A three-layer model of the thermohaline structure is developed on the basis of the two -layer model of thermocline. The model is able to simulate the depth,thickness and intensity of both thermocline and halocline, an...A three-layer model of the thermohaline structure is developed on the basis of the two -layer model of thermocline. The model is able to simulate the depth,thickness and intensity of both thermocline and halocline, and the temperature and salinity of both upper layer and lower layer in the shallow seas.Camparison of simulation with data is favorable.Detailed analysis is made on a variety of factors affecting the intensity of the thermocline.展开更多
A one-dimentional three-layer model for the thermal structure in the Huanghai Sea is presented in this study, me model consists of the upper mixed layer caused by heating and wind mixing, the lower mixed layer driven ...A one-dimentional three-layer model for the thermal structure in the Huanghai Sea is presented in this study, me model consists of the upper mixed layer caused by heating and wind mixing, the lower mixed layer driven by tidal mixing, and the thermocline with certain thickness. The entrainment velocities of the upper and lower layers are obtained respectively. The results show that the model is capable of describing the development and decline processes of the seasonal thermocline in the Huanghai Sea, simulating successfully the Huanghai Sea Cold Water Mass, the nearshore front and surface cold water off North Jiangsu and explaining reasonably their formation mechanisms as well as the strong thermocline off Qingdao. It is suggested that the tidal mixing plays key role in the formation of the nearshore front off North Jiangsu and the strong thermocline off Qingdao. The wind mixing and the tidal mixing make the lower layer water with high nutrients go up to the upper layer. This physical process may be significant for biological plant production.展开更多
To understand the physics of an ionospheric E-F valley, a new overlapping three- Chapman-layer model is developed to interpret the sounding rocket measurement in the morn- ing (sunrise) on May 7, 2011 at the Hainan ...To understand the physics of an ionospheric E-F valley, a new overlapping three- Chapman-layer model is developed to interpret the sounding rocket measurement in the morn- ing (sunrise) on May 7, 2011 at the Hainan low latitude ionospheric observation station (19.5°N, 109.1°E). From our model, the valley width, depth and height are 43.0 km, 62.9% and 121.0 km, re- spectively. From the sounding rocket observation, the valley width, depth and height are 42.2 km, 47.0% and 123.5 km, respectively. The model results are well consistent with the sounding rocket observation. The observed E-F valley at Hainan station is very wide and deep, and rapid deel- opment of the photochemical process in the ionosphere should be the underlying reason.展开更多
A neuroid BP-type three-layer mapping model is used for monthly rainfall forecasting in terms of 1946-1985Naming monthly precipitation records as basic sequences and the model has the form i×j=8×3, K=1; by s...A neuroid BP-type three-layer mapping model is used for monthly rainfall forecasting in terms of 1946-1985Naming monthly precipitation records as basic sequences and the model has the form i×j=8×3, K=1; by steadilymodifying the weighing coefficient, long-range monthly forecasts for January to December, 1986 are constructed and1986 month-to-month predictions are made based on, say, the January measurement for February rainfall and soon, with mean absolute error reaching 6,07 and 5,73 mm, respectively. Also, with a different monthly initial value forJune through September, 1994, neuroid forecasting is done,indicating the same result of the drought in Naming during the summer, an outcome that is in sharp agreement with the observation.展开更多
The microphysical "three-layer" model for stratiform clouds over a midlatitude location in Northwest China is investigated by combining in situ airborne Particle Measuring Systems, Inc. (PMS), radar measurem...The microphysical "three-layer" model for stratiform clouds over a midlatitude location in Northwest China is investigated by combining in situ airborne Particle Measuring Systems, Inc. (PMS), radar measurements, and the NCAR/Penn State Mesoscale Model Version 5 (MM5) simulation with a two-moment microphysics scheme. The coexistence of measured supercooled liquid water and small ice particles produces snow particles below the cloud top in the second layer. Peak number concentration and mean diameter of cloud water and raindrop appear in the third warm layer. A thin dry layer just below the melting layer is also observed. The predicted precipitation is tested by equitable threat score. The melting layer is clearly defined in the radar image and model radar reflectivity output is agreement with the observations. The model results provide features of the microphysical structure for every layer of "three-layer" model at Yan'an station. For both observation and model simulation, the "three-layer" model explains the stratiform precipitation formation completely and comprehensively.展开更多
