duration.These results contribute valuable insights into the lifehistory features of this endangered species.
基金funded by the National Natural Science Foundation of China(32071515 to S.Z.)Graduate Research and Practice Projects of Minzu University of China(SZKY2024035 to R.Z.)。
文摘Embryonic development is a critical period for phenotype formation.Environmental variation during embryonic development can induce changes in postnatal phenotypes of animals.The thyroxine secretion and aerobic metabolic activity of small birds are important phenotypes closely related to their winter survival.In the context of climate change,it is necessary to determine whether temperature variation during incubation in birds leads to developmental plasticity of these cold responsive phenotypes.We incubated Japanese Quail(Coturnix japonica)eggs at 36.8℃,37.8℃,and 38.8℃,and raised the chicks to 35-day old at 22℃with same raising conditions,then all the quails were exposed to gradually temperature dropping environment(from 15℃to 0℃).After cold treatment,serum T3 level,resting metabolic rate,skeletal muscle and liver metabolomes of the birds were measured.The serum T3 levels were significantly lower in the 38.8℃group and significantly higher in the 36.8℃group compared to the 37.8℃group.The metabolic rate in the 38.8℃group was significantly lower compared to the 37.8℃group.Compared with the 37.8℃group,metabolites involved in the tricarboxylic acid cycle in the liver were significantly lower in the 38.8℃group,and metabolites related to lipid oxidation metabolism and fatty acid biosynthesis were significantly lower in the skeletal muscles in the 38.8℃group but significantly higher in the 36.8℃group.These results indicate that incubation temperature variation can lead to developmental plasticity in cold responsive physiological phenotypes.Higher incubation temperature may impair the capacity of birds coping with cold challenge.
文摘The emergence of antibiotic-resistant bacterial strains and the weaponization of rare bacterial strains pose a potential threat of pandemic disease. Those involved in the treatment and control of infectious diseases have called for the development of a device capable of rapidly, simultaneously, and safely investigate a myriad of culture conditions. In response to this need, a microliter incubator array system is described and results from a proof-of-concept study using yeast cells to determine optimal growth conditions is presented.
文摘Background: The thermal environment surrounding neonates in closed incubators can be regulated via two different modes: skin servocontrol mode (SSC) and air temperature control mode (ATC). These produce different patterns of incubator air and infant body temperatures. Objective: To assess the effects of incubator control mode on clinical outcomes of low-birth-weight-infants during the first days of life and at hospital discharge. Methods: 52 low-birth-weight neonates were nursed over ten days in closed incubators functioning either with SSC mode (n = 29), or with ATC mode (n = 23). Results: The anthropomorphic characteristics of the two groups of neonates were homogenous (gestational age = 29.4 ± 1.4 vs. 29.9 ± 1.2 weeks and birthweight = 1214 ± 347 vs. 1263 ±292 gin the SSC-group and the ATC-group, respectively) and the caregiving (energy and fluid intakes, ventilator assistance and drug administration) did not differ statistically. Daily means of incubator air temperature were similar in the SSC and the ATC-group, however, the SSC mode resulted in more variable incubator air temperature but more stable skin abdominal temperature whereas the reverse was found when using the ATC mode. Those differences had no impact on the body weight of the neonates or their clinical outcomes at hospital discharge which were not statistically different. Conclusion: The clinical outcomes do not differ depending on the incubator control mode after the first ten days of life and at hospital discharge.
文摘This study suggests a theoretical component to the thus far proposed explanations of what makes a startup incubator successful in enabling entrepreneurial activity. Departing from a traditional focus on industry- and nation-wide resources, we develop a framework of the critical success factors for a startup incubator and a scoring mechanism to evaluate the success of existing startup incubators using these factors. We score a selection of American and European incubators using the developed scoring mechanism and comparatively benchmark the European incubators against the American ones to identify areas for improvement. Our findings suggest that European incubators, while relatively strong overall, can look to and learn from their American counterparts in certain areas. Importantly, these improvement areas are not specific to characteristics of any individual European incubator, but to European incubators overall. Finally, we aim to expand this study to other entrepreneurship hubs worldwide and we outline a plan of action to enable this expansion.