At present,studies on large-amplitude internal solitary waves mostly adopt strong stratification models,such as the twoand three-layer Miyata–Choi–Camassa(MCC)internal wave models,which omit the pycnocline or treat ...At present,studies on large-amplitude internal solitary waves mostly adopt strong stratification models,such as the twoand three-layer Miyata–Choi–Camassa(MCC)internal wave models,which omit the pycnocline or treat it as another fluid layer with a constant density.Because the pycnocline exists in real oceans and cannot be omitted sometimes,the computational error of a large-amplitude internal solitary wave within the pycnocline introduced by the strong stratification approximation is unclear.In this study,the two-and three-layer MCC internal wave models are used to calculate the wave profile and wave speed of large-amplitude internal solitary waves.By comparing these results with the results provided by the Dubreil–Jacotin–Long(DJL)equation,which accurately describes large-amplitude internal solitary waves in a continuous density stratification,the computational errors of large-amplitude internal solitary waves at different pycnocline depths introduced by the strong stratification approximation are assessed.Although the pycnocline thicknesses are relatively large(accounting for 8%–10%of the total water depth),the error is much smaller under the three-layer approximation than under the two-layer approximation.展开更多
This report analyzes the existing problems in terminology referring to clinical symptoms of traditional Chinese medicine(TCM)from the viewpoint of data sharing and elaborates the necessity of establishing a standard d...This report analyzes the existing problems in terminology referring to clinical symptoms of traditional Chinese medicine(TCM)from the viewpoint of data sharing and elaborates the necessity of establishing a standard directory of clinical data elements of TCM.We evaluated the principles and methods of data element extraction according to the status quo of the clinical information system and characteristics of symptoms for TCM and consequently proposed a three-layer model for optimal extraction.展开更多
This paper seeks to outline a novel three-layer model and a new birth-dteath element solution technique to evaluate static strength of notched metallic panel repaired with bonded com- posite patch and to optimize mate...This paper seeks to outline a novel three-layer model and a new birth-dteath element solution technique to evaluate static strength of notched metallic panel repaired with bonded com- posite patch and to optimize material parameters. The higher order 3D, 8-node isotropic solid ele- ment and 8-node anisotropic layered solid element with three degrees of freedom per node are respectively implemented to model substrate panel, adhesive layer and composite patch to establish three-layer model of repaired panel. The new solving technique based on birth-death element is developed to allow solution of the stress pattern of repaired panel for identifying failure mode. The new model and its solution are used to model failure mode and residual strength of repaired panel, and the obtained results have a good agreement with the experimental findings. Finally, the influences of material parameter of adhesive layer and composite patch on the residual strength of repaired panel are investigated for optimizing material properties to meet operational and envi- ronmental constraints.展开更多
文摘A three-layer model of the thermohaline structure is developed on the basis of the two -layer model of thermocline. The model is able to simulate the depth,thickness and intensity of both thermocline and halocline, and the temperature and salinity of both upper layer and lower layer in the shallow seas.Camparison of simulation with data is favorable.Detailed analysis is made on a variety of factors affecting the intensity of the thermocline.
文摘A one-dimentional three-layer model for the thermal structure in the Huanghai Sea is presented in this study, me model consists of the upper mixed layer caused by heating and wind mixing, the lower mixed layer driven by tidal mixing, and the thermocline with certain thickness. The entrainment velocities of the upper and lower layers are obtained respectively. The results show that the model is capable of describing the development and decline processes of the seasonal thermocline in the Huanghai Sea, simulating successfully the Huanghai Sea Cold Water Mass, the nearshore front and surface cold water off North Jiangsu and explaining reasonably their formation mechanisms as well as the strong thermocline off Qingdao. It is suggested that the tidal mixing plays key role in the formation of the nearshore front off North Jiangsu and the strong thermocline off Qingdao. The wind mixing and the tidal mixing make the lower layer water with high nutrients go up to the upper layer. This physical process may be significant for biological plant production.
基金supported by National Natural Science Foundation of China(No.41274146)the Specialized Research Fund for State Key Laboratory in China
文摘To understand the physics of an ionospheric E-F valley, a new overlapping three- Chapman-layer model is developed to interpret the sounding rocket measurement in the morn- ing (sunrise) on May 7, 2011 at the Hainan low latitude ionospheric observation station (19.5°N, 109.1°E). From our model, the valley width, depth and height are 43.0 km, 62.9% and 121.0 km, re- spectively. From the sounding rocket observation, the valley width, depth and height are 42.2 km, 47.0% and 123.5 km, respectively. The model results are well consistent with the sounding rocket observation. The observed E-F valley at Hainan station is very wide and deep, and rapid deel- opment of the photochemical process in the ionosphere should be the underlying reason.
文摘A neuroid BP-type three-layer mapping model is used for monthly rainfall forecasting in terms of 1946-1985Naming monthly precipitation records as basic sequences and the model has the form i×j=8×3, K=1; by steadilymodifying the weighing coefficient, long-range monthly forecasts for January to December, 1986 are constructed and1986 month-to-month predictions are made based on, say, the January measurement for February rainfall and soon, with mean absolute error reaching 6,07 and 5,73 mm, respectively. Also, with a different monthly initial value forJune through September, 1994, neuroid forecasting is done,indicating the same result of the drought in Naming during the summer, an outcome that is in sharp agreement with the observation.
基金supported by the National Natural Science Foundation of China (Grant No. 40805056)the National Key Technologies R&D Program of China (Grant No. 2006BAC12B00)
文摘The microphysical "three-layer" model for stratiform clouds over a midlatitude location in Northwest China is investigated by combining in situ airborne Particle Measuring Systems, Inc. (PMS), radar measurements, and the NCAR/Penn State Mesoscale Model Version 5 (MM5) simulation with a two-moment microphysics scheme. The coexistence of measured supercooled liquid water and small ice particles produces snow particles below the cloud top in the second layer. Peak number concentration and mean diameter of cloud water and raindrop appear in the third warm layer. A thin dry layer just below the melting layer is also observed. The predicted precipitation is tested by equitable threat score. The melting layer is clearly defined in the radar image and model radar reflectivity output is agreement with the observations. The model results provide features of the microphysical structure for every layer of "three-layer" model at Yan'an station. For both observation and model simulation, the "three-layer" model explains the stratiform precipitation formation completely and comprehensively.
基金the Fundamental Research Funds for the Central Universities (No. 3072022FSC0101)the National Natural Science Foundation of China (Nos. 12202114, 52261135547)+4 种基金the China Postdoctoral Science Foundation (No. 2022M710932)the State Key Laboratory of Coastal and Offshore EngineeringDalian University of Technology (No. LP2202)the Qingdao Postdoctoral Application Projectthe Heilongjiang Touyan Innovation Team Program
文摘At present,studies on large-amplitude internal solitary waves mostly adopt strong stratification models,such as the twoand three-layer Miyata–Choi–Camassa(MCC)internal wave models,which omit the pycnocline or treat it as another fluid layer with a constant density.Because the pycnocline exists in real oceans and cannot be omitted sometimes,the computational error of a large-amplitude internal solitary wave within the pycnocline introduced by the strong stratification approximation is unclear.In this study,the two-and three-layer MCC internal wave models are used to calculate the wave profile and wave speed of large-amplitude internal solitary waves.By comparing these results with the results provided by the Dubreil–Jacotin–Long(DJL)equation,which accurately describes large-amplitude internal solitary waves in a continuous density stratification,the computational errors of large-amplitude internal solitary waves at different pycnocline depths introduced by the strong stratification approximation are assessed.Although the pycnocline thicknesses are relatively large(accounting for 8%–10%of the total water depth),the error is much smaller under the three-layer approximation than under the two-layer approximation.
基金funding support from the Innovation Platform Open Fund Project of Hunan Provincial Universities (No. 13K076)National Key Discipline Open Fund Project of TCM diagnostics in Hunan University of Chinese Medicine (2015zyzd18)
文摘This report analyzes the existing problems in terminology referring to clinical symptoms of traditional Chinese medicine(TCM)from the viewpoint of data sharing and elaborates the necessity of establishing a standard directory of clinical data elements of TCM.We evaluated the principles and methods of data element extraction according to the status quo of the clinical information system and characteristics of symptoms for TCM and consequently proposed a three-layer model for optimal extraction.
基金supported by the National Natural Science Foundation (No. 51075019)Aeronautical Science Foundation of China (No. 20095251024)
文摘This paper seeks to outline a novel three-layer model and a new birth-dteath element solution technique to evaluate static strength of notched metallic panel repaired with bonded com- posite patch and to optimize material parameters. The higher order 3D, 8-node isotropic solid ele- ment and 8-node anisotropic layered solid element with three degrees of freedom per node are respectively implemented to model substrate panel, adhesive layer and composite patch to establish three-layer model of repaired panel. The new solving technique based on birth-death element is developed to allow solution of the stress pattern of repaired panel for identifying failure mode. The new model and its solution are used to model failure mode and residual strength of repaired panel, and the obtained results have a good agreement with the experimental findings. Finally, the influences of material parameter of adhesive layer and composite patch on the residual strength of repaired panel are investigated for optimizing material properties to meet operational and envi- ronmental constraints.