文摘In order to obtain larger,clinical-scale and practical-scale bone grafts,we have designed both tailored scaffolds and tailored bio incubator with optimal bio-production characteristics.Using DIC files to Simpleware Scan-IP(Simple-ware-exeter United Kingdom),we have digitally reconstructed segmental additive bone-tissue in order to perform images processing.Both hydroxyapatite and tannin composites have been used in order to get the final bone modules combined for retexturing of segmental bone defect.We have found that sectioning of bone segment deficiency reorganizations into well disk-shaped design permits one to standardize the cell culture and seeding protocol,to get better products.The present study concludes that some techniques with cultured cell in segmental bone grafts in the laboratory can be transferred and clinically used.
文摘The project has as its aim the design and implementation of the control of temperature in the cockpit of the prototype of neonatal life support equipment ESVIN based on the international standard IEC 60601-2-19 concerning the basic security and operation of the neonatal incubators. The prototype has been developed and is important because the cockpit is a new concept of medical equipment of neonatal life support. There was a modeling of the system of heating of the incubator using the concepts of system identification with the purpose of finding a mathematical model that describes the dynamic behavior of the system. Then, design and implement the strategy of feedback control with digital PID (proportional-integral-derivative) algorithm. The model allowed the design and implementation of a digital PID controller that meets in a satisfactory manner with the requirements, in accordance with the international standard. The control system implemented in the neonatal incubator ESVIN improved the effectiveness of the neonatal life support equipment in regard to temperature controller of the cockpit.
文摘We are announcing the second group of na- tional human rights education and training bases, which is a significant as well as pleasant event in China's human rights development. On behalf of the State Council Information Office, I would like to express my warm con- gratulations to Renmin University of China, Fudan University, Wuhan University, Shandong University and the Southwest University of Political Science and Law. I would also like to express my sincere re- spect to the experts and scholars who have made excellent contribu- tions to China's human rights cause over the past decades.
文摘WHEN China's biggest online commerce company Alibaba rang the bell at the New York Stock Exchange on September 19 and its CEO Ma Yun became the wealthiest man in China. Yang Yong, a graduate from Peking University, was also in the United States, sharing his experience of Chinese-style group funding.
基金This work was supported,in part,by the Natural Science Foundation of Jiangsu Province under Grant Numbers BK20201136,BK20191401in part,by the National Nature Science Foundation of China under Grant Numbers 62272236,61502096,61304205,61773219,61502240in part,by the Public Welfare Fund Project of Zhejiang Province Grant Numbers LGG20E050001.
文摘Convolution Neural Networks(CNN)can quickly diagnose COVID-19 patients by analyzing computed tomography(CT)images of the lung,thereby effectively preventing the spread of COVID-19.However,the existing CNN-based COVID-19 diagnosis models do consider the problem that the lung images of COVID-19 patients in the early stage and incubation period are extremely similar to those of the non-COVID-19 population.Which reduces the model’s classification sensitivity,resulting in a higher probability of the model misdiagnosing COVID-19 patients as non-COVID-19 people.To solve the problem,this paper first attempts to apply triplet loss and center loss to the field of COVID-19 image classification,combining softmax loss to design a jointly supervised metric loss function COVID Triplet-Center Loss(COVID-TCL).Triplet loss can increase inter-class discreteness,and center loss can improve intra-class compactness.Therefore,COVID-TCL can help the CNN-based model to extract more discriminative features and strengthen the diagnostic capacity of COVID-19 patients in the early stage and incubation period.Meanwhile,we use the extreme gradient boosting(XGBoost)as a classifier to design a COVID-19 images classification model of CNN-XGBoost architecture,to further improve the CNN-based model’s classification effect and operation efficiency.The experiment shows that the classification accuracy of the model proposed in this paper is 97.41%,and the sensitivity is 97.61%,which is higher than the other 7 reference models.The COVID-TCL can effectively improve the classification sensitivity of the CNN-based model,the CNN-XGBoost architecture can further improve the CNN-based model’s classification effect.